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1 Introduction and Motivation

1 Introduction and Motivation

Fridays for Future, the Paris Agreement, carbon taxes - hardly any topic has
been as present in the public and political debate in Germany in recent years as
the issue of climate change. In an attempt to limit the ongoing global warming
and temperature increase to a maximum of 2 °C, as stated in the Paris Agree-
ment in 2015, Germany has committed itself to ambitious climate protection
targets. Compared to 1990, the total greenhouse gas (GHG) emissions are to be
reduced by 40% until 2020, by 55% until 2030 and by at least 80% until 2050
(Umweltbundesamt, 2019). Up until now, Germany has already undertaken a lot
of effort to reach those intended figures. The single most important sector for
GHG emission reductions is energy generation from fossil fuels. By an extensive
promotion of renewable energies via various regulatory instruments as, for exam-
ple, relatively high fixed feed-in tariffs or feed-in priorities over electricity from
conventional energy sources, it was possible to reduce the CO2 emissions in this
sector from 423.9Mt in 1990 to 290.1Mt in 2018 (Umweltbundesamt, 2020). At
the same time, the share of renewable energy in total gross electricity consump-
tion increased from 6.3% in 2000 to 42.1% in 2019 (BMWi, 2019). Nevertheless,
Germany is expected to miss its self-imposed emissions targets in both 2020 and
2030. And although the target regarding electricity consumption from renewables
in 2020 of 35% was met (BMWi, 2020), the expansion of production capacities
of renewable energies has slowed down in the last few years (BMWi, 2019). This
is mostly due to a low number of new constructed wind power plants, especially
onshore wind turbines. The number of new wind turbines in 2019 was actually
the lowest in the last 20 years (Deutsche WindGuard, 2020). Since wind en-
ergy is by far the strongest driver of renewable energies in Germany, contributing
more than 50% to the overall share of renewables in total electricity consump-
tion (BMWi, 2019), this decrease slows down the further expansion of renewable
energy generation significantly.

One of the main reasons for this decline in the capacity expansion of energy
from wind is that the construction of new turbines often meets with resistance.
Although there is high public acceptance among citizens regarding wind energy
in general (FA Wind, 2019), the development of new power plants is often ac-
companied by local protests and lawsuits due to perceived negative externalities
induced by the respective turbines. For example, rotor blades make noise and
may cast shadow flicker on nearby properties, the plants are illuminated to make
them more visible to air traffic at night, and they may negatively affect the vi-
sual landscape they are built in. Therefore, in addition to the affordability of
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1 Introduction and Motivation

the conducted measures, achieving the set emissions targets also depends on the
affected citizens’ acceptance of these measures to a large extent.

In addition to (only) perceived negative effects of wind turbines, a measure of
actual negative externalities and costs induced by these is needed. Since the vi-
sual landscape or unaffectedness from wind turbines are no regular market goods,
they are also not priced as such. In those situations, there are two ways used
to determine such figures: either by stated preferences, e.g. via surveys, or by
revealed preferences. One strategy to uncover revealed preferences is by estimat-
ing hedonic price models and then using the estimates on a specific attribute to
gain insights about how this attribute is valued (Lang et al., 2014). Following
this approach, a useful proxy of external costs of installed wind power plants
can be constructed from their effects on house prices. If the existence of nearby
wind power plants leads to a decrease in properties’ values, this would constitute
an empirically testable explanation for the local resistance often occurring when
planning the construction of new turbines. At the same time, such an estimate
could for example also be used to compensate affected citizens in order to reduce
the faced opposition.

The empirical evidence assessing effects of wind turbines on nearby properties is
mixed. For example, Hoen et al. (2011) use a difference-in-difference approach
to model the price change of houses before and after the construction of wind
turbines in the US and find no significant effects for both visibility of turbines
and proximity to the respective properties. Lang et al. (2014) estimate a hedo-
nic difference-in-difference model with distance bands as variables of interest for
houses in Rhode Island and find no significant effects either. In contrast, using a
similar approach for the Netherlands, Dröes and Koster (2016) estimate a price
decrease of 1.4% for houses within a 2 km radius and no effects for more than
2 km distance. Jensen et al. (2014) try to disentangle visual effects and effects
from noise using techniques from spatial econometrics. They find a negative ef-
fect of up to 3% resulting from visual pollution and a negative effect between 3
and 7% from noise pollution. Furthermore, Gibbons (2015) studies the effects
of wind turbines in England and Wales. The author uses a quasi-experimental
difference-in-difference setting in which he compares a group for which newly con-
structed wind turbines are visible with a group in the same proximity for which
the new power plants are hidden by the surrounding terrain. The analysis reveals
significant negative effects of 5–6% for houses within 2 km, of under 2% between
2 and 4 km and no effects for larger distances than 4 km.
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1 Introduction and Motivation

Focusing on studies for Germany, Sunak and Madlener (2016, 2017) find signifi-
cant negative effects of nearby wind power plants on house prices for three cities
in North Rhine-Westphalia using spatial hedonic pricing models and an indicator
for the visual impact of wind turbines. Further, Frondel et al. (2019) estimate
the effect of wind turbines on property prices with a linear regression model con-
taining property features and locality characteristics as well as local and year
fixed effects in a large sample covering all of Germany. The authors use multiple
distance bands to the nearest wind turbine as their variables of interest and find
significant negative effects, fading out with increasing distance and no effects after
distances larger than 8 km. Additionally, they also report some evidence of effect
heterogeneity. They use a machine learning (ML) model, which utilizes regression
trees to estimate the treatment effects based on observed covariates. The results
from this ML model are used to construct interaction terms in the linear model
in a second step. They find stronger effects for houses built before 1950, and for
properties in rural areas compared to houses in urban surroundings.

All in all, the empirical evidence is ambiguous, however the results are more
strongly pointing towards negative effects of wind turbines on house prices. More-
over, very little is known about effect heterogeneity. The only study, which tries
to provide evidence of varying effects, is by Frondel et al. (2019). Yet, the hetero-
geneity in the cited paper is modeled by simple interaction terms between two of
the covariates and the treatment variables based on information from a preceding
model. However, heterogeneity may work along several dimensions and hence may
not be captured sufficiently by single interaction terms. Thus, a more system-
atic and detailed approach to the estimation of heterogeneous treatment effects
is needed. This master thesis therefore aims to contribute to closing this gap in
the literature. To do so, it is important to analyze if there exists substantial het-
erogeneity in the first place using a more systematic approach. Furthermore, this
thesis aims at providing insights into how treatment effects vary among houses
and which houses are affected the most and the least, and to what extent.

In order to find answers to the above stated questions and objectives, and thus
to improve the understanding of the effects of wind turbines on property prices
in more detail, this thesis proceeds as follows: Section 2 describes and explains
the estimation strategy applied in the empirical analysis. Since this method
heavily relies on machine learning techniques and algorithms, Section 3 provides
a brief overview of the main ideas and principles of this field and introduces the
algorithms used later on. Section 4 illustrates the different data sets used in
the analysis and explains the conducted data cleaning and preprocessing steps.

3



2 Empirical Strategy

Before the results are displayed and examined in Section 6, Section 5 discusses
additional implementation details which must be considered with the use of the
previously explained estimation approach. Section 7 summarizes the results and
concludes.

