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1. Introduction

The advancing digitalization enables firms to set prices for their products and services
by software programs. Pricing algorithms are easy to implement, especially on e-
commerce platforms, and their usage will likely increase.1 This paper focuses on the
fear that these algorithms facilitate collusion in oligopolistic markets.

Enhancements in machine learning and artificial intelligence enable the algorithms
to act more autonomously than their rule-based predecessors. They learn pricing
strategies without any previous knowledge by active experimentation and little to
no guidance from their creators. This autonomous nature fuels concerns that the
algorithms learn strategies with a reward-punishment scheme. If competing firms
keep their prices at a collusive level, they are rewarded. If a firm undercuts prices,
the competing firms’ algorithms punish the defection by lowering their own prices.
Using these independently learned strategies, the algorithms coordinate prices above
the competitive level - collusion occurs (Harrington 2019).

Explicit communication between the algorithms is not necessary for this. The
algorithms do not even have to be designed with the intention to facilitate price
coordination. Instead, they arrive at this anti-competitive outcome on their own.
Collusion shifts from agreements in "smoke-filled hotel rooms" to algorithms that
coordinate their prices above competitive levels without communicating. Such an
unspoken agreement is called tacit collusion (Ezrachi and Stucke 2017; Ezrachi and
Stucke 2018).

Without communication, humans can only cooperate in simple situations. There-
fore, regulation focuses on communication leading to collusion rather than collusion
as such. For example, US competition law does not prohibit playing a collusive
strategy as long as this is not explicitly communicated (Harrington 2019). The cur-
rent regulatory approach becomes insufficient when self-learning pricing algorithms
establish collusion without communication in market situations where humans cannot
do so.

Law scholars were the first who raised concerns about collusion by algorithms
(Mehra 2016; Ezrachi and Stucke 2017). The topic was picked up by the media (Priluck
2015; Lynch 2017) and is now on the agenda of various competition authorities (OECD
2017; Federal Trade Commission 2018; UK Competition and Markets Authority 2018;
Monopolkommission 2018). However, there is no case known where tacit collusion

1 In their study of around 1600 best-seller products on Amazon, Chen, Mislove, and Wilson
(2016) find that more than 500 sellers use pricing algorithms. Amazon, for example, provides
an Application Programming Interface (API) that allows retailers to receive information on the
prices of competitor’s products up to 30 times per hour and to adjust their prices accordingly
(Amazon 2020). Third-party providers such as Feedvisor or PROS offer pricing algorithms for
smaller companies that cannot afford to develop an algorithm on their own.
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by pricing algorithms was detected. This lack of evidence and the experimental
literature that identifies communication as key for collusion provoke skepticism about
the topic’s practical relevance for regulatory authorities (Kühn and Tadelis 2017;
Schwalbe 2019).

The risk of tacit collusion by algorithms is difficult to access, both empirically and
theoretically. Collusion is hard to empirically detect from market outcomes, except
for cases where rich data is available.2 That is aggravated by the fact that firms keep
details about their potential use of pricing software secret. Theoretical results are
hard to obtain because interactions among firms in pricing games generate extremely
complex stochastic dynamic systems. The only theoretical approach is contained in
the study of Salcedo (2015). He finds that the use of pricing algorithms inevitably
leads to collusion. However, his results rest on the controversial assumption that
algorithms stay fixed for a short period and can be completely decoded by rivals
during this time.

Due to these difficulties, the current research focuses on an experimental approach.
In these experiments, pricing algorithms repeatedly interact with each other in a
computer simulated marketplace. The algorithms should be representative of those
used in practice. It is not known which algorithms are actually employed in real
markets. However, the current breakthroughs in the field of artificial intelligence,
see, e.g., Mnih et al. (2015) and Silver et al. (2016), suggest that algorithms based
on Reinforcement Learning (RL) are the most appropriate choice.

In their pioneering work, Waltman and Kaymak (2008) model a sequential Cournot
competition. The RL algorithms frequently learn strategies that reduce output and,
thus, increase prices. This can be a sign of collusion. However, the reduced output can
also occur by failing to learn an optimal strategy.3 Calvano et al. (2020) are the first
to examine the learned strategies in greater detail. They find that pricing algorithms
systematically set supra-competitive prices in a sequential Bertrand competition.
The algorithms achieve this outcome with reward-punishment schemes, and thus
learned truly collusive strategies.4

2 One exception is the analysis of retail gasoline prices by Byrne and De Roos (2019). The analysis
uses a unique dataset that contains station-level prices for an urban market over 15 years. With
this granular data at hand, they can generate insights into collusion anatomy and how to detect
it.

3 In a different simulation setting, the algorithms are myopic and have no memory of past prices.
Thus, they cannot base their decision on past prices. Under these conditions, it is impossible
to learn collusive strategies. Nonetheless, Waltman and Kaymak (2008) find that the output
reduction is even higher, which must be the result of a failure to learn an optimal strategy.

4 Other experimental studies use a market model of staggered prices in the style of Maskin and
Tirole (1988). In this model, two firms alternate with their pricing decision and keep prices fixed
for two consecutive periods. In the most recent paper with this market model, Klein (2019) finds
that the pricing algorithms frequently set supra-competitive prices. However, the assumption of
a price-commitment seems to be controversial since pricing algorithms can adjust prices very
fast. Additionally, these short-term price commitments proved to facilitate collusion (Maskin
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All previous studies use Q-learning, one of the simplest RL algorithms available,
to model pricing algorithms. Even though Q-learning is suited to present a proof-of-
concept of algorithmic collusion, it is only partly representative for algorithms used
in practice. The inability to use powerful approximation methods makes Q-learning
too slow to be applied in real world scenarios.5 Additionally, Q-learning’s limited
computational resources restrict the previous studies to markets with two to four
firms. It remains unclear if pricing algorithms can collude with less time for learning
and in markets with more competitors.

This paper approaches more realistic pricing algorithms to answer the following
questions: Are state-of-the-art RL algorithms able to collude with limited time
for learning? Does collusion by self-learning algorithms sustain in wide oligopolies
with possibly many firms? In real-world markets, algorithms will be developed
independently by each firm. To account for heterogeneity among algorithms, I
additionally examine how such differences influence collusion.

I use an experimental approach with a simulated marketplace that builds on the
sequential Bertrand competition of Calvano et al. (2020). In particular, I let Deep
Q-Network (DQN) algorithms developed by Mnih et al. (2015) compete against
each other. This algorithm is the straightforward enhancement of Q-learning to
function approximation with the help of Deep Neuronal Networks (DNNs). Since
its development, the algorithm became a popular choice and proved its qualities
in various application domains. The sequential Bertrand competition could go on
infinitely. DQN is designed to tackle tasks with a natural end, and thus needs
adjustment to this continuing setting. Therefore, I restated the optimization problem
of the DQN algorithm with an average reward formulation, as proposed by Sutton
and Barto (2018). To the best of my knowledge, this has never been done before.

The results indicate that state-of-the-art pricing algorithms consistently learn
collusive strategies. Algorithms powered by DNNs learn significantly faster than
previously used algorithms. They start to increase prices after a time horizon that
translates to approximately one month. With an increasing number of market
participants, the level of collusion decreases. However, moving away from the purely
model-free approach and incorporating knowledge about the algorithm’s learning
behavior seems to make collusion even in wide oligopolies possible. Analyzing
the pricing strategies emphasizes that collusion heavily depends on joint learning.
Consequently, heterogeneity among algorithms hinders collusion. However, this holds
not true for asymmetries on the firm’s level.

and Tirole 1988; Leufkens and Peeters 2011).
5 In the study of Calvano et al. (2020), the Q-learning algorithms have, on average, one million
time steps for learning. If we assume 30 updates per hour (the update frequency of the Amazon
API), this translates to more than three years.
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The rest of the paper is arranged as follows. The next section describes the setup
of the computer simulation. The first part presents the economic environment in
which the algorithms interact with each other. The second part contains a description
of the pricing algorithms. The simple Q-learning algorithm used in Calvano et al.
(2020) illustrates the basic principles of RL. With this knowledge, the functioning
of the more sophisticated DQN algorithm becomes easily understandable. Section
3 demonstrates that DQN algorithms learn collusive strategies with limited time.
The next two sections focus on i) wider oligopolies and ii) heterogeneity among
pricing algorithms. The paper concludes with a discussion of the findings and their
implication for policy-making.

2. Simulation Setup

2.1. Economic Environment

The Bertrand model is the natural choice to represent oligopolistic competition
between pricing algorithms. Each firm uses an independent pricing algorithm. There
are n firms in the market. Each firm i, i = 1, 2, .., n, produces a single product
with quality gi and marginal costs ci. I assume no fixed costs. The model describes
interactions among firms that set price pi for their product and consumers that
choose quantities at this price, the demand di.

This one-shot game is repeated in each period. At the beginning of each period,
the firms set prices for their product. The demand for each product is computed,
and the firms earn their profit. Then, the simulation moves to the next period. Firm
i’s profit ri is given by:

ri(pi, pj∈n6=i) .= (pi − ci)× di(pi, pj∈n6=i). (1)

2.1.1. Demand

The well-known multinomial logit model describes the demand side of the simulated
oligopolistic market. It allows for horizontal and vertical product differentiation.
Besides, it easily extends to product factors beyond quality or more complex hetero-
geneity among consumers. This flexibility and the straightforward parameterization
to model real-world markets make it popular in competition investigations.6 In each

6 Other demand models are conceivable. Calvano et al. (2020) show that the choice of the demand
model does not influence the collusive behavior of self-learning algorithms.
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period the demand for firm i’s product is:

di(pi, pj∈n6=i) .= e
gi−pi
µ

1 + e
gi−pi
µ +∑

j∈n 6=i e
gj−pj
µ

. (2)

The product quality gi makes vertical product differentiation possible. gi−pi reflects
the consumers’ utility from buying product i. µ > 0 controls for horizontal product
differentiation. As µ increases, the consumer tastes become more heterogeneous.
Thus, demand is less responsive to changes in price or quality. For µ → ∞, the
heterogeneity becomes so large that consumers are equally split between products
(Anderson and De Palma 1992).

