Formalizing a postprocessing procedure for linear-convex combination forecasts

Monschang, Verena; Wilfling, Bernd

Zusammenfassung

We investigate mean-squared-forecast-error (MSE) accuracy improvements for linear-convex combination forecasts, whose components are pretreated by a postprocessing procedure called 'Vector Autoregressive Forecast Error Modeling' (VAFEM). Assuming that the forecast-error series of the individual forecasts are governed by a stable VAR process under classic conditions, we obtain the following results: (i) VAFEM treatment bias-corrects all individual and linear-convex combination forecasts. (ii) Any VAFEM-treated combination has a smaller theoretical MSE than its untreated analogue, if the VAR parameters are known. (iii) In empirical applications, VAFEM gains depend on (1) in-sample sizes, (2) out-of-sample forecast horizons, (3) the biasedness of the untreated forecast combination. We demonstrate the VAFEM capacity in simulations and for realized-volatility forecasting, using S&P 500 data.

Schlüsselwörter

Combination forecasts; mean-squared-error loss; VAR forecast-error modeling; multivariate least squares estimation

Zitieren als

Monschang, V., & Wilfling, B. (2025). Formalizing a postprocessing procedure for linear-convex combination forecasts. Journal of Forecasting, 44(4), 1280–1293.

Details

Publikationstyp
Forschungsartikel (Zeitschrift)

Begutachtet
Ja

Publikationsstatus
Veröffentlicht

Jahr
2025

Fachzeitschrift
Journal of Forecasting

Band
44

Ausgabe
4

Erste Seite
1280

Letzte Seite
1293

Sprache
Englisch

ISSN
0277-6693

DOI

Gesamter Text