2 Empirical Strategy

In order to answer the research questions stated in the previous section, a re-
cently developed estimation strategy developed by Chernozhukov et al. (2018)
is utilized. The authors provide an empirical approach to assess heterogeneous
treatment effects (HTE) by estimating key features of the so-called conditional
average treatment effect (CATE) function, which describes average treatment
effects as a function of observed characteristics or covariates. These features
are estimated in two steps: at first, machine learning algorithms are used to con-
struct a proxy predictor of the CATE function, and secondly, this proxy predictor
is used as input to weighted linear regressions in order to identify the parameters
of interest. One of the strengths of this approach is that it makes no (possibly
hard to prove) assumptions about unbiasedness or consistency of the proxy pre-
dictor. Moreover, in contrast to other methods relying on ML for causal effect
estimation, the described strategy comes with statistically valid confidence inter-
vals, and thus allows for valid statistical inference and can be used with any ML
method, therefore it is not limited to a specific kind of algorithm.1

The key features of the CATE function the authors consider are its best lin-
ear predictor (BLP) using the ML proxy, sorted group average treatment effects
(GATES), and the average characteristics of the most and least affected groups,
called classification analysis (CLAN). This chapter describes the estimation pro-
cedure in detail and provides an explanation of the empirical approach used in
this master thesis.2

2.1 Notation and CATE Proxy

Following the causal model of potential outcomes introduced by Rubin (1974), let
D ∈ {0, 1} be a binary variable indicating treatment status and Z be a vector of
1 For methods which also rely on ML methods and algorithms, but are lacking valid con-

fidence intervals see for example Foster et al. (2011); Imai and Ratkovic (2013); Nie and
Wager (2017); Künzel et al. (2019). The estimation strategy developed by Athey and Im-
bens (2016) and Wager and Athey (2018) allows for statistically valid inference, however
can only be used with a specific kind of tree-based algorithms.

2 Sections 2.1 to 2.5 are taken from the project studies thesis submitted on April 04, 2020
with only minor changes and edits.
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2 Empirical Strategy

observed covariates. Y (1) and Y (0) denote potential outcomes under treatment
and under no treatment. The baseline conditional average (BCA) function and
the conditional average treatment effect function are defined as:

b0(Z) := E
[
Y (0) | Z

]
(2.1)

s0(Z) := E
[
Y (1) | Z

]
− E

[
Y (0) | Z

]
. (2.2)

Let D be randomly assigned conditional on the covariates Z and let p(Z) be
the probability of being treated given the covariates, i.e. the propensity score.
Further assume that p(Z) is bounded away from zero and one:

D ⊥⊥ Y (1), Y (0) | Z (2.3)

0 < p(Z) < 1. (2.4)

Assumptions (2.3) and (2.4) are also referred to as the unconfoundedness and
overlap assumptions in various settings (see for example Imbens and Wooldridge,
2009). Using the definitions of BCA and CATE from Equation (2.1) and Equa-
tion (2.2) the outcome function can be written as

Y = b0(Z) + s0(Z)D + U, E[U | Z,D] = 0. (2.5)

The CATE proxy is denoted by S(Z), the estimated BCA function by B(Z).

In order to make inferential statements on the true CATE function s0(Z) based
on the CATE proxy, S(Z) has to be estimated in the first place. To do so, a
separate model is fitted to the outcome in each of both groups using any kind
of ML algorithm. In a second step, these models are used to predict the (hy-
pothetical) outcomes under treatment and no treatment for the pooled sam-
ple of treated and control observations. Thus, the predicted outcome under no
treatment corresponds to the estimated BCA function B(Z). Lastly, the CATE
proxy is constructed by taking the difference between the predicted outcome from
the treatment group model and the predicted outcome from the control group
model.
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2 Empirical Strategy

2.2 Best Linear Predictor

The first key feature of the CATE function Chernozhukov et al. (2018) consider
is its BLP given the ML proxy. The solution to the problem of best linear
approximation of s0(Z) using S(Z) is given by

BLP
[
s0(Z) | S(Z)

]
= β1 + β2

(
S(Z)− E[S(Z)]

)
, (2.6)

with the coefficients

β1 = E
[
s0(Z)

]
and β2 =

Cov
(
s0(Z), S(Z)

)
Var

(
S(Z)

) . (2.7)

The authors show that these coefficients β1 and β2 solving

(β1, β2)
′ = arg min

b1,b2

E
[
s0(Z)− b1 − b2S(Z)

]2 (2.8)

can be identified from the weighted linear regression:

Y = α′X1 + β1
(
D − p(Z)

)
+ β2

(
D − p(Z)

)(
S(Z)− E[S(Z)]

)
+ ε, (2.9)

with X1 =
[
1, B(Z), S(Z)

]′ and weights w(Z) =
[
p(Z)(1− p(Z))

]−1
.3

Since the parameter β1 from this weighted regression is equal to E[s0(Z)], it
corresponds to the average treatment effect. β2, on the other hand, corresponds
to the coefficient of a simple linear regression of s0(Z) on S(Z) and can be utilized
to evaluate how well S(Z) approximates s0(Z) as well as to gain insights about
treatment effect heterogeneity. If β2 = 0, the CATE proxy and the true function
are completely uncorrelated. Additionally, β2 would also be zero if there was
no heterogeneity, and thus s0(Z) was a constant. In contrast to this, β2 6= 0

implies that there is substantial heterogeneity and that it can be predicted by the
proxy S(Z). Therefore, testing for heterogeneous treatment effects corresponds
to testing the hypothesis that β2 6= 0.

2.3 Sorted Group Average Treatment Effects

In addition to the BLP of the CATE function, the authors provide a strategy to
identify groups of observations, which are more or less affected by the treatment,
and to estimate ATEs in those groups. To do this, the observations are first
sorted according to the predicted ML proxy S(Z) and then divided into k non-
overlapping groups G1, G2, ..., GK of arbitrary sizes. They might for example be
3 A proof for the above stated properties can be found in Appendix A.1.
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2 Empirical Strategy

chosen by quantiles of the proxy predictor. The parameters of interest are the
average treatment effects in these groups, called sorted group average treatment
effects (GATES) which are denoted by

γk = E
[
s0(Z) | Gk

]
for k = 1, ..., K. (2.10)

Since the observations are sorted by S(Z), it seems reasonable to assume what
Chernozhukov et al. (2018) call the monotonicity assumption. Monotonicity im-
plies that the GATES increase or decrease with the groups, i.e.

