Identifying multiple outliers in heavy-tailed distributions with an application to market crashes

Schluter Christian, Trede Mark

Zusammenfassung

Heavy-tailed distributions, such as the distribution of stock returns, are prone to generate large values. This renders difficult the detection of outliers. We propose a new outward testing procedure to identify multiple outliers in these distributions. A major virtue of the test is its simplicity. The performance of the test is investigated in several simulation studies. As a substantive empirical contribution we apply the test to Dow Jones Industrial Average return data and find that the Black Monday market crash was not a structurally unusual event. (C) 2007 Elsevier B.V. All rights reserved.

Schlüsselwörter

outliers outward testing masking stable random-variables regular variation size distribution parameters exponent behavior

Zitieren als

Schluter, C., & Trede, M. (2008). Identifying multiple outliers in heavy-tailed distributions with an application to market crashes. Journal of Empirical Finance, 15(4), 700–713.

Details

Publikationstyp
Forschungsartikel (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2008

Fachzeitschrift
Journal of Empirical Finance

Band
15

Ausgabe
4

Erste Seite
700

Letzte Seite
713

Sprache
Englisch

ISSN
0927-5398

DOI