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Abstract: This paper introduces a new class of integer-valued long memory processes
that are adaptations of the well-known FIGARCH(p, d, q) process of Baillie (1996) and
HYGARCH(p, d, q) process of Davidson (2004) to a count data setting. We derive the
statistical properties of the models and show that reasonable parameter estimates are
easily obtained via conditional maximum likelihood estimation. An empirical applica-
tion with financial transaction data illustrates the practical importance of the models.
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1 Introduction

Modeling long-range dependence1 in time series has a long tradition in many fields
dating back to at least Smith (1938), Cox and Townsend (1947), Hurst (1951), among
others. Although this phenomenon has been observed and reported since the sixties
by Mandelbrot (1963) for speculative markets, its consideration in the modeling of
financial or macro time series only started with papers by Ding et al. (1993) and Ding
and Granger (1996) that documented in detail the presence of long memory in absolute
or squared observations. In addition to the empirical observations, the development
of fractionally integrated processes by Granger (1980), Granger (1981), Granger and
Joyeux (1980) and Hosking (1981) has unleashed the introduction of competing models
of long memory in the literature, see Haldrup and Valdes (2017) for an excellent review
of the development in modeling long memory.

Recent empirical observations have revealed the existence of long memory in count
data, see Quoreshi (2014), Braccini (2015), Hainaut and Boucher (2014). These obser-
vations confirm the theoretical results of Daley et al. (2000) and Hurvich et al. (2009)
which imply that, under certain conditions, long memory behavior is preserved when
duration processes are converted to count data processes. This in turn implies that

1Until now the origin of the long range dependence is subject to debate. For Cox (2014), the origin
of long memory remains unclear. However, there exist different theories in the literature to explain
the presence of long range dependence.
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those count data processes are not only characterized by overdispersion, but also by
high persistence of observed autocorrelations that take far longer to decay than the
geometrical decay associated with the integer-valued ARMA (INARMA) or GARCH
(INGARCH) models.

The presence of long memory in financial count data led Quoreshi (2014) to intro-
duce the integer-valued ARFIMA process. Braccini (2015) and Hainaut and Boucher
(2014) independently used the Poisson multifractional process2 for modeling count
data. We contribute to this growing literature by introducing integer-valued FIGARCH
(INFIGARCH) and HYGARCH (INHYGARCH) processes. Our primary objective is
to develop a more flexible class of processes for the conditional mean that are able to
reproduce the long range dependence observed in count data. Introduced by Baillie
(1996) and Davidson (2004) respectively, FIGARCH and HYGARCH processes are
widely used in empirical applications to model volatility in financial markets. As mea-
sures of financial market realized volatility, it seems very important to find stochastic
processes that can properly reproduce the stylized facts of count data and avoid the
mispricing of volatility.

The rest of the paper is organized as follows. Section 2 introduces the models.
Statistical properties of the processes and the inequality conditions that guarantee
positivity of the conditional mean are provided in Section 3. We implement a con-
ditional maximum likelihood estimation (CMLE) and present the results of a Monte
Carlo simulation in Section 4. An empirical application to financial markets is per-
formed in Section 5, and Section 6 concludes.

2 Model Framework

In the INGARCH framework developed independently by Heinen (2003) and Ferland
et al. (2006) a count data time series {Yt}t∈Z with Yt ∈ N0 is called INGARCH(p, q)
process if Yt|Ft−1 follows a Poisson distribution with parameter

λt = β0 + β(L)λt + α(L)Yt , (1)

where αi, βj ≥ 0 and β0 > 0. Ft = σ{Yt, Yt−1, ...} is called information set at time t,
β(L) = β1L+ ..+ βqL

q and α(L) = α1L+ ...+αpL
p. If α(1) + β(1) < 1, the process is

weakly and strictly stationary. Instead of the Poisson distribution other distributions
on N0 may be considered.
Subtracting β(L)λt in (1) and rearranging under the assumption that all roots of
[1− β(L)] are outside the unit circle gives

λt = ω + ψINGA(L)Yt = ω +
∞∑
i=1

ψINGA
i Yt−i , (2)

2The Markov-switching multifractional process used by both authors is the discretized version of
the Poisson multifractional process originally developed by Calvet and Fisher (2001) for modeling
volatility.
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where ω = β0[1− β(1)]−1 and ψINGA(L) = [1− β(L)]−1α(L) with ψINGA
i ≥ 0 for all i.