E
[
s0(Z) | G1

]
≤ E

[
s0(Z) | G2

]
≤ · · · ≤ E

[
s0(Z) | GK

]
. (2.11)

These parameters can again be identified by a weighted linear regression using
the same weights as in the estimation of the BLP coefficients from Section 2.2.
Specifically, the regression has the following form:

Y = α′X1 +
K∑
k=1

γk
(
D − p(Z)

)
1(Gk) + ν. (2.12)

As before, X1 may contain a constant, the estimated BCA function B(Z) and
the CATE proxy S(Z). 1 denotes the indicator function being 1 if an observation
belongs to group k. Chernozhukov et al. (2018) show that the coefficients γk from
the weighted linear regression stated in (2.12) can be interpreted as the average
treatment effects in the respective kth group:

γk = E
[
s0(Z) | Gk

]
.4 (2.13)

The resulting GATES can again be used to test for treatment effect heterogeneity
by testing whether

E
[
s0(Z) | G1

]
= E

[
s0(Z) | G2

]
= · · · = E

[
s0(Z) | GK

]
. (2.14)

Rejecting this hypothesis implies that the ATE is not the same in all groups and
that there are at least some groups which differ in terms of their ATEs. Therefore,
a rejection of (2.14) can be interpreted as evidence in favor of heterogeneous
treatment effects.
4 A proof of this statement is provided in Appendix A.2.
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2.4 Classification Analysis

Building on the estimation results from the analysis of GATES as described in
Section 2.3, the construction of groups can further be used to gain insights about
the average characteristics of the corresponding observations. The authors sug-
gest focusing on the most and least affected groups based on the ML proxy. Given
the monotonicity assumption introduced in property (2.11), these are determined
by the groups G1 and GK . This allows for the identification of observations who
are affected the most and the least from the analyzed treatment. This approach is
called classification analysis (CLAN). The target parameters are denoted by

δ1 = E
[
g(Y, Z) | G1

]
and δK = E

[
g(Y, Z) | GK

]
(2.15)

and can be estimated by computing the averages of the observed variables for
the observations from the groups G1 and GK separately. In a second step it
can be tested if those average characteristics differ significantly between the two
groups.

2.5 Estimation Uncertainty and Inference

The estimation strategies described in this section rely on splitting the data into
two approximately equally sized subsamples to avoid overfitting the data, which
else may cause problems using highly flexible ML algorithms. One half of the
data, the auxiliary sample DataA, is used to tune and train the ML models, and
thus to construct the ML proxy, while the other half, the main sample DataM , is
used to actually estimate the parameters of interest. This approach comes with
two sources of uncertainty regarding the estimates: The first one is estimation
uncertainty conditional on the sample split. This is standard in any estimation
procedure and already accounted for by reporting regular standard errors, con-
fidence intervals and p-values. The second source arises from the uncertainty in
the random splitting itself. Different data splits may yield different parameter
estimates, and thus, conditional on the data, the estimates and confidence in-
tervals can still be regarded as random variables. Chernozhukov et al. (2018)
develop methods to also account for such splitting uncertainty, called variational
estimation and inference methods (VEIN). They suggest using many different
data splits and repeating the estimation procedure for each split in order to in-
crease robustness of the results. Specifically, they recommend to report medians
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for each estimated parameter over all data splits. Additionally, they propose to
report confidence intervals of the following form:

[
lower, upper

]
=
[
Med(LowerA | Data),Med(UpperA | Data)

]
. (2.16)

Med and Med are defined as the upper and lower median:5

Med(X) := inf
{
x : Pr(X ≤ x) ≥ 1/2

}
(2.17)

Med(X) := sup
{
x : Pr(X ≥ x) ≥ 1/2

}
and (2.18)

Med(X) :=
(
Med(X) +Med(X)

)
/2. (2.19)

Further, the confidence level is discounted from 1−α to 1−2α to account for the
splitting uncertainty. The authors also develop adjusted p-values for hypothesis
testing. Using those p-values, a null hypothesis is rejected at significance level α
if for at least 50% of the data splits the p-values conditional on the specific split
are below α/2:

Pr
(
pA ≤ α/2 | Data

)
≥ 1/2 or p.5 = Med

(
pA | Data

)
≤ α/2. (2.20)

The p-values p = 2p.5 are then called sample splitting-adjusted p-values. Apply-
ing these VEIN methods to adjust the obtained confidence intervals and p-values
allows to account for the additional uncertainty induced by data splitting. Cher-
nozhukov et al. (2018) are the first authors to develop such methods.

2.6 Choosing the Best ML Method

In addition to the estimation details, the authors also provide auxiliary infor-
mation on how to choose which ML should be used for constructing the CATE
proxy. For this purpose, they derive information criteria for both steps, estimat-
ing the BLP as well as estimating the GATES parameters, which can be used as
an indicator on how well the proxy approximates the true CATE function.

Specifically, the authors propose to choose the ML algorithm which maximizes:

Λ := |β2|2Var[S(Z)], (2.21)

with β2 being the HTE coefficient from the BLP estimation. They further note
that this is the same as maximizing the correlation between the ML proxy S(Z)

and the true CATE function s0(Z).

5 For example, if X is uniform in {1,2,3,4,5,6}, then Med(X) = 3 and Med(X) = 4.
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3 Machine Learning: Overview and Algorithms

Alternatively, the best ML method can also be found by considering the following
criterion:

Λ = E

[ K∑
k=1

γk1(S ∈ Ik)
]2

(2.22)

=
K∑
k=1

γ2kPr(S ∈ Ik), (2.23)

with γk being the GATES parameters. Maximizing this term corresponds to max-
imizing the R-squared of a regression of the true function s0(Z) on the demeaned
proxy S(Z), thus leaving out the constant term.

By simply applying multiple ML algorithms to the data and estimating all the
parameters, these criteria can then be used to choose the method which yields
the best approximation, and thus the most accurate and credible results.

3 Machine Learning: Overview and Algorithms

Since the empirical analysis conducted in the context of this master thesis heavily
relies on models and algorithms from the field of machine learning, this section
provides an introduction to and overview of this topic. At first, Section 3.1
introduces the main concepts and general ideas of ML as well as basic terminology.
In general, there are no theoretical and practical results, which imply that a
specific algorithm outperforms every other algorithm or method for any dataset
(Athey and Imbens, 2019). Therefore, the analysis in this thesis utilizes multiple
algorithms to construct the CATE proxy, and then the best performing method is
chosen according to the criteria stated in Section 2.6. The remaining sections thus
provide an overview of the specific algorithms and methods used later on.

3.1 Main Concepts and Ideas

The term machine learning refers to a broad set of techniques and methods used
to estimate functions or detect patterns in data without explicitly programming
rules or making assumptions about the functional form in advance (see for ex-
ample James et al., 2013). ML can be divided into two main areas: supervised
and unsupervised learning. Unsupervised learning comprises algorithms that are
constructed to find distinct groups based on observed characteristics and to clus-
ter the data accordingly, whereas supervised learning uses a set of covariates
to predict an observed outcome. Supervised learning can further be divided
into regression and classification problems, i.e. building models that either pre-
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3 Machine Learning: Overview and Algorithms

dict continuous outcomes or classify observations into distinct categories (Varian,
2014).6 In contrast to the field of econometrics, which is mostly concerned with
the consistent and unbiased estimation of parameters of interest in order to iso-
late causal effects, ML focuses primarily on prediction problems. One of its main
goals is to construct, or train, models and estimators that generalize well and that
have high predictive power, even for new, unseen data (Mullainathan and Spiess,
2017). Therefore, ML relies on out-of-sample predictive power as a goodness-of-fit
measure rather than in-sample measures, as for example R-squared (Athey and
Imbens, 2019). The data sets the ML models are fitted on are called training data
or training sets, while the data used for assessing the out-of-sample performance
is called test data or test set.