2.1.2. Collusion Measure

To compare the degree of collusion, we need a consistent measure across all simulations.
The main collusion measure is the average profit gain ∆, defined as:

∆ .= r̄i − rNi
rMi − rNi

. (3)

r̄i denotes the average profit of firm i over a given number of periods. rNi is the profit
of firm i in the static Bertrand-Nash equilibrium and rMi is the monopoly profit. For
∆ = 0 the average profit correspond to the competitive outcome and for ∆ = 1 to
the outcome under full collusion (Calvano et al. 2020).

rNi is the profit that a firm i receives when all firms play the Nash price of the one-
shot game pN . In a Nash equilibrium, no firm can increase her profit by unilaterally
changing her price. Firm i chooses pi to maximize her profit ri, taking the other
prices pj∈n6=i as given. Thus, prices pNi∈n constitute a Nash equilibrium if and only if:

pNi
.= arg max

pi
r(pi, pNj∈n6=i) for all i ∈ n. (4)

To find the static Nash equilibrium prices I use the fixed-point theorem. We have
a function f(x) and look for a point x∗ such that x∗ = f(x∗). Let oi(pj∈n 6=i) .=
arg maxpi r(pi, pj∈n6=i) denote firm i’s optimal response function. The optimal re-
sponse function returns the price that maximizes the own profit subject to the
competitors’ prices. Defining the vector function f as:

f(pi∈n) .=


o1(pj∈n 6=1)
o2(pj∈n 6=2)

...
on(pj∈n 6=n)

 , (5)
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we are looking for the point pNi∈n such that pNi∈n = f(pNi∈n):


pN1

pN2
...
pNn

 =


o1(pNj∈n 6=1)
o2(pNj∈n 6=2)

...
on(pNj∈n 6=n)

 . (6)

After rearranging, equation (6) can be solved with a root finding algorithm.7

The profit under full collusion rMi is the profit that a firm i receives when all firms
in the market play the monopoly prices pMi∈n of the one-shot game. These are the
prices that maximize the joint profit of all firms in the market:

pMi∈n
.= arg max

pi∈n

n∑
i=1

ri(pi∈n). (7)

The profit gain is a suitable measure for tacit collusion. With tacit collusion,
firms can obtain supra-competitive profits per definition, where supra-competitive
refers to the equilibrium situation (Ivaldi et al. 2003). The Nash profit rN of the
one-shot game is a reasonable estimation of the equilibrium situation. With the
monopoly profit rM , the collusion measure is normalized between 0 and 1. This
allows comparing collusion across different simulation settings.

2.1.3. Price Range

The pricing algorithms require a discrete price range to choose from. A reasonable
price range includes the static Nash equilibrium prices pNi∈n and the monopoly prices
pMi∈n of the one shot-game. Then, the price range is given by m equally spaced points
in the interval:

A .=
[
min(pNi∈n)− η,max(pMi∈n) + η

]
, (8)

where I set η .= 0.1[max(pMi∈n)−min(pNi∈n)]. This markup increases the price range
by 10% in both directions (Calvano et al. 2020).

2.2. Pricing Algorithms

Repeated games, like the sequential Bertrand competitions, can be modeled as
a Markov Decision Process (MDP). In a MDP, the decision-maker, called agent,
interacts continually with the environment, that is, everything outside of the agent.

7 Instead of computing each firm’s optimal response function oi, I directly look for the profit
maximizing price with the help of a maximization algorithm. For both the root finding and the
maximization algorithm I use the Python package SciPy from Virtanen et al. (2020).
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In each period t, t = 1, 2, ..., T , the agent observes the environment’s state, St ∈ S.
Based on the observed state, the agent selects an action, At ∈ A. As a consequence
of the action, the agent receives a numerical reward, Rt+1 ∈ R ⊂ R and the system
moves on to the next state, St+1, according to the time-invariant state-transition
probabilities F . They describe a probability distribution for each combination of
a ∈ A and s ∈ S:8

F (s′, r|s, a) .= Pr {St+1 = s′, Rt+1 = r | St = s, At = a} . (9)

The goal of the agent is to select action At in order to maximize the present value
of future rewards:

Gt
.=
∞∑
k=0

γk Rt+k+1, (10)

where γ is a discount factor, 0 ≤ γ < 1. The agent’s future rewards depend on her
way of acting, called the policy π(a|s) .= Pr {At = a | St = s}. The policy describes
with which probability an agent will chose At = a if she is in state St = s and, thus,
π defines a probability distribution over a ∈ A for each s ∈ S (Sutton and Barto
2018).9

The optimal action-value q∗(s, a) denotes the maximum expected rewards achiev-
able by following any policy π after choosing action a in state s:

q∗(s, a) .= max
π

Eπ[Gt|St = s, At = a]. (11)

We can rewrite the optimal action-value without reference to a policy by using
the Bellmann equation. The value of a state-action pair under an optimal policy
equals the reward expected from transition to the next period plus the discounted
action-value of the next state. The next state’s action-value assumes that the agent
will behave optimal, and again reflects all future rewards under an optimal policy.
With this recursive property the optimal action-values become:

q∗(s, a) = E[Rt+1 + γmax
a

q∗(St+1, a)|St = s, At = a]. (12)

The Bellmann equation (12) reflects all long-term returns as a value that is locally
available. If the agent knows the action-values, she can behave optimally. The
agent observes the current state s and chooses action a for which q∗(s, a) is maximal

8 Capital letters denote random variables, whereas lower case letters are used for values of random
variables. s′ is shorthand for next period’s state.

9 The name policy originates from the terminology of the RL literature. It corresponds to the term
strategy from the game theory domain. Both terms are used synonymously.
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(Sutton and Barto 2018). Thus, she follows the optimal policy π∗:

π∗(a | s) = arg max
a

q∗(s, a). (13)

The MDP framework can easily be adapted to the sequential Bertrand competition.
In the simulation, each firm is represented by one independent agent. The state
of the environment at period t are the prices that the agents, or firms, played in
the previous time step t − 1. The set of possible actions A are the prices that an
agent can set for her product, i.e., the price range determined by equation (8). After
each agent played her action, the environment moves to the next state St+1. The
environment determines the demand for each product by equation (2). Then, each
agent receives her reward signal Rt+1, the profit calculated by equation (1).

The Bellmann optimality equation (12) describes a system of |S| × |A| nonlinear
equations, one for each state-action pair, in the same number of unknowns. If
the state-transition probabilities (9) are known, standard methods can solve the
system of equations. However, in many real-world applications, the state-transition
probabilities are unknown. In this case the action-values q∗(s, a) must be estimated.
Agents based on RL estimate the action-values by trial-and-error interactions with
the environment (Sutton and Barto 2018).

In the sequential Bertrand competition, the state-transition probabilities are, in
fact, unknown. The transition from one state to the other state depends not only
on the own action but also on all other agents’ actions. Thus, the optimal policy
of one agent depends on the policy of all other agents. The environment becomes
non-stationary, and the Markov property does not hold (Laurent, Matignon, and
Fort-Piat 2011). Even though RL algorithms are designed initially to tackle MDPs
with only one agent and time-invariant state-transition probabilities, they can be
applied to environments with multiple agents.10

2.2.1. Q-Learning

One of the simplest and best understood RL algorithm is Q-learning developed by
Watkins (1989). It learns a Q-value Q(s, a) that directly approximates the optimal
action-values q∗(s, a) by the following updating rule:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
. (14)

10 General convergence proofs for single-agent RL do not apply here. Nonetheless, empirical
results show that RL algorithms do perform well in strategic multi-agent environments (Buşoniu,
Babuška, and De Schutter 2008; Bloembergen et al. 2015; Leibo et al. 2017).
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After initializing Q(s, a) with arbitrary values for each state-action pair, the value
of a state-action pair is updated every time it is visited according to equation (14).
The quantity in the square brackets constitutes an error term. It measures the
difference between the current estimate of the action-value and an updated estimate,
the target value Yt = Rt+1 + γmaxaQ(St+1, a). This target value comprises the
observed reward and the discounted value of being in the next state Q(St+1, a). The
latter assumes that the agent will behave optimally in the next state and includes
all expected future rewards.11

The learning rate α, 0 ≤ α ≤ 1, specifies how much weight is given to the new
knowledge compared to the current estimation. The tabular storage of the Q-values
is often referred to as the Q-matrix. This is a matrix with |S| × |A| dimensions, one
cell for each possible state-action pair (Sutton and Barto 2018).

The Q-value is only updated for state-action pairs who are visited. Therefore,
all state-action pairs have to be visited sufficiently often in order to approximate
the optimal action-value q∗(s, a) for all s ∈ S and a ∈ A. Instructing the agent to
experiment, i.e., randomly choose an action that may appear sub-optimal based on
her current knowledge, assures sufficient exploration. This exploration of the whole
state-action space comes at the cost of not exploiting the current knowledge.

A straightforward procedure to ensure exploration is a ε-greedy policy. With
probability ε, 0 ≤ ε ≤ 1, the agent will randomly select any of the possible actions.
In all other cases the agent behaves optimal or greedy according to her current
knowledge:

a =

arg maxaQ (s, a) with probability 1− ε

U {A} with probability ε
, (15)

where U {A} denotes a sample from the discrete uniform distribution over the set
of actions A. Algorithm 1 shows the pseudo-code for Q-learning. It illustrates that
the algorithm estimates q∗(s, a) and, thus, the optimal policy π∗(a | s) by following
the non-optimal ε-greedy policy. Therefore, Q-learning falls into the category of
off-policy methods (Sutton and Barto 2018).

