Manuel Stapper, M.Sc.
Institut für Ökonometrie und Wirtschaftsstatistik
Am Stadtgraben 9
48143 Münster
Raum 308
Tel.: +49 (0)251-83 22914
Fax: +49 (0)251-83 22012
manuel.stapper@wiwi.uni-muenster.de
Sprechstunde:
Mittwoch, 13-14 Uhr (nach Absprache)
-
Über
Ausbildung 11/2017 - aktuell Doktorand, Institut für Ökonometrie und Wirtschaftsstatistik, WWU Münster
10/2015 - 10/2017 M.Sc. Statistik, TU Dortmund
10/2011 - 06/2015 B.Sc. Statistik, TU DortmundBerufserfahrung
11/2017 - aktuell Wissenschaftlicher Mitarbeiter, Institut für Ökonometrie und Wirtschaftsstatistik,
WWU Münster
05/2016 - 09/2017 Wissenschaftfliche Hilfskraft, Lehrstuhl für Statistik in den Biowissenschaften, TU DortmundForschungsschwerpunkte
- Count Data Models
- Software Package Development
- Robust Statistics
- Disease Spread
- Long Memory Count Data
-
Veranstaltungen
- Advanced Statistics (Bachelor, WiSe22/23)
- Advanced Time Series Analysis (Master, SoSe22)
- Econometrics (Bachelor, WiSe21/22)
- Advanced Time Series Analysis (Master, SoSe21)
- Advanced Statistics (Bachelor, WiSe20/21)
- Empirische Wirtschaftsforschung (Bachelor, SoSe20)
- Advanced Time Series Analysis (Master, WiSe19/20)
- Introduction to R (Master, SoSe19)
- Econometrics PhD (PhD level, WiSe18/19)
- Ökonometrie II (Bachelor, SoSe18)
- Ökonometrie I (Bachelor, WiSe17/18)
-
Publikationen
Aufsätze
- Segnon, Stapper (2019), "Long Memory Conditional Heteroscedasticity in Count Data", CQE Working Papers, 82/2019 Article
- Stapper (2021), "Count Data Time Series Modelling in Julia - The CountTimeSeries.jl Package and Applications", Entropy 23(6) Article
Software
- CountTimeSeries.jl - Julia Package for Count Time Series
- RandomVariables.jl - Julia Package for Random Variables, Transformations and Probabilities
Konferenzbeiträge
- 12/2018 - „Long Memory Conditional Heteroscedasticity in Count Data”, CFE/CMStatistics, Pisa
- 03/2019 - „The INFIGARCH Model and its Application in Trading Activity”, SMSA, Dresden
- 03/2019 - „Long Memory Conditional Heteroscedasticity in Count Data”, DAGStat, München
- 12/2019 - „Sources of Global Trading Activity”, CFE/CMStatistics, London
- 08/2022 - „Accounting for Asymmetry in M-Estimation”, COMPSTAT, Bologna
- 09/2022 - „Accounting for Asymmetry in M-Estimation”, Statistische Woche, Münster
- 09/2022 - „CountTimeSeries.jl - A Julia Package for Integer-Valued Time Series”, Statistische Woche, Münster
-
Abschlussarbeiten
Betreute Abschlussarbeiten
- The Effect of Wind Turbines on House Prices in Germany – Evidence from a Machine Learning based Estimation Approach (Master)
- Prediction of disruption ticket volumes based on a time series analysis using the eTTs reporting system of Deutsche Telekom AG as an example (Bachelor)
- Bayesian Latent Cluster Detection in the International Arms Trade Network (Master)
- Non-Parametric Machine Learning Regression under Misspecification (Bachlor)
- Robust Fitting of INGARCH Processes - A Generalized Method of Moments Approach (Bachelor)
- INARMA Models - Parameter Estimation by Indirect Inference (Bachelor)