Since the functional form of the estimated models is usually not set in advance
and has to be inferred from the data, ML algorithms often are able to fit highly
flexible functions resembling the input data very closely. However, such models
usually suffer from poor predictive performance since they do not only capture
the systematic information provided by the covariates or predictors, but also pick
up all the specific characteristics and noise as well (Mullainathan and Spiess,
2017). In ML parlance, this is called overfitting. In order to generalize well, a
model needs to be able to produce predictions with only small errors for new
data. It can be shown that the expected prediction error, more specifically the
mean squared error (MSE), can be decomposed into a sum of three components:
an irreducible error, the squared bias of the estimator, and its variance. Let Y be
the target in a regression setting with Y = f(x) + ε, E[ε] = 0 and Var[ε] = σ2

ε .
f̂(x) denotes the fitted estimation function for Y . The expected test set MSE is
then given by:

E
[
(Y − f̂(x))2

]
= Var[f̂(x)] + Bias[f̂(x)]2 + Var[ε]. (3.1)

In ML, the term bias refers to the amount by which the average of an estimate
deviates from the true mean, while the term variance specifies how sensitive the
estimator is to the specific training sample (James et al., 2013). In order to con-
struct models that produce decent estimates for new data, both the bias and the
variance should be as small as possible. However, highly flexible models tend
to have low bias at the expense of higher variance, while less complex models
achieve a low variance, but result in higher bias. Therefore, minimizing the ex-
6 Since the ML algorithms in the context of this master thesis are applied in regression

settings only, they are also explained with regard to regression tasks. All of these methods
however work analogously in classification settings with some tweaks and changes in the
optimization functions and mathematical details, however the basic ideas and concepts
still hold.

11



3 Machine Learning: Overview and Algorithms

pected test MSE results in the conflict of simultaneously minimizing the bias and
the variance of an estimator. Since a decrease in one property often leads to an
increase in the other, this is also called the bias-variance trade-off. Whether a
more flexible model would improve or worsen the out-of-sample prediction per-
formance in comparison to a less flexible model therefore depends on the relative
rate of change of the bias and variance.

In order to find models that are still able to detect possible nonlinearities, but
do not suffer from too high variance, most ML algorithms use some form of reg-
ularization (Athey, 2018). Regularization can be thought of as a penalty term
for excessive model complexity (Varian, 2014). The amount of regularization
depends on the specific algorithm and is often determined by so-called hyperpa-
rameters. In contrast to the model parameters, which can be directly estimated
from the data, such hyperparameters must be set manually in advance (Mul-
lainathan and Spiess, 2017). These hyperparameters can either be chosen using
heuristics or, which is standard in applied ML, can be explicitly determined in
a data-driven manner, using out-of-sample predictive performance of the model
(Athey and Imbens, 2019). One of the most frequently applied techniques to do
so is called k-fold cross-validation (CV). In k-fold CV, the data is first split into
k subsamples or folds. The hyperparameters are fixed and the model is fitted
to all the data from k − 1 folds. Subsequently, the model is used to predict the
outcome for the data from the k-th fold, which is not used to train the model,
and a measure of error between predicted and actual values is computed. The
procedure is repeated until all folds have been used as test data sets. This iter-
ative approach then results in k error measures which are averaged to obtain a
single measure of error. Eventually, the whole process is repeated with different
hyperparameter settings in order to find those parameters that result in the low-
est error, and thus in the best predictive properties for unseen data. This way
of empirically searching for the best hyperparameters by testing the models’ out-
of-sample prediction performance is also called hyperparameter tuning or model
tuning. Common values for the number of folds k are 5, 10 or n− 1, also called
leave-one-out CV (Varian, 2014).

Based on the above stated points, Mullainathan and Spiess (2017) provide the
following summary for most ML methods: a ML algorithm usually consists of a
function class F and a regularizerR(f) specifying the complexity of a model. The
estimation and selection of the final model constitutes a two-step approach: First,
conditional on the chosen hyperparameters, the model is fitted by minimizing
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some error or loss-function. And second, the optimal level of regularization is
estimated using empirical out-of-sample testing and tuning.

3.2 Regularized Linear Models

The first class of ML methods considered in more detail and applied in the esti-
mation later on are regularized linear models. The traditional method in econo-
metrics used to estimate coefficients in linear models is by minimizing the sum
of squared residuals, i.e. the squared deviations between predicted and actual
values. This approach is known as ordinary least squares (OLS) estimation and,
considering N observations and P predictors or regressors, yields the following
minimization problem:

β̂OLS = arg min
β

{ N∑
i=1

(
Yi − β0 −

P∑
j=1

xijβj
)2}

. (3.2)

A commonly used approach to regularize linear models is to impose complexity
constraints on the size and the number of the coefficients β in order to penalize
more complex models. The aim of this technique is to add a small bias to the
model compared to standard linear regression in order to reduce the variance
by more than the additional bias, which then results in a decrease of the to-
tal expected out-of-sample test error. The coefficients of such regularized linear
models solve minimization problems of the following form (Athey and Imbens,
2019):

β̂ = arg min
β

{ N∑
i=1

(
Yi − β0 −

P∑
j=1

xijβj
)2

+ λ
P∑
j=1

|βj|q
}
. (3.3)

λ denotes a hyperparameter controlling the amount of regularization. Two com-
mon choices for q are q = 1 and q = 2. For the case of q = 2 such linear models
are also called ridge regression and the coefficients solve:

β̂ridge = arg min
β

{ N∑
i=1

(
Yi − β0 −

P∑
j=1

xijβj
)2

+ λ

P∑
j=1

β2
j

}
. (3.4)

Due to the quadratic penalty added to the loss function, large coefficients are
strongly penalized. This leads to a decrease in the magnitude of the coefficients,
they are shrunk towards zero. Because of this property, regularized linear mod-
els that optimize objective functions as stated in Equation (3.3) are also called
shrinkage methods (James et al., 2013). Shrinking the coefficients towards zero
makes the fitted model less sensitive to the specific data, and thus the model less
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likely to overfit. The hyperparameter λ determines the intensity of the coefficient
shrinkage; high values of λ lead to stronger shrinkage. With λ = 0, the ridge
regression simply corresponds to linear regression via OLS.

Another common choice for q is q = 1. In this case, the coefficients are obtained
by solving the minimization problem

β̂LASSO = arg min
β

{ N∑
i=1

(
Yi − β0 −

P∑
j=1

xijβj
)2

+ λ
P∑
j=1

|βj|
}
. (3.5)

This approach is also called the least absolute shrinkage and selection opera-
tor (LASSO). Similar to ridge regression, the LASSO also leads to shrinkage of
estimated parameters towards zero. However, while coefficients from ridge regres-
sions can only approximate zero, coefficients obtained from LASSO regressions
can be set to be exactly zero if the hyperparameter λ is sufficiently large (Hastie
et al., 2009). Therefore, the LASSO can also be used for variable selection and
may result in sparse solutions, i.e. coefficient matrices with many entries being
exactly zero (Varian, 2014). This property makes the LASSO an attractive al-
gorithm in very high dimensional settings with more variables than observations
(Tibshirani, 1996). Due to the choices for q, the ridge constraint is also called
L2-penalty, while the constraint imposed on the minimization problem solved by
the LASSO is called L1-penalty.