2.2.2. Deep Q-Network

Q-learning estimates the optimal action-values for each state-action pair separately.
Without generalization, the learning capabilities of this approach are not efficient
enough for real-world applications. Thus, it is common to use a function approximator
with weights θ to estimate the action-values Q(s, a, θ) ≈ q∗(s, a). Since the pioneering
work of Mnih et al. (2015), nonlinear function approximation based on DNNs, called
11 It is interesting to note that Q-learning estimates Q(St, At) based on another estimate Q(St+1, a).

This technique is called bootstrapping.
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Algorithm 1 Q-Learning
1: Initialize Q(s, a), for all s ∈ S, a ∈ A, arbitrarily
2: Initialize S1 arbitrarily
3: for t = 1, T do
4: With probability εt play a random action At

Otherwise play At = arg maxaQ(St, a)
5: Observe Rt+1, St+1

6: Q(St, At)← Q(St, At) + α
[
Rt+1 + γmaxaQ(St+1, a)−Q(St, At)

]

Q-network, are widely used.

Using function approximation has two advantages. First, the experience from one
state-action pair improves the estimate for nearby state-action pairs by generalization.
This will lead to faster learning. Second, it frees us from the curse of dimensionality.
The tabular representation of action-values used by Q-learning exponentially increases
in the number agents. Thus, memory consumption quickly reaches its limit.

The Q-network can be structured in various ways. Since the action-values assign a
value for each state-action pair, some approaches use the state and action as input
to the DNN. The main drawback of this approach is that a separate forward pass is
required to compute the Q-value for each action. Instead, I only use the state as
input to the network and one output unit for each possible action. The output of
the DNN corresponds to the Q-value of each action at the input state. The main
advantage of this approach is that only one forward pass is required to compute the
Q-values of all actions in a given state (Mnih et al. 2015).12

Figure 1 shows the structure of the Q-network. Input are the agents’ previously
played prices, the state of the environment. Therefore, the number of input nodes
corresponds to the number of agents in the market. The Q-network has two fully-
connected hidden layers with 32 nodes each, followed by rectified linear activation
functions. The output layer is fully-connected as well, and has one unit per action.
Thus, the number of output units equals the number of possible prices m. Here, the
network uses a linear activation function.

The size of the network is a somewhat arbitrary decision. Theoretically, one large
hidden layer can approximate any function. In practice, deep networks with more
than one hidden layer proved to perform better than shallow networks. With an
increasing number of layers or nodes, the network can learn more and more abstract
representations. However, larger networks need more time and training samples to
find good solutions (Goodfellow, Bengio, and Courville 2016).

12 For example, if an agent wants to play the greedy action, she chooses the action for which
the Q-Network predicts the highest value, At = arg maxaQ(St, a, θ). Only one forward pass is
needed.
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Figure 1: Schematic illustration of the Q-network.

Learning With function approximation, we seek to improve the weights θ instead of
direct estimates of the action-values. There are more state-action pairs than weights
by definition. In contrast to Q-learning, we cannot get each action-value exactly
correct. Making one state-action pair’s estimate more accurate means making others’
less accurate. Thus, we need a measure-of-fit to evaluate our approximation. A
meaningful measure of the difference between the approximated value and the true
target value is the Mean Squared Error (MSE).

We can apply this error measure to the training of the Q-network. At each iteration,
we adjust the weights θ to reduce the MSE in the Bellmann equation (12). The true
target value, the optimal action-value Rt+1 + γmaxa q∗(St+1, a) is not known. Thus,
we approximate it by Yt = Rt+1 + γmaxa Q̂(St+1, a, θ̂) using the Q-network with
weights θ̂ from a previous iteration.13 The loss function we want to minimize is then:

L(θ) .=
[
Rt+1 + γmax

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]2
. (16)

Reducing the error completely at each step is impracticable. As described above,
we need to balance the fit between action-values. At each learning step, we train the
Q-network with only a small sample. Instead of reducing the error for this sample
completely, the weights can be moved only a small step in the direction where the
13 In contrast to supervised learning, the loss function’s target values are not fixed before training

but depend on previous weights. At each learning step, the weights θ̂ are held constant. Thus,
the optimization problem is well-defined (Mnih et al. 2015).
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error falls most rapidly (Sutton and Barto 2018).

Stochastic Gradient Descent (SGD) is the most popular method to implement
this fitting procedure. At each learning step, the weights θ are adjusted by a small
amount in the direction that reduces the error L(θ) specified in equation (16) the
most:

θ ← θ − 1
2α∆θ

[
Rt+1 + γmax

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]2

θ ← θ + α
[
Rt+1 + γmax

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]
∆θQ(St, At, θ),

(17)

where α is a positive step-size parameter comparable with the one for Q-learning.
∆θf(θ) denotes the vector of partial derivatives (the gradient) with respect to the
weight vector:

∆θf(θ) =
(
∂f(θ)
∂θ1

,
∂f(θ)
∂θ2

, ...,
∂f(θ)
∂θd

)>
. (18)

The gradient indicates the direction in which the loss function L(θ) has the steepest
ascent (Sutton and Barto 2018).14

SGD yields too little information about the loss function to train the Q-network
efficiently. It only takes the first-order derivatives into account. These contain
information how fast the loss declines in which direction. However, it contains no
information about the curvature: whether the loss declines faster or slower as we move
in a certain direction. Second-order derivatives contain this information. However,
they are computationally expensive. Common optimization methods consider the
gradients of past steps to guide the search. This is the idea behind Adam, which I
use in the simulations (Goodfellow, Bengio, and Courville 2016).15

Modifications of the algorithm Algorithm 2 shows the pseudo-code for DQN
following Mnih et al. (2015). Similar to Q-learning, the algorithm selects actions
based on an ε-greedy policy (15). Off-policy learning, combined with function
approximation, leads to a danger of instability and divergence. Additionally, the
discounted problem formulation (10) is incompatible with function approximation
(Sutton and Barto 2018). Compared to Q-learning, the algorithm is modified in
three ways to address these challenges: i) the average reward formulation replaces
the discounted formulation, ii) learning is performed with experience replay, and iii)
a separate network with older weights calculates the target values.

The first modification addresses the problem formulation. Equation (11) implies
14 The direction that reduces the error the most is the direction exactly opposite to the gradient.

That is why we are subtracting the ∆θL(θ) vector from the weights vector.
15 There are many different implementations. For each of the most common optimization methods,

I tested how well the DNN was able to learn several strategies of increasing complexity. In this
testing procedure, Adam performed best.
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Algorithm 2 Deep Q-Network
1: Initialize local network Q(s, a, θ) with arbitrary weights θ
2: Initialize target network Q̂(s, a, θ̂) with weights θ̂ = θ
3: Initialize average reward estimate R̄ arbitrarily
4: Initialize S1 arbitrarily
5: for t = 1, T do
6: With probability εt play a random action At

Otherwise play At = arg maxaQ(St, a; θ)
7: Observe Rt+1, St+1
8: Store transition St, At, Rt+1, St+1 in B
9: Sample random minibatch of transitions (Sj, Aj, Rj+1, Sj+1) from B

10: Set Yj = Rj+1 − R̄ + maxa Q̂(Sj+1, a, θ̂)
11: Perform a gradient descent step on [Yj −Q(Sj, Aj, θ)]2 with respect to θ
12: R̄← R̄ + λ

[
Rt+1 − R̄ + maxa Q̂(St+1, a, θ̂)− Q̂(St, At, θ̂)

]
13: Every C steps reset Q̂ = Q

that a policy is optimal, if, for every state-action pair, following this policy leads to
a higher discounted sum of future rewards than any other policy. The optimal policy
satisfies the following inequality:

qπ∗(a | s) ≥ qπ(a | s) for all a, s and π. (19)

These inequalities define a partial order on the set of possible policies.

Tabular methods store a separate estimate for each state-action pair. Thus, they
can represent any possible policy. For example, Q-learning updates one state-action
pair at a time, thus, slowly improving its policy in the direction of the optimal policy.
Q-learning can tackle this problem formulation and find the policy that is at least as
good as all other policies for each state-action pair.

With function approximation, not each possible policy can be represented since
there are fewer weights than state-action pairs by definition. Thus, the optimal
policy defined in (19) usually cannot be represented. Instead, the agent tries to
learn the best representable policy. However, there is typically no representable
policy that is universally better than all other representable policies. For some state-
action pairs, one representable policy will be better, and for other state-action pairs,
another representable policy. The partial order described in (19) is not transferable
to representable policies and the problem formulation is not well-defined (Singh,
Jaakkola, and Jordan 1994; Naik et al. 2019).

Instead of the partial order of policies, we should use an explicit optimization
objective to compare any two policies. The agent chooses actions in order to maximize
the present and future rewards. In episodic tasks, the number of periods is relatively
small, and each episode has a natural end. Therefore, the sum of all discounted
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future rewards (10) is a meaningful explicit objective.

The sequential Bertrand competition has no natural end and will potentially go
on infinitely. We need to find an objective that is similar to the sum of rewards in
episodic tasks. The basic principle of RL is that the agent tries to maximize the
rewards not just in the present but over the whole lifetime. The agent should choose
actions that cause her to visit states with high rewards more frequently (Naik et al.
2019). Since the time horizon is infinitely in continuing tasks, the average reward
r(π) is a good candidate for the optimization objective:

r(π) ·= lim
h←∞

1
h

h∑
t=1

E[Rt|A0:t−1 ∼ π], (20)

where the expectation is conditioned on the prior actions A0, A1, ..., At−1 taken
according to the policy π. This measure can order the policies by a single number,
their average reward r(π). Each policy that attains the maximum value of r(π) is an
optimal policy (Sutton and Barto 2018).