In analogy to their continuous counterparts, this form is called the INARCH(∞) rep-
resentation of an INGARCH(p, q) process. Its marginal expectation is

λ = E(Yt) = β0[1− α(1)− β(1)]−1 = ω[1− ψINGA(1)]−1

Alternatively, the INGARCH(p, q) process can be formalized as ARMA(max{p, q}, q)
process

(1− α(L)− β(L))︸ ︷︷ ︸
=:Φ(L)

(Yt − λ) = (1− β(L))︸ ︷︷ ︸
=:B(L)

ut (3)

where {ut} = {Yt − λt} is a white noise sequence with variance λ. It holds that

E(ut) = E [E(Yt − λt|Ft−1)] = 0

Var(ut) = E[Var(Yt − λt|Ft−1)] + Var[E(Yt − λt|Ft−1)] = E(λt) = λ

Cov(ut, us) = E(utus) = E [E(utus|Ft−1)] = 0 ∀t, s ∈ Z, s < t

Further one can easily see that

1− Φ(L)

B(L)
= 1− 1− α(L)− β(L)

1− β(L)
=

α(L)

1− β(L)
= ψINGA(L)

allows the form

λt = β0(1− β(1))−1 +

[
1− Φ(L)

B(L)

]
Yt . (4)

Thus, the autocorrelation is only driven by the coefficients in ψINGA(L). The INARCH(∞)
representation allows to investigate the effect of past observations on the conditional
mean and variance as well as the memory of the process. A shock to the conditional
mean of an INGARCH process is known to decay exponentially. Empirical observa-
tions, for example in high frequency financial count data, suggest the presence of high
persistence, i.e. a slow hyperbolic decay of the ACF.

To take the slow decay into account, we replace the difference in the definition of
coefficients by ? for an integrated GARCH process

ψIGARCH(L) =

[
1− Φ(L)(1− L)

B(L)

]
. (5)

by a fractional difference

(1− L)d =
∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk . (6)
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The long memory parameter d is thereby restricted to the interval (0, 1). The fraction-
ally integrated INGARCH (INFIGARCH) process is then defined by the autoregression
coefficients

ψINFI(L) = 1− Φ(L)(1− L)d

B(L)
. (7)

Remark: As proved by Conrad and Haag (2006) for d ∈ (0, 1), the slow hyperbolic
decay of ψINFI

i coefficients is responsible for the persistence observed in impulse weights.
We note that the INFIGARCH(p, d, q) process defined by coefficients in (7) can not
be weakly stationary, since we have ψINFI(1) = 1. If d = 0, the INFIGARCH(p, d, q)
process reduces to INGARCH(p, q) and for d = 1 to an integrated GARCH process.

Following Davidson (2004) we further propose a more general class of INGARCH-type
models that includes the INFIGARCH(p, d, q) model as a limiting case. The basic
idea is to add an amplitude parameter η ∈ (0, 1) in equation (7). The lag polynomial
ψINFI(L) then becomes

ψINHY(L) =

[
1−

Φ(L)
(
1 + η((1− L)d − 1)

)
B(L)

]
(8)

= ηψINFI(L) + (1− η)ψINGA(L)

In the following we call this linear combination of INGARCH and INFIGARCH an
INHYGARCH(p, d, q) model. Obviously, the process reduces to INFIGARCH when
η → 1 and to INGARCH when η → 0.

3 Statistical Properties and Inequality Constraints

In this section we investigate the statistical properties of INFIGARCH and INHY-
GARCH processes. To ensure that the Poisson parameters λt are (almost surely) pos-
itive, the model coefficients have to satisfy certain inequality restrictions. We proceed
to discuss these restrictions.