However, compared to ridge regression, the LASSO has got some limitations
and drawbacks. For example, if there are groups of correlated variables in the
data, it usually selects one of those variables kind of randomly, without caring
which of the variables actually enters the model. Furthermore, in settings with
highly correlated predictors, ridge regression tends to outperform the LASSO
(Zou and Hastie, 2005). In order to mitigate such issues but prevail the LASSO’s
advantages at the same time, Zou and Hastie (2005) developed the elastic net
algorithm. This algorithm combines both the ridge regression L2-penalty and the
LASSO L1-penalty. The obtained coefficients solve the following minimization
problem:

β̂enet = arg min
β

{ N∑
i=1

(
Yi − β0 −

P∑
j=1

xijβj
)2

+ λ
P∑
j=1

(
αβ2

j + (1− α)|βj|
)}
. (3.6)

All the before mentioned methods, standard linear regression, ridge regression and
the LASSO, can be seen as special cases of elastic net regression. With λ = 0,
the elastic net simply becomes linear regression with OLS. For α = 1, the elastic
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net corresponds to ridge regression and for α = 0 it equals the LASSO. Elastic
net regression is also able to set coefficients to zero, and thus to perform variable
selection (Varian, 2014). Doing so, the sparsity of the solution found by the elastic
net increases with α → 1. In contrast to the LASSO however, elastic net does
not suffer from randomly choosing a single variable from a group of correlated
predictors and ignoring the rest. Instead, it assigns highly correlated predictors
very similar coefficients and selects all variables from the specific group.7 This
characteristic is called groupwise selection. For α = 1− ε with very small ε > 0,
the solution is similar to the solution obtained using LASSO regression, but
only the elastic net preserves the groupwise selection property (Friedman et al.,
2010).

Due to its strengths and advantages compared to both ridge regression and
LASSO regression, especially its high predictive power, the elastic net is cho-
sen as the first ML algorithm to construct the CATE proxy in this thesis.

3.3 Tree-based Methods

In the next section, two ML algorithms are introduced which are based on de-
cision trees. Thus, the basic concept and idea of decision trees is illustrated at
first, followed by an explanation of two algorithms using such decision trees and
additional techniques for the construction of prediction models: Random forests
and the XGBoost algorithm.

3.3.1 Decision Trees

Decision trees were introduced by Breiman et al. (1984) to be used in both re-
gression and classification settings, thus being called classification and regression
trees. In contrast to the regularized linear models explained in the previous sec-
tion, they belong to the family of non-parametric methods. Decision trees, and
tree-based methods in general, are used to partition the covariate space of some
input data into distinct, non-overlapping regions and estimate a simple model for
the outcome in each of those, usually the average of outcomes over all observations
in that specific region (Athey and Imbens, 2019).

To get an understanding of how the trees are constructed, or grown, assume that
there is some input data with N observations consisting of a continuous outcome
y and p predictors, i.e. (xi, yi) for i = 1, 2, . . . , N and xi = (xi1, xi2, . . . , xip).8

7 For negatively correlated predictors the coefficients differ only in terms of their sign.
8 The notation used in this subsection borrows from Hastie et al. (2009).
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The goal is to divide the whole dataset into J regions RJ , such that the sum of
squared residuals (RSS) is minimized, i.e.:

min
J∑
j=1

∑
i:xi∈Rj

(yi − ŷRj
)2. (3.7)

Since it is computational infeasible to examine every single possible partition of
the predictor space, a top-down approach called recursive binary splitting is used
instead. It is referred to as top-down because the algorithm starts at the top of
the tree, the so-called root, and from there splits the data into multiple subgroups
using binary splitting along the covariates. At the root, the whole sample still
belongs to a single region and the total RSS amounts to

RSSroot =
N∑
i=1

(yi − ȳ)2, (3.8)

with ȳ =
1

N

N∑
i=1

yi. (3.9)

From there, the sample is split into two subsamples. These splitting points are
called nodes or internal nodes. Previous nodes are referred to as parent nodes,
succeeding nodes as child nodes. The final nodes the observations end in are called
terminal nodes or leaves. At each node, the splitting criterion is chosen in such a
way that the partition into the new regions results in the largest possible reduction
in the RSS. Thus, at the root node the algorithm searches for the predictorXj and
a threshold value s to divide the data into two regions R1(j, s) = {X | Xj < s}
and R2(j, s) = {X | Xj ≥ s} such that∑

i: xi∈R1(j,s)

(yi − ȳR1)
2 +

∑
i: xi∈R2(j,s)

(yi − ȳR2)
2 (3.10)

is minimized, with ȳR1 and ȳR2 being the average outcomes in the two regions
(Athey and Imbens, 2019). The threshold value s is found by first sorting the
observations along each predictor and iteratively splitting the sample at each
observed value. The reductions in RSS are calculated and finally, the specific split
resulting in the largest RSS reduction is chosen. This binary splitting procedure
is then repeated for any such constructed subsample, until some kind of stopping
criterion is reached, which is typically after the number of observations in all
leaves falls below a predefined minimum. At each node, the best split is chosen
according to the reduction of RSS at this specific split, without looking for splits
which might result in lower overall RSS at subsequent splitting points. Therefore,
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recursive binary splitting is also called a greedy top-down approach (James et al.,
2013). When the stopping criterion is reached and the tree is grown, predictions
for new observations are then made by simply predicting the mean outcome of
all training observations from the region Rj the new datapoint falls into (Athey
and Imbens, 2019).
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(b) Partition Plot

Figure 1: Visualization of a regression tree and the according partition plot

Figure 1 shows an example of a simple regression tree predicting house prices in
$ 1,000 using an indicator of the houses’ overall quality (OverallQual), ranging
from one to ten, and its total area in square feet (TotalSF).9 The whole sample
is first split based on the variable OverallQual and the threshold of 7.5, thus
houses with higher quality are assigned right and houses with lower quality are
assigned left (Figure 1a). The sample is then further split based on similar binary
splitting rules. The terminal nodes contain the predicted house value for the (new)
observations being assigned to the respective leaf. The percentage numbers below
the leaves give the fraction of training observations assigned to the specific region.
Figure 1b plots TotalSF against OverallQual and shows the partitioning and the
predicted values resulting from the tree illustrated in Figure 1a.

