Multi-horizon uniform superior predictive ability revisited

Monschang, Verena; Trede, Mark; Wilfling, Bernd

Zusammenfassung

This paper examines the joint-hypothesis-testing problem that arises when comparing two competing forecast methods across multiple horizons. We focus on the concept of uniform Superior Predictive Ability (uSPA) and investigate the asymptotic properties of the corresponding test statistic. Under standard regularity conditions, the asymptotic distribution under the null hypothesis is derived, ensuring that the test maintains the correct size and exhibits consistency. Monte Carlo simulations are used to assess the test's finite-sample performance. An empirical application replicates and extends earlier studies, providing inference for multi-horizon comparisons between direct and iterative forecasting approaches.

Schlüsselwörter

Forecast evaluation; joint-hypothesis testing; direct versus iterative forecasts

Zitieren als

Monschang, V., Trede, M., & Wilfling, B. (2026). Multi-horizon uniform superior predictive ability revisited. Journal of Business and Economic Statistics, 44, 1–7.

Details

Publikationstyp
Forschungsartikel (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2026

Fachzeitschrift
Journal of Business and Economic Statistics

Band
44

Erste Seite
1

Letzte Seite
7

Sprache
Englisch

ISSN
0735-0015

DOI

Gesamter Text