In the average-reward setting the goal of the agent (10) must be restated as
differences between rewards and the average reward:

Gt = Rt+1 − r(π) +Rt+2 − r(π) +Rt+3 − r(π) + · · · . (21)

The optimal action-values (12) can easily be adjusted to the average formulation
by replacing the discount factor γ with the difference between reward and the true
average reward:

q∗(s, a) = E[Rt+1 −max
π

r(π) + max
a

q∗(St+1, a)|St = s, At = a]. (22)

The loss function of our algorithms must reflect these changes as well:

L(θ) =
[
Rt+1 − R̄ + max

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]2
, (23)

where R̄ is an estimate of the true average reward r(π) at time t. This estimate is
updated at the end of every period. It is pushed a small step, defined by λ, towards
the true value as the learned policy converges to the optimal policy (Sutton and
Barto 2018).

Figure 2 shows the rewards/profits of a DQN agent with discounted reward
formulation in comparison to an agent with average reward formulation. They
play against an agent with a hard-coded Tit-for-Tat policy.16 Both agents are able

16 The agent with the Tit-for-Tat strategy will play the lowest possible price if the opponent
undercut her in the previous round. Otherwise, she will replicate the opponent’s previous action.
This policy encourages cooperation.
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Figure 2: Learning behavior of DQN agents with discounted and average reward
formulation against a Tit-for-Tat agent. The lines represent average values
over 10 simulation runs. Each simulation lasts 1000 periods.

to increase their rewards/profits over time. However, the oscillating behavior of
the agent with discounted rewards is a sign that the optimization problem is not
well-defined. In contrast, the agent with average reward formulation learns smoothly
and behaves almost always optimally at the end of the simulation runs.

The second modification is the use of experience replay. With experience replay we
store the agents experience Et = St, At, Rt+1, St+1 in the replay buffer B = E1, ..., Eβ.
The replay buffer is limited to store β experiences. If the replay buffer is full, the
oldest memory is deleted to free space for the new experience. At each period t,
the agent does not learn with the newest experience Et. Instead, ω experiences
are randomly sampled from the replay buffer. This minibatch is used to perform a
gradient descent step, as described previously.

Training on a minibatch instead of a single observation has several advantages.
First, each experience is used in possibly many learning steps. Second, consecutive
samples often have a strong correlation. With random sampling, this correlation
reduces and the variance of the updates declines. Third, unwanted feedback loops
are avoided. For example, if the current best action is to set a high price, the next
states will be dominated by samples with high prices. If the best action is to play low
prices, the training samples will be dominated by samples with low prices. Thus, it is
likely that the algorithm could get stuck in a poor local minimum (Mnih et al. 2015).
Lastly, software that implements DNNs is highly optimized to larger training batches.
Thus, training on these minibatches instead of a single observation significantly
decreases computation time for learning.

The third modification, a separate network for the target value calculation, further
improves the algorithm’s stability. The approximated target Yt is calculated with
the target network Q̂(s, a, θ̂). The target network Q̂ has the same structure as the
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Figure 3: The ε-greedy policy with decreasing probability of exploration.

local network Q. The SGD update, the learning, is performed on the local network
Q(s, a, θ) and the agent also uses this network to determine her actions. Each C
periods, the weights of the target network θ̂ are replaced by the weights of local
network θ.

Generating the targets with an older set of weights adds a delay between learning
and the effect in the target Yt. Without this delay, learning would immediately
influence the learning target. Considerable risk of oscillation or divergence in the
learning process would occur (Mnih et al. 2015).

2.2.3. Policy

Self-learning agents must explore the whole state-action space to learn optimal
policies. As stated in section 2.2.1, this can be assured by following an ε-greedy
behavior policy. Experimentation is especially helpful at the beginning when the
agents have little knowledge about the environment or the behavior of the competitors.
However, experimentation is costly and with increasing knowledge, the greedy action
will more likely result in higher rewards. Therefore, the agents follow a policy with
exponentially decreasing probability of experimentation εt:

εt =
(
0.015 2

T

)t
. (24)

The probability of experimentation starts around 1 in the first period to 0.015
halfway the run until 0.000225 in the last period t = T . Figure 3 shows εt over the
curse of the simulation. Q-learning and DQN learn with different pace. Thus, the
simulations have varying length T depending on the used algorithm. The ε-greedy
policy dynamically adapts to different simulation lengths, and makes exploration
comparable across simulations.
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2.3. Technical Implementation

The experiment is implemented in Python. I choose an object-oriented approach,
and the entities of the simulation are designed as separate objects, each with a
standardized interface. Therefore, different agents, demand models, or policies can
be combined with one another. In addition, new agents or more sophisticated demand
models can be integrated straightforwardly. The environment is scalable to model
markets with a varying number of firms from two upwards. The full source-code can be
found on GitHub (https://github.com/matthias-hettich/price_simulator).

The simulations were deployed on the high performance computing cluster PALMA
II of the WWU Münster. For simulations with tabular algorithms, e.g., Q-learning,
this enabled the usage of up to 36 Central Processing Units (CPUs). The DNNs
are implemented in TensorFlow 2.2.0 by Abadi et al. (2016). This software uses
data flow graphs to build large-scale machine learning models and is optimized for
calculations on Graphics Processing Units (GPUs). The PALMA II cluster allowed
training of the DNNs on up to 8 GPUs in parallel.

3. Collusion with Limited Time

This section focuses mainly on duopolies and examines whether pricing algorithms
can learn collusion with limited time. Each firm or agent i has marginal costs ci = 1.0
and product quality gi = 2.0. The price sensitivity is set to µ = 0.25, and the agents
can choose from m = 15 prices. The agent’s parameters differ between algorithms.
For Q-learning the discount parameter is γ = 0.95 and the learning rate α = 0.125.
Agents based on DQN have several parameters. The most important parameters will
be discussed in section 3.2. For an overview of all parameters, see appendix A.

3.1. The Need for Approximate Learning Methods

Q-learning agents frequently learn to collude, as shown by Calvano et al. (2020).
Their results’ replication serves as a benchmark to compare the collusive behavior
of more sophisticated algorithms. One simulation run lasts T = 1, 000, 000 periods
and the market size varies from two to four Q-learning agents. Figure 4 shows the
average profit gain ∆ in the last 25, 000 periods.

In a duopoly, the agents consistently reach average profit gains of ∆ = 67%. If
three agents are active in the market, the tendency to collude significantly decreases
to ∆ = 30% and becomes even smaller in markets with four agents, ∆ = 27%.

Calvano et al. (2020) show that Q-learning algorithms could reach average profit

https://github.com/matthias-hettich/price_simulator
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Figure 4: Average profit gains by Q-learning agents for different market sizes. The
box-plot shows the results of 100 simulation runs. The box extends from
the lower to the upper quartile of the average profit gains, with a line at
the median. The whiskers show the range of the data. Values beyond the
whiskers are considered outliers and are plotted as individual points.

gains of ∆ = 56% in a market with four agents. However, the algorithms had
up to one billion periods to learn their strategies. On Amazon, the prices can be
updated 30 times per hour. If we assume this update frequency, 1 million periods
already translate to a time horizon of roughly three and a half years. Especially on
e-commerce platforms, it is quite unrealistic that markets stay unaltered that long.
Simulations with this time horizon will not bring us closer to assess the probability
of collusion in real markets. Instead, we should focus on more efficient self-learning
algorithms, i.e., DQN.

To see the superior learning capabilities of DQN over Q-learning, I let both play
against an agent with a rule-based strategy. Each period, DQN trains on a minibatch
of ω = 32 experiences, whereas Q-learning trains on a single experience. The
simulations with Q-learning last for T = 32, 000 and with DQN for T = 1, 000
periods. Thus, they learn on the same number of experiences.

The upper figure 5a compares the profit (reward) of the two algorithms against
an Always-Defect agent. This agent follows a rule-based strategy: she always plays
the lowest price possible. Q-learning and DQN agents are both able to increase
profits when exploration becomes less frequent. DQN quickly gains higher profits
than Q-learning. Whereas DQN almost always ends up at the optimal strategy,
Q-learning does sometimes learn sub-optimal strategies.

The behavior of the rule-based agent does not change and the state-transition
probabilities (9) are time-invariant. The environment fulfills the Markov property,
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Figure 5: Performance differences between Q-learning and DQN. The plot shows the
profit of the Q-learning and DQN agents averaged over 10 simulation runs.

and Q-learning is theoretically guaranteed to find the optimal strategy. Therefore,
the agent fail to learn the optimal strategy because experimentation was insufficient
for her slow learning pace.

These differences in performance become more evident in the lower figure 5b.
The rule-based opponent now follows a Tit-for-Tat strategy. She plays the lowest
price if the other agent undercut her in the last period. Otherwise, she plays the
opponent’s last period’s price. Tit-for-Tat is a cooperative strategy and enables
higher profits than Always-Defect. Again, DQN quickly learns the optimal strategy
and can increase profits when experimentation becomes less frequent. Contrary,
Q-learning fails to learn the optimal strategy and ends up with low profits.
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3.2. Duopolies with Deep Q-Networks

Let us now focus on the more efficient DQN algorithms to see if they can learn
collusion at a reasonable time limit. The superior performance is achieved at the cost
of higher complexity and, thus, more parameters. It is computationally not feasible
to perform a systematic grid search to select values for all parameters. Besides, we
do not want to optimize the algorithm to facilitate collusion. Instead, we would
like to observe if such behavior occurs with as little prior knowledge and tuning as
possible. Where feasible, I adopted standard values or performed an informal search.

Excluded from this are the learning rate α and the size of the replay buffer β. The
learning rate is the most important parameter for training a DNN. Together with
the size of the replay buffer, it determines the pace of learning. If the learning rate
is too large, the SGD will overshoot and oscillate without finding local or global
minima. If the learning rate is too low, the weights could be shifted too little, and it
is more likely to end up in a bad local minimum (Goodfellow, Bengio, and Courville
2016).