Since both, the final predictions produced by decision trees as well as all splits
depend on the splits constructed before, regression trees constitute a highly in-
teractive function class (Mullainathan and Spiess, 2017). This may easily lead to
overfitting when using many splits, and thus to very large trees. In general, the
9 The data used for this illustration is a cleaned and reduced version of a dataset provided

in the context of a well-known data science competition from the website www.kaggle.com
and was retrieved via the following link: https://bit.ly/2OejeBI.
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lower the number of splits, the lower the variance of the tree, but the higher the
bias. One approach to decision tree regularization would be to stop further split-
ting the subsamples, when the RSS reduction from a considered split is smaller
than some predefined threshold. However, this may lead to missed subsequent
splits resulting in error reductions which are larger than this threshold (Hastie
et al., 2009). To prevent this, at first a large, fully grown tree is constructed
and then cut back by removing some of the internal nodes. This technique is
called tree pruning. The most common approach to prune decision trees is by
applying cost complexity pruning or weakest link pruning. Let T0 denote a large
tree, grown until some stopping criterion is met, e.g. a minimum terminal node
size, and let T ⊂ T0 denote a subtree obtained from pruning T0. Further, let
m denote the terminal nodes partitioning the sample into regions Rm, Nm the
number of observations in leaf m and |T | the number of terminal nodes in tree
T . The average in-sample error in every leaf is then given by:

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ȳRm)2. (3.11)

Cost complexity pruning then finds the subtree T ⊂ T0 that minimizes the cost
complexity criterion given by:

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |. (3.12)

Here α constitutes a hyperparameter regularizing the complexity and size of the
decision tree. Large trees have a higher number of terminal nodes |T |, and thus are
penalized more strongly. Intuitively, the additional error reduction from further
splitting, and hence a higher number of terminal nodes |T |, must be larger than
the penalty resulting from that additional leaf. Therefore, the cost complexity
criterion induces a trade-off between complexity as well as in-sample fit and the
generalizability of the estimator (Hastie et al., 2009). Large α-values tend to
produce smaller trees, while smaller values result in larger trees. For α = 0, T
will be equal to the fully grown tree T0.

In general, decision trees have the advantage that they can easily be explained to
others as well as interpreted due to their visual structure resembling a tree with
binary decisions (see also Figure 1). The predicted values for new data are simply
the average of training data outcomes in the leaf, in which the new observations
fall into. However, single decision trees usually suffer from relatively low pre-
dictive power compared to other more sophisticated ML methods. Additionally,
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although easily explainable, they have no causal interpretation. Covariates that
appear at the first splitting points do not necessarily have a causal effect on the
outcome, but may only be highly correlated with the outcome and other vari-
ables, which are themselves strongly associated with the target variable (James
et al., 2013).

3.3.2 Random Forests

In order to increase the predictive power of decision trees, Breiman (2001) de-
veloped an algorithm called random forests (RF). This algorithm builds on a
technique introduced earlier by Breiman (1996), called bagging, and applies it to
decision trees. Assume there is a learning set L, consisting of N observations with
predictors xn and outcome yn and a predictor for y denoted ϕ(x,L). Further,
suppose there is a sequence of learning sets {Lk}, consisting of N independent
observations drawn from the same distribution as L. The goal of this approach is
to use the sequence of sets {Lk} to construct a better predictor ϕ(x,Lk) than the
predictor from the single set ϕ(x,L). In a regression setting this can be achieved
by replacing ϕ(x,L) with the expectation of the sequence of predictors learned
from {Lk}:

ϕA(x) = EL[ϕ(x,Lk)]. (3.13)

Usually, there are no replicated learning sets from the same distribution as L,
thus Breiman (1996) proposes to imitate such replicates by repeatedly sampling
N observations from the original learning set with replacement, known as boot-
strapping.10 Thus, the sequence of learning sets {Lk} is replaced by bootstrapped
learning sets denoted {L(B)}, and the new predictor is the average of the boot-
strapped predictors over all samples:

ϕB(x) = avB ϕ(x,L(B)). (3.14)

Since this new predictor is constructed using both bootstrapping and aggregat-
ing multiple predictors, this approach is called bootstrap aggregating, or bag-
ging.

Breiman (1996) shows that improving the predictive power by the use of bagging
critically depends on the stability of the procedure of constructing the predictors
ϕ(x,L). If changes in L result in small changes of the predictor only, ϕB(x)

will be close to ϕ(x,L) and hence not generate large enhancements. Thus, the
10 For further information regarding the bootstrap see for example Efron and Tibshirani

(1994).
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biggest improvements can be achieved for unstable procedures. In other words,
algorithms with high variance would benefit the most from bagging. As stated
in the previous section, decision trees, especially without pruning, are predictors
with very high variance, but low bias, thus being a natural choice to be combined
with bagging. Breiman (2001) therefore extends his idea of bagging to decision
trees, resulting in a large number of single trees from bootstrapped samples form-
ing a forest. The author shows that the generalization error and therefore the
predictive power of the algorithm depends on two properties: low error trees and
a low correlation between the individual trees. In order to achieve such low error
trees, RFs utilize fully grown and unpruned trees, resulting in high variance, but
low bias of the trees. All trees grown using bagging are identically distributed
(i.d.). Therefore, the average over all trees is identical to the expectation of each
single tree. Thus, the bias of each tree is the same as the bias of the bagged
trees.11 Since the expected MSE can be decomposed into an irreducible error,
the squared bias and the variance (see also Section 3.1), bagging the decision
trees increases the estimator’s performance only if the variance decreases. The
variance of the average of trees is given by

ρσ2 +
1− ρ
B

σ2, (3.15)

with B denoting the number of trees in the forest and ρ denoting their correlation.
For an increasing B, the second term of Equation (3.15) approaches zero, and
thus the increase in predictive power is limited by the correlation between the
decision trees (Hastie et al., 2009). In addition to bagging, the RF algorithm
therefore aims at further decorrelating the individual trees. Building on work
and ideas from Amit and Geman (1997), Breiman (2001) proposes that the single
trees should not consider all p predictors, but only use a random subset of m ≤ p

predictors at each node. This is especially useful for decorrelating trees in datasets
with one or few very strong predictors of the outcome. If every tree could access
the whole predictor space, most of them would split the sample based on these
variables early on, resulting in very similar trees (James et al., 2013). In regression
settings, it is often recommended to set m = p/3 and grow trees until a minimum
node size of 5 observations is reached. However, these parameters may also be
treated as hyperparameters, and thus tuned using CV (Hastie et al., 2009). The
higher m, the more predictors are used and the lower becomes the error of each
single tree, but the higher gets the correlation between these. Thus, the choice
of m again implies a trade-off. Since the trees should be uncorrelated, a very
11 As a reminder: bias refers to the amount by which the average of an estimate deviates

from the true mean. Since all trees are i.d., the bias is the same for each one of the trees.
Thus, the average of all biases is just the bias of each single one of these trees.
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large number of trees usually does not lead to overfitting. Therefore, the number
of trees in a forest can either be set to be sufficiently large, or also be tuned
(Breiman, 2001).