3.1 Inequality constraints

Recall that Poisson parameters for an INGARCH process are strictly positive αi, βi ≥ 0
and β0 > 0 or equivalently ψi ≥ 0 and ω > 0. The weak stationarity of the process
is proven by Ferland et al. (2006) and holds if and only if additionally α(1) + β(1) <
1. Given that, the process is also strict stationary. If every coefficient ψi in the
INARCH(∞) representation is strictly positive, ω > 0 can be replaced by ω ≥ 0 to
ensure almost sure positivity.

The positivity of INFIGARCH coefficients ψINFI
i is discussed in detail by Conrad

and Haag (2006) or Bollerslev and Mikkelsen (1996). The latter give conditions for the
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special case p = q = 1. Sufficient conditions are β1− d ≤ φ1 ≤ 2−d
3

and d
(
φ1 − 1−d

2

)
≤

β1(d− β1 + φ1), where φ1 = α1 + β1. It is further assumed that β1 ∈ (−1, 1)\{0} and
φ1 ∈ (−1, 1)\{β1}.

These conditions do not cover every set of parameters yielding positive INARCH(∞)
coefficients. Alternatively, Conrad and Haag (2006) prove the necessary and sufficient
conditions for coefficients of an INFIGARCH(1, d, 1) process to be positive with fk =
k−1−d
k

.

The coefficients ψINFI
i are non-negative if for β1 ∈ (0, 1) either ψINFI

1 ≥ 0 and φ1 ≤ f2

or if for k > 2 with fk−1 < φ1 ≤ fk it holds that ψINFI
k−1 ≥ 0.

If β1 ∈ (−1, 0), the coefficients are non-negative if either ψINFI
1 , ψINFI

2 ≥ 0 and
φ1 ≤ f2(β1 + f3)/(β1 + f2) or for k > 3 with
fk−2(β1 + fk−1)/(β1 + fk−2) < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1) it holds that
ψINFI
k−1 , ψ

INFI
k−2 ≥ 0.

The difference between the constraints is displayed in Figure 1. The shaded area in red
represents the sufficient conditions of Bollerslev and Mikkelsen (1996), while the solid
lines frame the constraints by Conrad and Haag (2006).

Figure 1: Admissible parameter space for d = 0.3 and η = 0.4.

Equation (8) shows the connection between INHYGARCH, INGARCH and INFI-
GARCH models. It follows directly that ψINHY

i ≥ 0 if the positivity conditions of
INGARCH and INFIGARCH are both fulfilled.

Conrad (2010) argues that this sufficient condition is too restrictive. Alternatively,
necessary and sufficient conditions for the almost sure positivity if p = q = 1 are given.

If β1 ∈ (0, 1), the coefficients are non-negative if either ψINHY
1 ≥ 0 and φ1 ≤ f2 or for

k > 2 with fk−1 < φ1 ≤ fk it holds that ψINHY
k−1 ≥ 0.
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For β1 ∈ (−1, 0), the coefficients are non-negative if either ψINHY
1 , ψINHY

2 ≥ 0 and
|β1| ≤ f2 or for k > 3 with fk−2 < φ1 ≤ fk−1 it holds that ψINHY

1 , ..., ψINHY
k−1 ≥ 0.

These restrictions are also shown in Figure 1 together with the positivity constraints
of its INFIGARCH and INGARCH components.

3.2 Stationarity

As mentioned before, INGARCH(p, q) processes are proven to be covariance stationary
if and only if α(1) + β(1) < 1. To discuss the stationarity of an INFIGARCH(p, d, q)
process we use the INARCH(∞) representation.

From equation (7) it can be seen that ψINFI(1) = 1 regardless of the parameters,
which implies that INFIGARCH processes with a positive intercept do not possess first
moments and, hence, are not weakly stationary. As usual in the literature, we use a
restricted version of the model where only a finite number of past observations is used
in the calculation of the Poisson parameters λt. Let this number be R in the following,
so that the restricted lag polynomial can be defined as ψINFI

R (L) =
∑R

i=1 ψ
INFI
i Li. We

set R = 1000 if not stated otherwise which is in line with the relevant literature on
FIGARCH processes.

Since ψINFI
R (1) < 1, the restricted model including a positive intercept β0

1−β(1)
is

weakly stationary with finite marginal expectation. Stationarity implies summable co-
variances, which contradicts the long memory property. However, its highly persistent
positive correlation can be reproduced by a restricted model.