The replay buffer size β determines how quickly changes in the competitor policy
are represented in the training data. A small replay buffer could lead to unstable
learning behavior because the learning target will change fast. If the replay buffer is
too large, the learning target is stable, but the algorithm will take a long time to
adapt to changes in the competitor’s strategy.

The significant influence of the two parameters on learning makes a systematic
grid search for optimal values necessary. I considered replay buffer sizes β from 500
to 10,000 samples and learning rates α from 0.00025 to 0.005. One simulation run
lasts T = 100, 000 periods. Figure 6 shows the average profit gain ∆ of a duopoly
with DQN agents.17 The heat map shows the results for all combinations of the
parameter.

For small replay buffer sizes, the algorithms are not able to learn collusive strategies.
The algorithms have not enough time to learn the opponent’s strategy and find a
collusive response because the learning targets change too fast. Thus, they play prices
near the one-shot game’s optimal price, which results in average profit gains near
the static Nash equilibrium. For larger replay buffer sizes, the algorithms frequently
learn to play collusive strategies and end up with a high average profit gain. The
learning rate and replay buffer size are not independent of one another. The results
suggest that algorithms with smaller replay buffer must learn faster. For replay
buffer size 5,000 or 10,000 and learning rates around 0.001, the average profit gains
of DQN are comparable to the ones of Q-learning, see figure 4.

17 In the following, average profit gain ∆ is always calculated with the profits from the last 5,000
periods.
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Figure 6: Average profit gains by DQN agents for different learning rates and replay
buffer sizes. Each parameter combination is repeated 50 times.

To further investigate the emergence of collusion, I have to limit the analysis to a
specific parameter setting. In the following, I will keep the replay buffer size fixed at
β = 5, 000 and the learning rate at α = 0.001. However, the results are robust to
reasonable changes in these parameters.

Figure 7 shows the development of the average profit gain over time.18 At the
beginning of the simulation, both agents experiment frequently. It is not possible to
answer to a stable strategy of the opponent. Thus, playing a low price to undercut
the opponent is the best an algorithm can do. The prices decrease, and the average
profit gain comes closer to the static Nash level.

As the experimentation probability ε decreases, the agent’s strategies become
more stable. Already after 20,000 periods, the agents start to learn strategies other
than undercutting the opponent. They raise profits by increasing prices. If we
again assume that pricing algorithms can update their prices 30 times per hour, this
translates to approximately one month. After this turning point in the learning
process, the agents steadily improve their strategies. In the last 5,000 periods of the
simulation, they obtain average profit gains of ∆ = 63%.

18 For price movements and the evolution of profits and quantities see figure 21 in appendix B.
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Figure 7: Average profit gain of the DQN agents in a Duopoly. The line represents
average values over 50 simulation runs.

3.3. Learned Strategies

The previous section focused on market outcomes: the average profit gain compared
to the static Nash equilibrium. Besides, it is crucial to examine how collusion occurs.
Do the algorithms learn a strategy based on a reward-punishment scheme, or do they
just fail to learn a best-response?

Strategies are challenging to describe analytically because they are very complex.
In a duopoly with 15 prices, a strategy is a mapping from 225 possible states to 15
actions. Also, the learned strategies differ from simulation run to simulation run.
One way to analyze such complex strategies is by looking at averages (Calvano et al.
2020). First, I will examine the response to price cuts to verify if the algorithms
learned a reward-punishment scheme. Then I show the average pricing behavior for
each possible state, which can be displayed for duopolies.

To see the reaction to a price cut of the opponent, I used the parameter setting
from before (β = 5, 000 and α = 0.001). After the agents played for T = 100, 000
periods against each other, learning is disabled. First, the agents play for 50 periods
with fixed strategies and then I artificially force one agent to play the static Nash
price. This causes the price cut of the defecting agent in period t = 0 in figure 8.

How does the non-defecting agent react to defection? She punishes the other agent
by lowering her price in t = 1, the period after defection. The defecting agent expects
this punishment and sets her price near the punishment price as well. Then both
agents simultaneously start to slowly increase their prices. Already after five periods,
the prices are near the pre-defection level. On average, the prices stay slightly below
the long-run price after the punishment phase.
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Figure 8: Price reaction after a defection of one agent to the static Nash equilibrium
price. The lower figure zooms in to the post defection phase. The lines
represent average values over 50 simulation runs.

The price reaction to defection seems to exhibit a reward-punishment scheme.
However, a meaningful punishment must make defection unprofitable. Figure 9
shows the change in profit after a unilateral defection, both for the defecting and the
non-defecting agent. This change is the difference between the average profit in the
periods before defection, t < 0, and after defection, t >= 0. The change is simulated
not just for defection to the static Nash equilibrium price, but for each possible price
from 1.43 to 1.97. The long-run price was on average 1.7.

The figure reveals that defection to prices below the long-run price is seldom
profitable for the defecting agent. The harsher the defection is, the greater is the
loss in profit. Except for a defection to 1.62, the average profit change is negative
for all price cuts. Price increases above the long-term price seem to have a positive
effect on profits. However, large price increases do not significantly increase profits.
In conclusion, the agents have no incentive to lower prices in most of the learned
strategies. If at all, there is an incentive to raise prices slightly.

For the non-defecting agent, things are different. Overall, the profit losses are
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Figure 9: Change in profit before and after defection. Compared are the 50 periods
before and the 51 periods after defection for all possible defection prices.
The lines represent average values over 50 simulation runs.

higher than for the defecting agent. That is possibly due to the defection period,
where the defecting agent can gain high profits. In addition, profits also decrease for
price changes above the long-term price up to 1.78. Similar to the defecting agent,
losses are greater, the harsher the defection is.

The analysis shows that defection to lower prices is mostly unprofitable due to an
effective punishment-scheme. So far the focus was on deviations from the long-run
price. Luckily, the learned strategies can be displayed for the whole state-space in
markets with two agents. Figure 10 shows the optimal action of agent 1 in each of
the 15× 15 = 225 states.19

The first thing that catches the eye is the symmetry of the surface. The agent
reacts similarly to previous prices no matter which agent played which price. The
agent will not just punish the defection of the opponent but also anticipates the
punishment if she defects herself. For prices in the medium range, the agent holds
the price approximately constant. The concave shape of the surface at the top shows
that the agent starts to undercut as prices approach the monopoly price.

Another remarkable behavior is the price increase when both agents played prices
near the Nash price. This mutual understanding enables the agents to return to
higher prices after a punishment. The learned strategy is reminiscent of the Pavlov
(or win-stay-loose-shift) strategy described by D. Kraines and V. Kraines (1989).
As long as both cooperate, prices stay at a collusive outcome. If one of the agents
defects and unilaterally decreases her price, both agents stop cooperating and lower
their prices. If both agents defect and play prices near the Nash equilibrium, both
mutually return to cooperation and again play prices at a collusive level.
19 The strategy for agent 2 has the same shape.
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Figure 10: Learned strategy of the DQN agents in a duopoly. The figure displays
the optimal action of agent 1 in each possible state according to a =
arg maxaQ(s, a, θ). The state s are the previously played prices of the
two agents, the values on the x-axis and y-axis. The 3-d surface shows
the average optimal action over 50 simulation runs.

The previous results show that some properties prevail in all of the learned
strategies. Learning heavily depends on the experience that the agents encounter.
This experience is unique for each simulation run and is based on the joint behavior
of both agents. Evidently, there is much variation in the learned strategies that
vanishes through the aggregation of results.

Looking at some examples will further deepen our understanding of the learned
strategies. Figure 11 visualizes the joint strategy for two simulation runs. The nodes
represent all possible states. The edges show the transition from one state to the
next state according to the joint strategies of the agents.20 The node color indicates
the average profit gain in this state. The node size shows how often this state was
visited in the last 5,000 periods of the simulation run.

The upper figure 11a reveals a few remarkable properties of the learned strategies.
First, no matter from which state the agents start, they eventually end up in the
terminal state. This is the large node at the bottom. Thus, the agents will re-start

20 For each state we can calculate the optimal action that both agents will choose according to
a = arg maxaQ(s, a, θ). The two optimal actions then constitute the next state.
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Figure 11: Exemplary directed graphs of the joint strategies.
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cooperation after both unilateral and bilateral defection, which holds for all possible
defection prices. Second, just a few central nodes serve as a gateway to the terminal
state. Third, the paths toward the terminal state are relatively short. For most
states, the terminal state will be reached after five periods. From the 50 simulation
runs, 34% of the joint strategies end up in such a collusive terminal state.

The lower figure 11b has similar properties. Instead of one terminal state, the
agents will always end up in a cyclic price movement between 4 states. All of these
states are collusive, as indicated by the dark red color. 32% of the simulations contain
such a cyclic movement. The cycles differ in length from two to five periods.

Another characteristic are separated graphs that do not have a connection to each
other. Dependent on the start state, the agents will end up in different terminal
states or cyclic movements. Separated graphs are found in 52% of the simulation
runs, but often one graph contains just few states. For more details see table 2 in
appendix B.

This section showed that self-learning pricing algorithms frequently set supra-
competitive prices in a duopoly. This finding holds for simple Q-learning algorithms
and more sophisticated algorithms based on function approximation. The analysis of
these DQN algorithms reveal that they start to collude after a few thousand periods.
That corresponds to roughly one month on common e-commerce platforms. The
algorithms do not arrive at the anti-competitive outcome by failing to optimize.
Instead, the learned strategies are based on an effective reward-punishment scheme
that makes defection non-profitable. The strategies heavily depend on a mutual
understanding to return to cooperation after punishment.

4. Collusion in Wide Oligopolies

Economic experiments showed that tacit collusion by human price-setters is strongly
affected by the number of competitors. Implicit coordination of prices above the
competitive level is frequently observed in duopolies, rarely in markets with three
firms, and almost never in markets with four firms. In markets with more than
four firms, tacit collusion seems unlikely unless the human subjects are allowed to
communicate with each other (Potters and Suetens 2013).