When making predictions with RFs, the algorithm simply outputs the average
value of all predictions made by the single trees in the respective forest. Let Θb

denote the characteristics of the b-th decision tree T (x,Θb) in the RF with regard
to the splitting variables and thresholds, the leaves, and the values in the leaves.
In a RF with B trees the predictions are then given by:

f̂BRF (x) =
1

B

B∑
b=1

T (x,Θb). (3.16)

3.3.3 Gradient Boosting and XGBoost

Another technique to increase the predictive properties of a single regression tree
was introduced by Friedman (2001). The author first proposed boosting as a
general-purpose technique, which can be used in combination with any learner
and any differentiable loss-function L(y, F (x)). The idea behind boosting is to
approximate an optimal function

F ∗(x) = arg min
F (x)

E[L(y, F (x))] (3.17)

through an additive regression model constructed by sequentially fitting simple
functions, called weak or base learners, to pseudo-residuals from a previous weak
learner in M steps:

F (x) =
M∑
m=0

βmh(x, am). (3.18)

h(x, am) denotes the base learners, fitted to predictors x with parameters am,
and βm is called the expansion coefficient. Friedman (2001) also introduces the
special case of regression trees as base learners and a quadratic loss-function
L(y, F (X)) = (y−F (x))2/2. Here, βm denotes the output values in the leaves, and
h(x, am) becomes h(x,Θm), with Θm being the characteristics of a base learner,
i.e. the splitting rules as well as terminal nodes and values in the leaves.
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Approximating F ∗(x) is described as an iterative process. Let {(xi, yi)}Ni=1 denote
data on predictors and outcomes from N observations. At first, the model is
initialized with a constant γ which solves:

F0(x) = arg min
γ

N∑
i=1

L(yi, γ). (3.19)

In this case, γ is just the average of all observed outcomes. For each step m =

1, . . . ,M at first the negative derivative of the loss-function is calculated with
respect to the model at the current step:

ỹim = −

[
∂L(yi, F (xi)

∂F (xi))

]
F (x)=Fm−1(x)

. (3.20)

Using the above stated quadratic loss-function, ỹim corresponds to the difference
between the observed and the predicted values from the model in the previous
iteration, also called pseudo-residuals. In a next step, a new regression tree is
fitted to these pseudo-residuals and Rlm terminal regions are defined. The output
values γlm of each of the L leaves of this new regression tree are then determined
by minimizing the loss in each leaf:

γlm = arg min
γ

∑
xi∈Rlm

L(yi, Fm−1(xi) + γ), (3.21)

with Fm−1 being the predicted value in stepm−1. With the squared loss-function,
the γ-values minimizing this objective are again simply the averages of values in
the leaves as in standard regression trees.

This process of iteratively fitting new regression trees to the residuals from previ-
ous trees can easily lead to overfitting, and thus it requires some form of regular-
ization as well. Friedman (2001) discusses two potential factors for regularizing
boosted trees. Firstly, the risk of overfitting increases with the number of boost-
ing iterations, i.e. in M . In addition to that, the author recommends using
what he calls shrinkage. Instead of adding the γlm-values from equation (3.21) to
the prediction from the previous step, each update of F (x) is scaled by a scalar
0 < ν ≤ 1, i.e. at each iteration Fm(x) is updated in such a manner that

Fm(x) = Fm−1(x) + ν γlm 1(x ∈ Rlm). (3.22)

ν thus determines the rate at which the model’s prediction is updated. In other
words, ν determines how fast the model "learns" the specific characteristics of the
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data and is therefore also called learning rate. The number of iterations M and
the learning rate ν are hyperparameters and can be chosen by CV. Low values of
ν usually require a higher number of boosting iterations to yield a sufficient fit to
the data. Moreover, Friedman (2001) shows in simulations that low learning rates
of ν ≤ 0.1 result in a better predictive performance of the estimator. However,
since low ν requires high M , this approach increases the computational cost of
the algorithm.

Expression (3.20) is also known as the gradient, therefore, this algorithm is also
called gradient boosting. In a subsequent paper, Friedman (2002) further ex-
tends the idea of gradient boosted regression trees. Motivated by the work from
Breiman (1996) on bagging and Breiman (2001) on RFs, the author adds an ap-
proach, which is similar to bagging, to gradient boosted trees. However, instead
of considering a random subset of predictors at each node, only a random subset
of Ñ < N observations is considered in every iteration. Thus, Friedman (2002)
incorporates row subsampling instead of column subsampling into his algorithm.
Due to the randomness induced by row subsampling, this algorithm is called
stochastic gradient boosting. The smaller the fraction f = Ñ/N of considered
rows for each tree, the higher the variance of the base learners. However, low f

reduces computation time of the algorithm, since the trees are fitted to smaller
subsamples. Friedman (2002) finds that stochastic gradient boosting improves
the predictive power substantially compared to standard gradient boosting and
recommends values of 0.5 ≤ f ≤ 0.8 for regression settings.

A recently developed algorithm building on the idea of boosted regression trees
called XGBoost (Chen and Guestrin, 2016) received a lot of attention in the last
few years.12 Similar to standard boosting, XGBoost builds additive models on
the (pseudo-)residuals of previous estimators, however it utilizes non-standard
regression trees. At first, the model is initialized with a constant prediction for
every observation, and then regression trees are additively and iteratively trained
on the residuals. When growing a new tree in iteration t, the algorithm uses a
regularized loss-function:

L(t) =
N∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), (3.23)

with Ω(ft) = γT +
1

2
λw2. (3.24)

12 For example, many data science and prediction-related online competitions could be won
using the XGBoost algorithm. The authors state that out of 29 competition winning
solutions on the data science competitions website kaggle, 17 used XGBoost alone or in
combination with other algorithms (Chen and Guestrin, 2016).
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w denotes the output values from the leaves of the new tree, T the number of
leaves in a tree. γ and λ are hyperparameters and regularize the complexity
of the tree. The above stated equation is minimized using second-order Taylor
approximation13, which then leads to the following objective:

L(t) =
T∑
j=1

[(∑
i∈Ij

gi
)
wj +

1

2

(∑
i∈Ij

hi + λ
)
w2
j

]
+ γT, (3.25)

where gi denotes the first derivative of the loss-function at xi with respect to the
output values, hi denotes the second derivative, and wj the output value from the
j-th leaf. The values for wj minimizing equation (3.25) are then given by:

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

. (3.26)

In regression settings squared-loss L(yi, f(x)) = (yi − f(x))2/2 is used, such that
gi are just the negative residuals, and hi = 1 for all observations. Therefore, the
optimal output values are given by the sum of squared residuals divided by the
number of observations in each leaf plus the regularization parameter λ. If λ = 0,
this is just the average of residuals in the leaf, for λ > 0, the optimal output
values are shrunken towards zero.

Using the expression for w∗j and plugging it into equation (3.25) yields a scoring
function for each tree with characteristics q:

L(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (3.27)

In addition to λ, γ is another regularization parameter and penalizes larger trees,
hence it also prevents the trees from overfitting the data. Moreover, XGBoost
also utilizes column or feature subsampling as used in RFs, as well as shrinkage
by the use of a learning rate η as in stochastic gradient boosting developed by
Friedman (2002).

As depicted before in the case of decision trees, it is computationally not feasi-
ble to examine every possible tree structure, therefore greedy binary splitting is
used here as well. However, in contrast to other algorithms, XGBoost uses what
the authors call an approximate greedy algorithm. Instead of looking for the
optimal splitting value among all observed predictor values, the algorithm only
13 For more details in the context of boosting see for example Friedman et al. (2000).
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uses quantiles as possible splitting point candidates.14 This approximate greedy
split finding leads to a significantly reduced computation time, especially for large
datasets. In combination with some other optimizations regarding computation,
as for example utilizing and saving intermediate results in the CPU cache, this
enables a very efficient and fast boosting algorithm. Due to these reasons and its
success in recent years among many practitioners, XGBoost is used as an example
of a boosting algorithm in this thesis.