To clarify the relationship between R and the estimation, we conduct a small simu-
lation. For both models, INFIGARCH and INHYGARCH, 1000 time series are simu-
lated following a restricted process with R = 1000. Then, the parameters are estimated
considering different values of R, ranging from 100 to 2000. Mean point estimates are
displayed in figure 2. One can see that only one of the four INFIGARCH parameters
is considerably affected by the choice of R, namely the intercept parameter β0. This
effect is barely visible for the INHYGARCH processes.
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Figure 2: Impact of lag order R on the expectation of the estimators.

By increasing R in the simulation, the mean estimate of the intercept decreased.
This simulation supports that the underlying does not have an intercept, and the
restricted model can be used to estimate all parameters (d, α1, .., αp, β1, ..., βq).

For an INHYGARCH process with d, η ∈ (0, 1) it holds that ψINHY(1) < 1 and
ψINHY
R (1) < 1, so that the restricted and unrestricted model is stationary according to

Ferland et al. (2006).

3.3 Long Memory of INHYGARCH

The INHYGARCH process is covariance stationary for d, η ∈ (0, 1). This contradicts
the assumption that the ACF of such process also shows a long memory behavior,
because the autocovariances would not be are absolute summable in that case. Still for
η close to one, the slow rate of the covariance function comes close to the long memory
structure.

Proposition 1: If d, η ∈ (0, 1) and large h, the autocovariance function of the
INHYGARCH(p, d, q) is given by

Cov(Yt, Yt−h) = Ch−d−1 ,

where C is an appropriately defined constant.
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Proof: We start with the AR(∞) representation of an INHYGARCH process from
(3), which can be rearranged as MA(∞), due to the invertibility of (1−ψINHY), so that

(Yt − λ) = (1− ψINHY(L))−1︸ ︷︷ ︸
=:ϕ(L)

ut .

The covariance is then found by computing

Cov(Yt − λ, Yt−h − λ) = E(u2
t )χ(h) ,

where χ(h) =
∑∞

i=0 ϕiϕi+|h| and E(ut) = ωϕ(1).
Using the fundamental theorem for polynomials we deduce from(

1 +
∞∑
i=1

ϕiL
i

)(
1−

∞∑
i=1

ψINHY
i Li

)
= 1

that

0 ≤ ϕj = ψINHY
j +O

[(
∞∑
i=1

ψINHY
i

)ρj]
, as j →∞

for some constant 0 < ρ <∞.
When the ψINHY

i decay towards zero more slowly than exponentially, i.e.

ψINHY/ρi
i→∞−→ ∞ for any 0 < ρ < 1, the condition

∑∞
i=1 ϕi < ∞ implies that as

h→∞,
∑∞

i=0 ϕiϕi−|h| ∼ CψINHY
h for some 0 < C <∞ with f(h) ∼ g(h) meaning that

f(h)/g(h)→ 1. These results are similar to those of Theorem 2 in Zaffaroni (2004).

In the following we show that ψINHY
i decays hyperbolically as i approaches infinity.

By replacing the fractional difference (1− L)d by its standard binomial expansion

(1− L)d = 1 +
∞∑
i=1

Γ(i− d)

Γ(1− d)Γ(i+ 1)
Li ,

the HYGARCH lag polynomial in (8) becomes

ψINHY(L) =
Φ(L)

B(L)

(
1− η

[
(1− L)d − 1

])
=

Φ(L)

B(L)

(
1− η

[
∞∑
i=1

Γ(i− d)

Γ(1− d)Γ(i+ 1)
Li

])

∼ Φ(L)

B(L)

(
1−G(d, η)

[
∞∑
i=1

i−1−dLi

])
,

where G(d, η) = ηΓ(1− d)−1 and using Stirling’s approximation Γ(i− d)Γ(i + 1)−1 ∼
i−d−1.
From this equation it becomes obvious that φINHY

i can be approximated by φINHY
i ≈
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ci−1−d for large i, where c is an appropriately defined constant (see Granger and Joyeux
(1980) for more details). It follows from Theorem 2 in Zaffaroni (2004) that χ(h) can
be approximated by Ah−1−d so that finally for large h

Cov(Yt, Yt−h) = E(u2
t )Ah

−1−d , h = 0,±1, ...