Do the same effects apply to pricing algorithms, or can they collude even in wide
oligopolies? To answer this question, I repeat the simulation of the previous section
for markets with up to 10 firms. The parameters and the DQN algorithms remain
unaltered in the baseline setting. Figure 12 shows the average profit gain for different
market sizes. Similar to markets with Q-learning algorithms (see figure 4), collusion
decreases in the number of market participants. In markets with three firms, the
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Figure 12: Average profit gains by DQN agents in wide oligopolies. The lines show
average values for 10 simulation runs per setting.

average profit gain is ∆ = 30%, and thus significantly higher than the static Nash
equilibrium level. With more market participants, the average profit gains fall below
∆ = 20% and quickly approach zero.

Various factors could have hindered the algorithms from coordinating their prices
above competitive levels in larger markets. Either i) the algorithms do not have the
capacity to learn complex strategies in the given time or ii) the representation of the
state is not suited to learn the competitors’ strategy.

To see whether the former hinders the algorithms to learn collusion, I tested both
a larger DNN and more time for learning. The larger DNNs have three hidden layers
with 128 nodes each. The network size does not seem to facilitate collusion, see
figure 12, and the results are almost identical compared to the baseline setting. Too
low approximation capabilities do not qualify as a reason for failed collusion.

Collusion could also fail because the algorithms do not have enough time to learn
each other’s strategy plus the market demand. Longer time for learning could be
especially important with larger networks. However, even in simulation runs with up
to T = 500, 000 periods, the collusion level does not increase. That holds for agents
with both small and large DNNs.

In addition, I tested whether advancements in the algorithms, as such, could
increase collusion in wide oligopolies. Double DQN (DDQN) developed by Van
Hasselt, Guez, and Silver (2016) is the successor of DQN. The latter suffers from
overestimation of the action-values under certain conditions. This overestimation is
reduced by decomposing action selection and action evaluation in the target value



5. Heterogeneous Pricing Algorithms 29

Yt = Rt+1 − R̄+ Q̂(St+1,maxaQ(St+1, a, θ), θ̂).21 Although DDQN proved to have a
better performance in several application domains, agents based on this advanced
algorithm do not show more collusive behavior than DQN.

The agents’ learning capacity does not seem to be the barrier to collusion in wide
oligopolies. Alternatively, I test the influence of the state representation on the
learning of strategies. The state determines how an agent perceives the environment
and, therefore, the other agents’ behavior.

In the baseline setting of the simulation, the previous period’s prices constitute the
state. The examination of strategies in section 3.3 shows that it does not matter who
played which price in the previous round. More important are the overall price level
and whether an agent defected by either playing a higher or lower price. Equipped
with this knowledge, a reasonable state representation should contain the average of
the last period’s prices. Defection can be measured by including the minimum and
maximum value of last period’s prices.

Figure 12 shows the results for simulations where each agent perceives the state
of the environment according to this formulation. The average profit gains are
significantly higher for all simulated market sizes. For three firms the profit gain
is ∆ = 57%, for four ∆ = 36% and for markets with 5 firms still ∆ = 27%. With
more firms, it falls below 20% and approaches zero, similar to the baseline setting.
Somewhat surprising is the fact that the reshaped state representation also helped
collusion in duopolies.

The preprocessing is based on the knowledge which information algorithms need
in order to learn collusive strategies. Although the agent’s DNNs receive in principle
the same information, aggregation of the previous period’s prices seems to reduce
detrimental variation. That frees the DNNs from distinguishing between important
price defection and small price fluctuations.

I use a straightforward preprocessing of the previous period’s prices. In real-world
applications, more advanced methods could be required. Possible candidates are a
direct measure of the opponent’s willingness to cooperate, some economic structure,
or a strategy model. The simulation results indicate that such expert knowledge
could enable collusion even in wide oligopolies.

5. Heterogeneous Pricing Algorithms

In a real market place, firms develop their pricing algorithms independently. They
will end up with algorithms that differ in the state representation, learning pace,

21 For a comparison see equation (23).
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or learning method. Tacit collusion by algorithms heavily relies on joint learning.
Section 3.3 shows that the mutual understanding to increase prices after defection
is a defining characteristic of the strategies. Up until now, the algorithms in each
simulation are identical. One might presume that this similarity facilitates collusion.
Thus, I test whether heterogeneity among algorithms influences the ability to collude.

5.1. On-Policy vs. Off-Policy

The developer of a RL based pricing algorithm faces various design decisions. Among
the most fundamental decisions is the method of learning. Whether algorithms learn
on-policy or off-policy is by no means clear. Off-policy algorithms, e.g., Q-learning,
learn an optimal policy while following another policy, e.g., an ε-greedy policy. While
this avoids the unwanted influence of the agent’s behavior on learning the optimal
policy, it introduces a danger of instability and divergence. This is especially true
for learning with function approximation. Most of the modifications described in
section 2.2.2 solely attack this danger. On the other hand, on-policy methods often
proved to be more stable but learn a sub-optimal behavior policy.

The on-policy pendant to Q-learning is SARSA. The learning target in Q-learning
is the observed reward plus the expected next period’s Q-value under an optimal
policy, Yt = Rt+1 + γmaxaQ(St+1, a). With SARSA the learning target is the
observed reward plus the observed next period’s Q-value, Yt = Rt+1 +γQ(St+1, At+1).
The next period’s Q-value apparently depends on the action At+1 the agent played
and, therefore, on the behavior policy. As long as the agent experiments, she will
not learn the optimal policy. See appendix C for the full pseudo-code of SARSA.

To test how a different learning method influences the ability to collude, I simulated
duopolies with both SARSA and Q-learning agents. The simulation runs last T =
1, 000, 000 periods. The parameters for SARSA and Q-learning remain unchanged
compared to section 3 (α = 0.125 and γ = 0.95). The average profit gain in a market
with two SARSA agents is ∆ = 42%, see the right figure 13b. SARSA seems to
reach lower average profit gains in comparison to Q-learning.22 The disadvantage
of on-policy learning seem to outweigh the benefits of higher stability. Sometimes
SARSA agents even end up at profit levels near the static Nash equilibrium.

The left figure 13a shows the results for a market with one Q-learning and one
SARSA agent. It reveals that the Q-learning agent cannot reach a similar collusion
level with SARSA instead of Q-learning as her collaborator. Even though the two
different algorithms sometimes reach a high level of collusion up to 80%, this happens
rarely and the average profit gain is ∆ = 45%.

22 In a duopoly with two Q-learning agents, the average profit gain is ∆ = 67%, see figure 3.1.
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Figure 13: Average profit gains in a duopoly with agents learning on-policy (SARSA)
and off-policy (Q-learning). The box-plot shows the results of 50 simula-
tion runs.

The results underline the importance of joint learning for tacit collusion. The
Q-learning agents are not able to signal the less-performing SARSA agent to raise
prices. Instead, the collusion level seems to be oriented towards the outcome of
SARSA.

5.2. Fast vs. Slow Learner

The previous section shows that algorithms with less ability to learn collusive
strategies will thwart superior algorithms. However, what happens if two algorithms
play against each other that, in principle, can learn a similar level of collusion but
learn at a different pace? To answer this question, I let a DQN agent play against a
Q-learning agent. Each simulation run lasts T = 100, 000 periods. Figure 14 shows
the average profit gains.

The faster DQN agent can exploit the slower Q-learning agent. DQN is able to
reach profits above the monopoly level, whereas Q-learning earns profits near the
static Nash equilibrium. Figure 22 in appendix B reveals that DQN plays a highly
competitive strategy. The Q-learning agent is not able to optimize her behavior fast
enough. The DQN agent takes advantage of it and lowers her price. In this way, she
drives the Q-learning agent out of the market and gains high rewards.23

The high profits of the DQN agent are not a sign of collusion. She fully exploits

23 I repeated the simulation with a longer time horizon of T = 1, 000, 000. With more time,
Q-learning can learn a reward-punishment scheme. Both agents start to cooperate and end up at
similar collusive outcomes compared to duopolies with two Q-learning or two DQN agents.
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Figure 14: Average profit gains in a duopoly with a fast (DQN) and a slow (Q-
learning) agent. The box-plot shows the results of 50 simulation runs.

the Q-learning agent. Again, this shows the importance of joint learning for tacit
collusion. If both agents learn effective reward-punishment schemes, collusion emerges.
However, cooperation is not an integral part of the self-learning algorithms. Instead,
the algorithms fully take advantage of the chance to exploit the opponent and selfishly
increase their profit.

5.3. Self-Learning vs. Rule-Based Strategy

Currently, pricing algorithms with a rule-based strategy are still in use. The managers
or programmers define more or less exactly how the algorithm should set the price for
their product. Self-learning algorithms are on the rise, but there will be a transition
phase where both types of algorithms compete with one another. The question arises
how rule-based algorithms influence collusion among algorithms.

Figure 15 shows the average profit gain in a market with two DQN agents and
one rule-based agent. This agent plays one of the most prominent pricing strategies
in the e-commerce sector: penetration pricing. She tries to undercut the competitors
by setting the price one margin below their last period’s prices.

Although this strategy is non-cooperative, the self-learning algorithms do not start
a race to the bottom. The penetration agent cannot be punished and, thus, the
self-learning agents let her receive profits near the monopoly level. In this way, they
are able to reach average profit gains of ∆ = 61% themselves.24 This is only slightly
less compared to the duopoly case with two DQN agents.

24 I repeated the simulation for another popular pricing strategy: premium pricing. The premium
pricing agent performs worse than the penetration pricing agent. She will end up with profits
near the Nash equilibrium level. The self-learning agents seem to be relatively unaffected and



5. Heterogeneous Pricing Algorithms 33

DQN DQN Penetration
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 15: Effect of a rule-based agent on the average profit gain. The box-plot
shows the results for 30 simulation runs.

