Dr. Manuel Stapper
Institut für Ökonometrie und Wirtschaftsstatistik
Am Stadtgraben 9
48143 Münster
Raum 308
Tel.: +49 (0)251-83 22914
Fax: +49 (0)251-83 22012
manuel.stapper@wiwi.uni-muenster.de
Sprechstunde:
Mittwoch, 13-14 Uhr (nach Absprache)
 
- 
Über
Ausbildung 
11/2017 - aktuell Doktorand, Institut für Ökonometrie und Wirtschaftsstatistik, WWU Münster
10/2015 - 10/2017 M.Sc. Statistik, TU Dortmund
10/2011 - 06/2015 B.Sc. Statistik, TU DortmundBerufserfahrung
11/2017 - aktuell Wissenschaftlicher Mitarbeiter, Institut für Ökonometrie und Wirtschaftsstatistik,
WWU Münster
05/2016 - 09/2017 Wissenschaftfliche Hilfskraft, Lehrstuhl für Statistik in den Biowissenschaften, TU DortmundForschungsschwerpunkte
- Count Data Models
 - Software Package Development
 - Robust Statistics
 - Disease Spread
 - Long Memory Count Data
 
 - 
Veranstaltungen
- Macroeconometrics (Master, WiSe23/24)
 - Bayesian Econometrics and MCMC (Master, SoSe23)
 - Advanced Statistics (Bachelor, WiSe22/23)
 - Advanced Time Series Analysis (Master, SoSe22)
 - Econometrics (Bachelor, WiSe21/22)
 - Advanced Time Series Analysis (Master, SoSe21)
 - Advanced Statistics (Bachelor, WiSe20/21)
 - Empirische Wirtschaftsforschung (Bachelor, SoSe20)
 - Advanced Time Series Analysis (Master, WiSe19/20)
 - Introduction to R (Master, SoSe19)
 - Econometrics PhD (PhD level, WiSe18/19)
 - Ökonometrie II (Bachelor, SoSe18)
 - Ökonometrie I (Bachelor, WiSe17/18)
 
 - 
Publikationen
Aufsätze
- Segnon, Stapper (2019), "Long Memory Conditional Heteroscedasticity in Count Data", CQE Working Papers, 82/2019 Article
 - Stapper (2021), "Count Data Time Series Modelling in Julia - The CountTimeSeries.jl Package and Applications", Entropy 23(6) Article
 
Software
- CountTimeSeries.jl - Julia Package for Count Time Series
 - RandomVariables.jl - Julia Package for Random Variables, Transformations and Probabilities
 - RobustMFit.jl - Methods to fit distribution robustly
 
Konferenzbeiträge
- 12/2018 - „Long Memory Conditional Heteroscedasticity in Count Data”, CFE/CMStatistics, Pisa
 - 03/2019 - „The INFIGARCH Model and its Application in Trading Activity”, SMSA, Dresden
 - 03/2019 - „Long Memory Conditional Heteroscedasticity in Count Data”, DAGStat, München
 - 12/2019 - „Sources of Global Trading Activity”, CFE/CMStatistics, London
 - 08/2022 - „Accounting for Asymmetry in M-Estimation”, COMPSTAT, Bologna
 - 09/2022 - „Accounting for Asymmetry in M-Estimation”, Statistische Woche, Münster
 - 09/2022 - „CountTimeSeries.jl - A Julia Package for Integer-Valued Time Series”, Statistische Woche, Münster
 - 12/2022 - „RandomVariables.jl ‑ A Julia Package for Random Variables and Probabilities”, CFE/CMStatistics, London
 - 08/2023 - „Commuting and the Spread of Infectious Diseases - Influenza in Germany”, ASA Joint Statistical Meeting, Toronto
 - 08/2023 - „Commuting and the Spread of Infectious Diseases - Influenza in Germany”, COMPSTAT, London
 
 - 
Abschlussarbeiten
Betreute Abschlussarbeiten
- The Effect of Wind Turbines on House Prices in Germany – Evidence from a Machine Learning based Estimation Approach (Master)
 - Bayesian Latent Cluster Detection in the International Arms Trade Network (Master)
 - Carbon Price Acceptance: An Empirical Application of Machine Learning Methods for Estimating Heterogeneous Treatment Effects (Master)
 - Prediction of disruption ticket volumes based on a time series analysis using the eTTs reporting system of Deutsche Telekom AG as an example (Bachelor)
 - Non-Parametric Machine Learning Regression under Misspecification (Bachlor)
 - Robust Fitting of INGARCH Processes - A Generalized Method of Moments Approach (Bachelor)
 - INARMA Models - Parameter Estimation by Indirect Inference (Bachelor)