�

4 Model Estimation

4.1 Estimation

For the estimation we suppose that y = (y−R+1, ..., y0, y1, ..., yT ) is a realization of the
restricted INFIGARCH or INHYGARCH process, where R is the number of lags. The
complete likelihood of θ = (β0, α1, ..., αp, β1, ..., βq, d) ∈ ΘINFI or
θ = (β0, α1, ..., αp, β1, ..., βq, d, η) ∈ ΘINHY given y is approximated by conditioning on
the first R values, so that

L(θ|y) :=
T∏
t=1

λytt
yt!

exp(−λt) . (9)

The conditional means λt depend on the model and the chosen lag order R as described
in (7) and (8).
λt = β0[1 − β(1)]−1 −

∑R
i=1 ψ

INFI
i yt−i for an INFIGARCH process and correspond-

ingly using ψINHY
i for an INHYGARCH process. The admissible parameter space Θ is

determined by the model and the constraints discussed in section 3.1.
The conditional maximum likelihood estimates are found by maximizing the log

likelihood `(θ|y) with respect to θ

θ̂CML = argmax
θ∈Θ

`(θ|y) = argmax
θ∈Θ

T∑
t=1

[yt ln(λt)− λt] . (10)

The estimation procedure described above is implemented in R3 using functions of the
package tscount, see Liboschik et al. (2017) and Liboschik et al. (2017). In our im-
plementation, we use a two stage estimation procedure. First, a method of moments
estimation yields initial estimates by comparing the mean and sample ACF with the-
oretical expectation and ACF given a set of parameters. Although these estimates
perform rather poorly, we use them as initial values in the likelihood maximization
to gain stability in the estimation, and to reduce the computation time in the time
consuming maximization.

Not only because of the long time series and long dependence, but also because of
a possible application to high frequency financial data, a fast computation is desirable.

3see R Core Team (2018) version 3.4.4.
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To keep down the computation time as much as possible, every calculation step is either
vectorized or — when dealing with loops — written in C++.

Under mild regularity assumptions, the CML estimator converges to N (θ0,Σ) in
distribution, where θ0 is the true parameter vector and

Σ = −
[
E0

(
∂2`(θ|y)

∂θ∂θ′

)]−1

(11)

Σ can simply be estimated by a moment estimator or a sandwich estimator, the latter
being more robust against model misspecification. To test for a parameter vector
H0 : θ0 = θ∗, the test statistic

T (θ̂CML − θ∗)′Σ̂−1(θ̂CML − θ∗) .

is compared with the corresponding quantile of a χ2 distribution with degrees of free-
dom equal to the number of parameters. Alternatively, restrictions can be tested using
a likelihood ratio test. This makes sense if the whole parameter vector is tested, so
that a restricted maximization of the likelihood is not needed.

4.2 Monte Carlo Simulation

To investigate the performance of the CML estimation for INFIGARCH and INHY-
GARCH models, we perform a simulation study. The most interesting parameter is d,
since it controls the long memory behavior. Parameters less interesting for interpreta-
tion are chosen to be the same for all models considered, namely α1 = 0.2, β1 = 0.5
and η = 0.85. Since both models aim to be used for high frequency financial data,
there is no problem of collecting enough data. Therefore, we consider sample sizes
T ∈ {10000, 20000, 50000}, simulated with a burn-in of length 10000.
The intercept is chosen in such way that the marginal mean is between 15 and 20
for better comparability among the settings. For every situation, 1000 time series are
simulated and the parameters estimated. In addition, the estimates are tested for their
true values. We chose the likelihood ratio test for this purpose, since it only uses the
likelihood function and is computed fast. A comprehensive summary of the simulation
is displayed in Table 2 in the appendix.
As expected, the estimates for a larger number of observations, have less bias and vari-
ation. In contrast to INFIGARCH processes, the LR tests seems to be conservative for
INHYGARCH processes. For INFIGARCH, the proportion of rejected null hypotheses
is closer to the nominal level of 5% and the test seems to be slightly liberal.
Generally, it seems that the additional parameter of an INHYGARCH process causes
estimates and asymptotic tests to be less accurate compared to INFIGARCH processes.