The results illustrate an important property of a self-learning algorithm: she
perceives the other firms as part of the environment. By interacting with the
environment, the algorithm must learn the demand model plus the opponent’s
strategy, because both influence the state-transition probabilities (9). This task is
daunting with self-learning opponents, because their strategy changes during the
learning process and make the state-transition probabilities non-stationary. Contrary,
a rule-based opponent behaves according to a time-invariant strategy. Even though
this increases the complexity of the state-transition probabilities, it does not decrease
their stationarity.25

With this insights, it becomes apparent that the coordination problem’s complexity
between two self-learning algorithms will not significantly increase with an additional
rule-based agent. The previous section 4 shows that larger markets will decrease the
likelihood of tacit collusion. However, this seems only valid if the additional agents
are self-learning. Simple rule-based pricing algorithms (or human-price setters that
do not frequently change prices) do not necessarily hinder tacit collusion.

5.4. Asymmetric Costs

While the previous sections focus on heterogeneity among algorithms, this section
addresses heterogeneity on the firm’s level. Tacit collusion under asymmetries is
regarded as more complicated because the firms have to coordinate on two factors.

again can establish a highly collusive market outcome.
25 Section 3.1 gives an impression how one self-learning performs against one rule-based algorithm.

Since the opponent plays a time-invariant strategy, the environment is stationary from the
self-learning agent’s point-of-view. RL algorithms are designed to tackle stationary environments,
and with enough exploration they will eventually always learn the optimal strategy.
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Figure 16: Average profit gains with asymmetric costs. The box-plot shows the
results for 20 simulation runs per value of c2.

Besides the overall price level, they must agree on the relative prices that determine
how the profit is split between firms (Calvano et al. 2020). Does this two-sided
optimization problem make collusion harder for the self-learning algorithms?

Figure 16 shows the average profit gains under cost asymmetries. The marginal
costs of the second agent c2 vary from 1.0 (symmetric cost structure) to 0.25. With
increasing asymmetry the average profit gain decreases but remains at a high level
of not less than ∆ = 37%.

At least to some extent, the decrease in profit gain is due to the missing opportunity
for side payments. The profit from collusion is disproportionally divided in favor
of the less efficient agent 1. This becomes apparent from figure 17. For symmetric
costs, the profit of agent 1 is near her monopoly profit. With increasing asymmetry,
the profit of agent 1 decreases. However, the slope of her monopoly profit is steeper
than the slope of her average profits. Joint profit maximization would require agent
1 to further lower her output and gain profits near the monopoly profits. Around
marginal costs c2 = 0.5, the monopoly profit drops below the static Nash profit. Here
at the latest, it becomes clear that agent 1 has no incentive to do so without side
payments.

The coordination problem of the algorithms does not necessarily get more chal-
lenging with asymmetric costs. Instead, they coordinate on a solution that does not
maximize the joint profit. Heterogeneity among algorithms seems to actually hinder
collusion, whereas asymmetries among firms instead shift the coordination problem’s
solution.
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Figure 17: Shift of the maximization target under asymmetric costs.
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Figure 18: Profit from defection and possibility to punish with product differentiation.

5.5. Product Differentiation

Another interesting extension is the effect of horizontal product differentiation. With
increasing µ, the consumer tastes become more heterogeneous. The products are less
substitutable and demand less responsive to changes in the price. How does product
differentiation influence tacit collusion?.

Figure 18 shows the profit from cooperation (both agents play the monopoly price
pM) in comparison to the profit from competitive prices (both agents play the Nash
price pN). Besides, the orange line denotes the profit from defection. That is the
profit an agent receives if she plays the Nash price pN and the other agent plays
the monopoly price pM . With decreasing µ, the difference between monopoly and
Nash profit becomes larger. Thus, deviation could be punished harsher with more
homogeneous products. Additionally, higher product substitutability decreases the
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Figure 19: Average profit gains for different degrees of product differentiation. The
box-plot shows the results for 20 simulation runs per value of µ.

individual firm’s profit from defection. It seems that more homogeneous products
make tacit collusion easier to sustain.

Figure 19 shows the effect of setting µ from 0.005 (products are almost perfect
substitutes) to 0.25 (the baseline) and up to 1.0. When the products are almost
perfect substitutes, the algorithms gain supra-competitive profits of ∆ = 43%. With
higher values of µ, the average profit gain increases. For µ = 0.25 and higher, the
average profit gains stay constant around ∆ = 60%.

This somewhat surprising result could be explained by the incentive to return to
cooperation. Collusive strategies rely on a reward-punishment scheme. Thus, the
agents must learn to punish, but at the same time, they must learn to return to
cooperation afterward. We have previously seen that defection can be punished less
harsh with increasing µ. Figure 20 reveals that, at the same time, profits of an agent
that unilaterally raises her price increase in µ. Thus, an agent has a higher incentive
to increase her prices after a punishment to the Nash equilibrium.

Section 3.3 shows that a collusive strategy is based on a mutual return to coopera-
tion. It can be suspected that the incentive to raise prices is essential for learning
such strategies and possibly more important than a harsh punishment. In any case,
the results show that the simulated market with higher product substitutability bear
a lower risk of tacit collusion by pricing algorithms.
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Figure 20: Incentive to raise prices after punishment. The line shows the profit of an
agent that plays pM and her opponent pN .

6. Conclusion

The simulations have shown that state-of-the-art RL algorithms systematically set
supra-competitive prices in a duopoly. The learned strategies contain a reward-
punishment scheme that enforces collusion. Defection gets punished by the opponent
with a subsequent mutual return to cooperation. The algorithms started without prior
knowledge and learned the strategies by experimentation. There is no instruction to
collude in the software code, nor did the algorithms communicate with each other.

The learned strategies coincide with those of Calvano et al. (2020), but the
algorithms powered by DNNs learn to collude significantly faster. They start to
increase prices after approximately one month if the experimental setting is transferred
to real-world e-commerce platforms.

The more efficient pricing algorithms made experiments in wide oligopolies with
up to ten algorithms possible. With an increasing number of market participants,
the level of collusion decreases. Whereas increasing the capacity of the DNNs cannot
prevent this tendency, already a slight reformulation of the state representation
increases the ability to collude across all market sizes.

Collusion heavily depends on mutual understanding. The strategies result from
the algorithms’ history with each other and often work solely in combination with the
opponent’s strategy. Consequently, heterogeneity among pricing algorithms hinders
collusion. This is true for differences in the pace of learning and the learning method
as such. In contrast, asymmetries among firms seem to change the algorithms’
optimization target but do not necessarily hinder collusion. The same applies to
additional firms that use algorithms with a rule-based strategy.

From a regulatory point of view, the results seem to be alarming. The current
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regulatory approach relies on the assumption that collusion without communication is
unlikely with human price-setters. We do not have a direct comparison of the ability
to tacitly collude between humans and algorithms. However, the results suggest that
pricing algorithms quickly learn to collude. Methods that learn more efficiently than
DQN are already available today, and the advent of artificial intelligence will most
probably further increase the risk of algorithmic collusion. Even wide oligopolies
do not seem to prevent collusion unconditionally. Collusion becomes more difficult
with more self-learning algorithms in the market, but this does not hold for more
rule-based algorithms or human price-setters. In the light of these findings the false
negatives rate could likely increase with such a lenient antitrust policy.

Heterogeneity among algorithms seems to hinder collusion effectively. Therefore,
competition policy should prevent firms from using the same or similar algorithms.
Especially pricing algorithms from third party providers may pose a high risk if
they are widely used in one market. However, similarities could also occur between
independently developed algorithms because the research field and the number of
available algorithms are still relatively small.

So far, it was not possible to directly examine pricing strategies. By moving
the price decision from the manager’s mind to an algorithm, a direct examination
of the strategy becomes feasible. When regulatory authorities detect potentially
collusive behavior, the used algorithms could be tested in a simulated environment
that replicates the monitored market. This approach would require tacit collusion to
be unlawful. So far, tacit collusion was not considered unlawful because it was prone
to a lot of false positives. The spread of algorithmic pricing could reduce the error
rate and make this policy approach desirable (Harrington 2019; Calvano et al. 2020).

Future research should increase robustness and external validity of the findings.
Several improvements bring both pricing algorithms and simulated market environ-
ment closer to real-world applications. First, prices should not be restricted to a
limited set of values. Instead, the algorithms should choose from a continuous price
spectrum. Since DQN cannot tackle a continuous action space, further experiments
should focus on other algorithms, e.g., actor-critic methods.

Second, the model-free algorithms reach their limits in wide oligopolies. Reshaping
the state representation seems to improve the algorithm’s learning and further
facilitate collusion. It would be interesting to incorporate additional prior knowledge
into the algorithms, e.g., the market’s economic structure. Generally speaking, it
would be beneficial to find out which algorithms are deployed in practice in order to
improve their external validity.

Third, the economic environment’s complexity should increase. Additional product
features beyond quality make the demand model less stylized. For e-commerce
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platforms, this could include shipping costs, reviews, or position in the list of
products. On the firm’s side, additional variables like the stock of products could be
incorporated into the pricing decision. It is particularly interesting how such external
factors hinder the interpretation of price movements by competing firms. They must
learn to differentiate between defection and a price change that is motivated by
firm-specific factors which might pose a challenge to collusion (Calvano et al. 2020).

