Identification of DSGE models—The effect of higher-order approximation and pruning

Mutschler W

Zusammenfassung

This paper shows how to check rank criteria for a local identification of nonlinear DSGE models, given higher-order approximations and pruning. This approach imposes additional restrictions on (higher-order) moments and polyspectra, which can be used to identify parameters that are unidentified in a first-order approximation. The identification procedures are demonstrated by means of the Kim (2003) and the An and Schorfheide (2007) models. Both models are identifiable with a second-order approximation. Furthermore, analytical derivatives of unconditional moments, cumulants and corresponding polyspectra up to fourth order are derived for the pruned state-space.

Schlüsselwörter

Identification; Pruning; Higher-order moments; Cumulants; Polyspectra; Analytical derivatives

Zitieren als

Mutschler, W. (2015). Identification of DSGE models—The effect of higher-order approximation and pruning. Journal of Economic Dynamics and Control, 56, 34–54.

Details

Publikationstyp
Forschungsartikel (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2015

Fachzeitschrift
Journal of Economic Dynamics and Control

Band
56

Erste Seite
34

Letzte Seite
54

Sprache
Englisch

ISSN
0165-1889

DOI

Gesamter Text