10



5 Empirical Study

To illustrate the applicability of our models, we use high-frequency financial data. It
has often been observed that high-frequency intraday return data of a stock displays a
long memory.

5.1 Dataset

High-frequency data is suitable for fitting an INFIGARCH or INHYGARCH model
because of the presumed long memory. Further, there is almost unlimited supply of
tick data.

We collect trading data for Commerzbank AG via Bloomberg4 and investigate the
number of price changes in a given (short) time interval. A larger number of price
changes indicates higher volatility and thus a riskier investment. It is plausible that
times with a larger number of price changes tend to be followed by times with many
price changes. The INFIGARCH model helps to assess the impact of more turbulent
times on the future behavior of a stock. Over the period from March, 26 to October, 26
we create 1-minute intervals starting 5 minutes after the opening auction at 09:00 until
5 minutes before closing auction at 17:30 of a trading day. Further, the five intervals
between 13:00 and 13:05 are discarded due to an intraday auction, where the number
of trades with a price change is assumed not to follow the usual mechanisms. This
results in 495 observations per day and 74250 in total.

4Bloomberg (2019)
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Figure 3: Time series of counts - Number of price changes for Commerzbank stock

The time series of counts is displayed in Figure 3. It catches the eye that there are
outliers in the data that need to be handled. There is no systematic structure at which
time of the day outliers occur. There is also no manifest link between outliers and
news that may have affected the Commerzbank stock. Instead of adapting a robust
estimation method, following Brownlees and Gallo (2006) we consider the extreme
values to be caused by technical errors and follow the algorithm proposed in section
3.1. Each observation is compared with its neighborhood and discarded if it lies more
that 3 (robustly estimated) standard deviations away from the median within the
neighborhood. The standard deviation is estimated by the OGK estimator described
by Maronna and Zamar (2002). We define the neighborhood as the 100 observations
before and after an observation resulting in a window width of 201. By doing so,
around 4.3% of the data is discarded. To affect the estimation as little as possible, we
do not merge the remaining time series to preserve the dependence structure.
To check for long memory behavior, the ACF is displayed in figure 4. Red lines mark
the peaks after one trading day. We find a positive correlation over a long range.
Besides, there is a very clear seasonality. The number of price changes tends to be
larger in the beginning and at the end of a trading day.
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Commerzbank stock

5.2 Seasonality

The marked seasonality needs to be taken into account for the estimation. We use the
entire dataset and compute the sample means for each 1-minute interval of the trading
day throughout the 150 trading days. In the following we denote the corresponding
interval mean of observation yt by µt. The sequence µ1, ..., µ495 displayed in Figure 5
gives an impression of the seasonality.

If one divides the time series {yt} by {µt}, the resulting time series fluctuates
around one and is free of seasonality. The ACF of {yt/µt} is shown in Figure 6. While
seasonality is removed from {yt}, long memory is preserved. In our framework, we deal
with count data, so that a transformation of the time series before estimation is not
an option. Alternatively we incorporate the transformation in the estimation.
We do not only include the transformation in the definition of conditional means but
also the property that E(Yt/µt|µt) = 1 so that an intercept parameter is not needed
anymore. The model we estimate is then

Yt|Ft−1 ∼ Pois(λt)

λt =

[
1 +

1000∑
i=1

ψi

(
Yt−i
µt−i

− 1

)]
µt . (12)
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In case Yt is flagged as outlier in the algorithm, the term Yt
µt

is replaced by 1 in the
estimation so that the summand simply disappears.

5.3 Results

In definition (12), the coefficients ψi can be either from an INHYGARCH or INFI-
GARCH model. We first fit an INHYGARCH(1, d, 1) model, which yields the esti-
mates (

α̂1 β̂1 d̂ η̂
)′

=
(
−0.4505 0.7172 0.5905 1.0000

)′
.