Lastly, additional factors that make collusion more difficult should be identified.
Equipped with this knowledge, regulatory authorities will be able to implement
effective measures against tacit collusion by pricing algorithms.
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A. Simulation Parameter

Economic Environment
Parameter Symbol Default Value
Marginal costs c 1.0
Quality g 2.0
Price sensitivity µ 0.25
Number of prices m 15

Q-learning
Parameter Symbol Default Value
Number of periods T 1,000,000
Learning rate α 0.125
Discount factor γ 0.95

Deep Q-Network
Parameter Symbol Default Value
Number of periods T 100,000
Learning rate α 0.001
Reward step size λ 0.01
Periods between target network updates C 100
Size of the replay buffer β 5,000
Number of hidden layers 2
Number of nodes per hidden layer 32
Minibatch size ω 32
The exponential decay rate for the 1st moment
estimates of Adam

β1 0.9

The exponential decay rate for the 2nd moment
estimates of Adam

β2 0.999

A small constant for numerical stability of Adam ε 1e-7

Table 1: Default parameter of the economic environment and the algorithms.
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B. Additional Simulation Material

B.1. Limited Time: Duopoly with Deep Q-Networks
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Figure 21: Prices, profits and quantities of the DQN agents in a duopoly. The lines
represent average values over 50 simulation runs.
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B.2. Heterogeneity: Fast vs. Slow Learner
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Figure 22: Prices, profits and quantities in a duopoly with a fast (DQN) and a slow
(Q-learning) agent. The lines represent average values over 50 simulation
runs.
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B.3. Strategy Characteristics

Characteristic Counts Frequency
Strategy with a single terminal state 17 34%
Strategy with a cycle 16 32%

2 periods cycle 5 10%
3 periods cycle 4 8%
4 periods cycle 5 10%
5 periods cycle 2 4%

Strategy with separated parts 26 52%
Multiple terminal states 17 34%
Terminal states and cycles 9 18%

Table 2: Characteristics of the strategies learned by DQN agents. The table shows
how often a characteristic is found in the joint strategies of 50 simulation
runs.

C. SARSA Algorithm

Algorithm 3 SARSA
1: Initialize Q(s, a), for all s ∈ S, a ∈ A, arbitrarily
2: Initialize S1 arbitrarily
3: With probability εt play a random action A1

Otherwise play A1 = arg maxaQ(S1, a)
4: for t = 1, T do
5: Observe Rt+1, St+1
6: With probability εt play a random action At+1

Otherwise play At+1 = arg maxaQ(St+1, a)
7: Q(St, At)← Q(St, At) + α

[
Rt+1 + γQ(St+1, At+1)−Q(St, At)

]



References 44

References
Abadi, Martín et al. (2016). “TensorFlow: A System for Large-Scale Machine Learn-

ing”. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation.

Amazon (2020). Selling Partner API Documentation. url: https://github.com/
amzn/selling-partner-api-docs (visited on 09/29/2020).

Anderson, Simon P. and André De Palma (1992). “The Logit as a Model of Product
Differentiation”. In: Oxford Economic Papers 44.1, pp. 51–67.

Bloembergen, Daan et al. (2015). “Evolutionary Dynamics of Multi-Agent Learning:
A Survey”. In: Journal of Artificial Intelligence Research 53, pp. 659–697.

Buşoniu, Lucian, Robert Babuška, and Bart De Schutter (2008). “A Comprehensive
Survey of Multiagent Reinforcement Learning”. In: IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews 38.2, pp. 156–172.

Byrne, David P. and Nicolas De Roos (2019). “Learning to Coordinate: A Study in
Retail Gasoline”. In: American Economic Review 109.2, pp. 591–619.

Calvano, Emilio et al. (2020). “Artificial Intelligence, Algorithmic Pricing, and
Collusion”. In: American Economic Review 110.10, pp. 3267–3297.

Chen, Le, Alan Mislove, and Christo Wilson (2016). “An Empirical Analysis of
Algorithmic Pricing on Amazon Marketplace”. In: 25th International World Wide
Web Conference.

Ezrachi, Ariel and Maurice E. Stucke (2017). “Artificial Intelligence & Collusion:
When Computers Inhibit Competition”. In: University of Illinois Law Review,
pp. 1775–1810.

– (2018). “Sustainable and Unchallenged Algorithmic Tacit Collusion”. In: University
of Tennessee Legal Studies Research Paper 366, pp. 1–39.

Federal Trade Commission (2018). FTC Hearing 7: Competition and Consumer
Protection. url: https://www.ftc.gov/news-events/audio-video/video/ftc-
hearing-7-nov-14-welcome-remarks-session-1-algorithmic-collusion
(visited on 09/30/2020).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. Cam-
bridge: MIT Press.

Harrington, Joseph E. (2019). “Developing Competition Law for Collusion by Au-
tonomous Artificial Agents”. In: Journal of Competition Law & Economics 14.3,
pp. 331–363.

Ivaldi, Marc et al. (2003). The Economics of Tacit Collusion. Tech. rep. March.
Klein, Timo (2019). “Autonomous Algorithmic Collusion: Q-Learning Under Se-
quential Pricing”. In: Amsterdam Law School Research Paper 2018-15, pp. 1–
40.

Kraines, David and Vivian Kraines (1989). “Pavlov and the Prisoner’s Dilemma”.
In: Theory and Decision 26, pp. 47–79.

Kühn, Kai-Uwe and Steve Tadelis (2017). Algorithmic Collusion. Tech. rep.
Laurent, Guillaume J., Laëtitia Matignon, and N. Le Fort-Piat (2011). “The World of

Independent Learners is not Markovian”. In: International Journal of Knowledge-
Based and Intelligent Engineering Systems 15.1, pp. 55–64.

Leibo, Joel Z et al. (2017). “Multi-Agent Reinforcement Learning in Sequential
Social Dilemmas”. In: Proceedings of the 16th International Joint Conference on
Autonomous Agents and Multiagent Systems.

https://github.com/amzn/selling-partner-api-docs
https://github.com/amzn/selling-partner-api-docs
https://www.ftc.gov/news-events/audio-video/video/ftc-hearing-7-nov-14-welcome-remarks-session-1-algorithmic-collusion
https://www.ftc.gov/news-events/audio-video/video/ftc-hearing-7-nov-14-welcome-remarks-session-1-algorithmic-collusion


References 45

Leufkens, Kasper and Ronald Peeters (2011). “Price Dynamics and Collusion under
Short-Run Price Commitments”. In: International Journal of Industrial Organiza-
tion 29, pp. 134–153.

Lynch, David J (2017). Policing the Digital Cartels - Financial Times. url: https:
//www.ft.com/content/9de9fb80-cd23-11e6-864f-20dcb35cede2.

Maskin, Eric and Jean Tirole (1988). “A Theory of Dynamic Oligopoly, II: Price
Competition, Kinked Demand Curves, and Edgeworth Cycles”. In: Econometrica
56.3, pp. 571–599.

Mehra, Salil K. (2016). “Antitrust and the Robo-Seller: Competition in the Time of
Algorithms”. In: Minnesota Law Review 100.4, pp. 1323–1375.

Mnih, Volodymyr et al. (2015). “Human-Level Control through Deep Reinforcement
Learning”. In: Nature 518.7540, pp. 529–533.

Monopolkommission (2018). Wettbewerb 2018. Tech. rep.
Naik, Abhishek et al. (2019). “Discounted Reinforcement Learning Is Not an Op-
timization Problem”. In: Optimization Foundations for Reinforcement Learning
Workshop at NeurIPS 2019.

OECD (2017). Algorithms and Collusion: Competition Policy in the Digital Age.
Tech. rep.

Potters, Jan and Sigrid Suetens (2013). “Oligopoly Experiments in the Current
Millennium”. In: Journal of Economic Surveys 27.3, pp. 439–460.

Priluck, Jill (2015). Can Algorithms Form Price-Fixing Cartels? - The New Yorker.
url: https://www.newyorker.com/business/currency/when-bots-collude.

Salcedo, Bruno (2015). “Pricing Algorithms and Tacit Collusion”.
Schwalbe, Ulrich (2019). “Algorithms, Machine Learning, and Collusion”. In: Journal
of Competition Law & Economics 14.4, pp. 568–607.

Silver, David et al. (2016). “Mastering the Game of Go with Deep Neural Networks
and Tree Search”. In: Nature 529.7587, pp. 484–489.

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan (1994). “Learning
Without State-Estimation in Partially Observable Markovian Decision Processes”.
In: Machine Learning Proceedings 1994.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An
Introduction. 2. Edition. Cambridge and London: MIT Press, pp. 1–526.

UK Competition and Markets Authority (2018). “Pricing Algorithms: Economic
Working Paper on the Use of Algorithms to Facilitate Collusion and Personalised
Pricing”.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep Reinforcement
Learning with Double Q-Learning”. In: 30th AAAI Conference on Artificial Intel-
ligence.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17.3, pp. 261–272.

Waltman, Ludo and Uzay Kaymak (2008). “Q-learning Agents in a Cournot Oligopoly
Model”. In: Journal of Economic Dynamics and Control 32, pp. 3275–3293.

Watkins, Christopher J. C. H. (1989). “Learning from Delayed Rewards”. PhD thesis.
Cambridge: King’s College, pp. 1–234.

https://www.ft.com/content/9de9fb80-cd23-11e6-864f-20dcb35cede2
https://www.ft.com/content/9de9fb80-cd23-11e6-864f-20dcb35cede2
https://www.newyorker.com/business/currency/when-bots-collude


Eidesstattliche Erklärung 

 

…. 


	List of Tables
	List of Figures
	List of Symbols
	List of Acronyms
	Introduction
	Simulation Setup
	Economic Environment
	Demand
	Collusion Measure
	Price Range

	Pricing Algorithms
	Q-Learning
	Deep Q-Network
	Policy

	Technical Implementation

	Collusion with Limited Time
	The Need for Approximate Learning Methods
	Duopolies with Deep Q-Networks
	Learned Strategies

	Collusion in Wide Oligopolies
	Heterogeneous Pricing Algorithms
	On-Policy vs. Off-Policy
	Fast vs. Slow Learner
	Self-Learning vs. Rule-Based Strategy
	Asymmetric Costs
	Product Differentiation

	Conclusion
	Simulation Parameter
	Additional Simulation Material
	SARSA Algorithm
	References