This parameter vector is on the boundary of the parameter space indicating that an
INFIGARCH is a better model.
The results of fitting an INFIGARCH(1, d, 1) model are summarized in Table 1 .

Parameter α1 β1 d

Estimate -0.4403 0.7083 0.5809
Standard Error 7.64 · 10−3 6.27 · 10−3 7.45 · 10−3

Confidence interval [−0.455;−0.425] [0.696; 0.720] [0.566; 0.596]

Table 1: Estimation results INFIGARCH(1, d, 1)

The long memory parameter d is significantly different from zero, which is not
surprising given the ACF in Figure 6. The INFIGARCH model seemed to be an
better choice compared to an INHYGARCH model. To check if a conditional Poisson
distribution is appropriate, we use a non-randomized PIT histogram, described by
Czano et al. (2009) and implemented in the tscount package, see Liboschik et al.
(2017).
The PIT histogram in Figure 7 exhibits a U-shape which is a clear indicator that
the equi-dispersed Poisson distribution does not capture the overdispersion present in
the data. As a way out, we use the Negative Binomial distribution, which allows to
incorporate an overdispersion through a parameter φ. It is estimated in accordance to
Christou and Fokianos (2014) by solving

T∑
t=R+1

(yt − λt)2

λt + λ2
t/φ

= T −R .

We get φ̂ = 3.9140, giving the PIT histogram displayed in Figure 8.
It is visible that the assumption of a Negative Binomial distribution is justified and the
model suits the data well. As visible in Figure 11 in the appendix, the long memory
property we had a focus on is also captured by the fitted model. The shape of the ACF
from our scaled time series is similar to the theoretical ACF derived from parameter
estimates.
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Figure 7: Non-randomized PIT histogram
for a conditional Poisson distribution
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Figure 8: Non-randomized PIT histogram
for a conditional Negative Binomial distri-
bution

5.4 Forecasting

As a last step of the application, the out of sample forecasting properties of above
model are investigated in the following. The steps that were taken before for the whole
time series are therefore applied to a rolling window of 50 trading days. This way,
24750 observations minus detected outliers are used for each estimation of parameters.
Afterwards, one subsequent trading day is foretasted by the recursion

Ŷt+h|t =


[
1 +

∑1000
i=1 ψi

(
Yt+1−i

µt+1−i
− 1
)]
µt+1 if h = 1[

1 +
∑h−1

i=1 ψi

(
Ŷt+h−i|t
µt+h−i

− 1
)]
µt+h +

∑1000
i=h ψi

(
Yt+h−i

µt+h−i
− 1
)

if h > 1
,

where ψi are the coefficients resulting from parameter estimates, µt is the series of
interval means calculated from the sample window and h ∈ {1, ..., 495}.
This procedure is computationally time intensive but has two objectives. Not only is the
goodness of forecasting assessed, but also it is checked whether or not the parameters
change during the sample period. A structural break can lead to a false impression of
the long memory behavior as for example described by Sibbertsen (2004).

Figure 9 displays the goodness of forecast of our model. It shows the empirical
distribution functions of absolute forecast errors |Yt − Ŷt|t−h| for h = 1 and h = 495
together with the distribution function of the benchmark. It can be seen that the
495-step ahead forecast dominates the benchmark in the sense of the absolute area,
but the one-step ahead forecast has more larger errors compared with the benchmark.

As a byproduct of the forecasting, Figure 10 displays the parameter estimates of
the rolling window together with the 95% pointwise confidence intervals. There is
of course variation in estimates along time, but the range they fluctuate in is rather
narrow looking at the confidence bands. For φ, one can see that the change in estimates
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is more noticeable compared with the other parameters. However, the densities of a
Negative Binomial distribution with φ = 3 and φ = 5 do not differ very much. All this
raises confidence that the slowly decaying ACF is not caused by a structural break and
that the processes characteristics do not change much along time. Nevertheless, the
assumption of a time constant overdispersion should be viewed critically.
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Figure 9: Forecast errors for h = 1 and h = 495 compared with benchmark

17



Figure 10: Parameter estimates for rolling window including confidence bands

6 Conclusion

In this article, we presented two models that incorporate a slow decay of the autocorre-
lation in the INGARCH framework as an alternative to INARFIMA models. Statistical
properties were derived and discussed. Via simulation it was shown that parameter
estimates are easily obtained by conditional maximum likelihood estimation and re-
strictions can be tested with different tests. An empirical application underlined the
relevance of those models and a way to deal with seasonality in count data models
was presented. The forecast properties were compared with a naive approach, reveal-
ing advantages and disadvantages of the model as well as potential future research
directions.

By dropping the assumption of a time constant overdispersion would be more suit-
able in the application of this paper. To our knowledge there are no models including
a time varying overdispersion so far. Such a model might also be a way to explain the
occurrence of extreme values by a very large overdispersion so that an outlier detection
is not required. Alternatively, the estimation method can be discussed critically. A
robust estimation procedure may also replace an outlier detection step. Further, an
estimation technique based on the spectral density seems promising.
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Appendix

Model d T +R β0 β̂0 α̂1 β̂1 d̂ η̂ Rejected H0

IN
F

IG
A

R
C

H

0.2 10000 1.00 1.0718 0.2080 0.4954 0.1915 - 0.055
(0.2208) (0.0314) (0.0333) (0.0308)

0.2 20000 1.00 1.0331 0.2034 0.4979 0.1962 - 0.057
(0.1521) (0.0226) (0.0230) (0.0227)

0.2 50000 1.00 1.0051 0.2003 0.5000 0.1996 - 0.057
(0.0940) (0.0142) (0.0148) (0.0141)

0.4 10000 0.25 0.2660 0.2048 0.4958 0.3945 - 0.050
(0.0568) (0.0310) (0.0311) (0.0313)

0.4 20000 0.25 0.2556 0.2018 0.4997 0.3975 - 0.057
(0.0367) (0.0213) (0.0224) (0.0213)

0.4 50000 0.25 0.2515 0.2003 0.5001 0.3994 - 0.049
(0.0224) (0.0131) (0.0138) (0.0131)

0.6 10000 0.04 0.0459 0.2009 0.4974 0.5998 - 0.060
(0.0143) (0.0296) (0.0316) (0.0309)

0.6 20000 0.04 0.0427 0.2002 0.4995 0.6001 - 0.059
(0.0080) (0.0221) (0.0223) (0.0227)

0.6 50000 0.04 0.0409 0.2000 0.5000 0.6001 - 0.053
(0.0041) (0.0133) (0.0142) (0.0135)

IN
H

Y
G

A
R

C
H

0.2 10000 1.75 2.4720 0.1343 0.4335 0.3574 0.7464 0.029
(0.9992) (0.1629) (0.1741) (0.2562) (0.2042)

0.2 20000 1.75 2.3022 0.1491 0.4453 0.3127 0.7750 0.025
(0.9132) (0.1336) (0.1578) (0.2129) (0.1664)

0.2 50000 1.75 2.0804 0.1642 0.4730 0.2730 0.7907 0.025
(0.6984) (0.1037) (0.1158) (0.1551) (0.1216)

0.4 10000 1.00 1.0440 0.2015 0.5143 0.4174 0.8266 0.037
(0.2107) (0.0660) (0.0795) (0.1030) (0.0947)

0.4 20000 1.00 1.0209 0.2021 0.5064 0.4041 0.8431 0.035
(0.1525) (0.0516) (0.0585) (0.0738) (0.0598)

0.4 50000 1.00 1.0123 0.2025 0.5037 0.4012 0.8451 0.034
(0.1053) (0.0388) (0.0480) (0.0572) (0.0440)

0.6 10000 0.80 0.8066 0.2251 0.4854 0.5732 0.8442 0.034
(0.1137) (0.0860) (0.838) (0.1006) (0.0330)

0.6 20000 0.80 0.8071 0.2203 0.4867 0.5783 0.8463 0.042
(0.0753) (0.0667) (0.0629) (0.0774) (0.0220)

0.6 50000 0.80 0.8086 0.2187 0.4849 0.5790 0.8477 0.049
(0.0503) (0.0494) (0.0437) (0.0565) (0.0151)

Table 2: Simulation Results - Mean point estimates and standard deviations (in paren-
theses)
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