3.4 Neural Networks

The last class of algorithms introduced in this section and applied in the empirical
analysis of this thesis, are neural networks. While there is a high number of
different architectures and methods to construct neural networks, this section
focuses on feedforward neural networks. Such networks consist of at least three
layers: an input layer, at least one hidden layer and an output layer. Each of
these layers is composed of a number of elements called nodes or neurons and
each node is connected to every node in the subsequent and the previous layer.
Neural networks are able to perform classification as well as regression tasks. The
number of output nodes is chosen according to the specific prediction problem at
hand. Since the goal of regression is to predict a numerical value for some input
data, in such settings the output layer consists of a single node (Hastie et al.,
2009).

In a first step, the inputs from the training data are forwarded to the nodes in
the hidden layers as linear combinations. Each input enters every node with a
possibly different weight. In the neurons a weighted sum of the predictors is
calculated and used as input to a so-called activation function. Moreover, in each
node an additional constant is added to the weighted sum before entering the
function, called bias. The value given by the activation function, also called a
neuron’s activation, is then again used as (weighted) input to the neurons in the
next layer. The weights and biases are the model parameters which are learned
from the training data (Hastie et al., 2009). To facilitate the understanding of
how neural networks are designed, Figure 2 illustrates the architecture of a simple
feedforward neural network consisting of an input layer, two hidden layers and an
14 The quantiles evaluated as splitting thresholds do not correspond to regular quantiles,

but are based on the sum of weights given to observations instead of the number of the
observations in each bin. Those weights are found by another special algorithm developed
by the authors called weighted quantile sketch. They are equal to hi and thus equal 1
for all n = 1, . . . , N in regression settings. However, in classification tasks, this algorithm
assigns higher weights to low confidence predictions, making such observations less likely
to end up in the same leaf and receive the same output value (Chen and Guestrin, 2016).

25



3 Machine Learning: Overview and Algorithms

Hidden Layers Output LayerInput Layer

Output

X2

X1

X3

X4

X5

Weights
w1

Bias
b1

Weights
w2

Bias
b3

Weights
w3

Bias
b2

Figure 2: Feedforward neural network architecture with 2 hidden layers, taken
and adapted from Nielsen (2015)

output layer with a single output neuron. There are numerous possible activation
functions which can be used in the neurons of neural networks. The most common
choice is the so-called sigmoid function which is just the logistic function:

σ(z) =
1

1 + e−z
. (3.28)

σ denotes the activation function, while z denotes the weighted sum of J inputs
plus the bias b:

z =
J∑
j=1

(wjxj + b). (3.29)

For regression tasks, the activation function in the output neuron is usually chosen
to be the identity function (Hastie et al., 2009).

When learning the model parameters, i.e. the weights and biases for each link and
neuron at each step, neural networks usually rely on two techniques: (stochastic)
gradient descent and backpropagation. Gradient descent is a general-purpose
technique to optimize differentiable functions in an iterative way. Let C(v) denote
a differentiable function, which is to be minimized. For simplicity, assume that
v = v1, v2, however the following also holds for the general case. The change
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in this function, induced by changes in its parameters, is given by the vector of
partial derivatives of C(v), also called the gradient vector and denoted ∇C:

∇C =

(
∂C

∂v1
,
∂C

∂v2

)T
. (3.30)

The actual change in C can then be expressed as:

∆C =
∂C

∂v1
∆v1 +

∂C

∂v2
∆v2 (3.31)

∆C = ∇C ∗∆v. (3.32)

Now suppose that ∆v is chosen such that:

∆v = −η∇C, (3.33)

with η being a small, positive number. Then Equation (3.32) becomes

∆C = −η ‖∇C‖2 . (3.34)

Since ‖∇C‖2 ≥ 0, this ensures that the change in C(v) is always negative for
changes in v1, v2 as stated in equation (3.33). Building on these results, in order
to minimize the function C(v), its parameters are iteratively updated according
to the following equation:

v → v′ = v − η∇C. (3.35)

The parameter η determines the amount of how much the parameters are updated,
and thus controls the speed of the function being minimized as well as the number
of steps needed to reach a minimum. Due to these properties, η is also called
learning rate (Nielsen, 2015). This learning rate is usually chosen using CV.

In neural networks, the cost-function to be minimized most of the time corre-
sponds to quadratic loss when used for regression tasks:

C(w, b) =
1

2n

∑
x

(y − f(x))2, (3.36)

with n being the number of observations and f(x) the output from the neural
net for given input data x. Since the objective function is a sum over all train-
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ing observations, computing the gradient corresponds to computing the partial
derivative for each observation, i.e.

∇C =
1

n

∑
x

∇Cx. (3.37)

Calculating ∇Cx is computationally very expensive. In order to decrease the
amount of computation, an approach called stochastic gradient descent (SGD) is
used. Stochastic gradient descent works very similar to gradient descent, however,
instead of using the whole training sample to compute the gradient, a randomly
drawn subsample of observations is used to estimate the gradient. The parameters
are updated according to the gradient obtained from these subsamples, also called
batch or mini-batch (Nielsen, 2015). The idea behind SGD is that each mini-batch
yields a noisy, but unbiased estimate of the gradient (Athey and Imbens, 2019).
So, using SGD with m observations in each mini-batch, updating the parameters
from equation (3.35) is done in the following way:

v → v′ = v − η

m

∑
x∈m

∇Cx. (3.38)

In order to compute the gradient of the loss-function, neural networks as described
here usually use an algorithm called backpropagation (Hastie et al., 2009). Since
each neuron receives activations from neurons in the previous layer, the actual
output from the neural network depends on all the activations from all of the
previous neurons. Let al denote the activations from neurons in layer l, σ the
activation function, wl the weights from layer l − 1 to l and bl the added bias in
layer l. The activation of layer l, al, can then be written as

al = σ(wlal−1 + bl). (3.39)

Therefore, in order to compute the derivatives of the loss-function with respect to
all weights and biases, at first the input is forwarded through the neural network
to get the prediction for the specific observation, and the error is calculated.
Then, this error is propagated backwards through the network, and at each step
the partial derivatives with respect to the weights and biases are calculated using
the chain rule. This is done until the first layer is reached, and the parameters are
updated using the SGD algorithm described above (Hastie et al., 2009; Nielsen,
2015).15

15 For mathematical details regarding the backpropagation algorithm and theoretical deriva-
tions see for example Nielsen (2015) or Hastie et al. (2009).
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As other ML algorithms, due to their high flexibility, neural networks are prone
to overfitting the training data, which leads to poor generalization. One way to
penalize the flexibility and complexity of the fitted function is to use a form of
regularization, which is similar to the approach utilized for the LASSO regres-
sion. Instead of minimizing the error between actual and predicted values, a
regularization parameter is added to the loss function. Let C again denote the
cost function, the new objective function then becomes:

C(w, b) =
1

2n

∑
x

(y − f(x))2 +
λ

2n
|wj|2. (3.40)

In the case of neural networks, this type of regularization is called weight decay.
Here, λ is a hyperparameter used to define the intensity of the regularization
(Nielsen, 2015; Venables and Ripley, 2013).

In addition to the SGD and backpropagation algorithm applied in order to op-
timize the loss function, there exist several other optimization strategies, which
can be and are used to train neural networks. For example, building on SGD, an
algorithm called resilient propagation (RProp) sets the learning rate, and thus
the step size in adjusting the weights, adaptively (see for example Riedmiller
and Braun, 1993; Anastasiadis et al., 2005). Other algorithms are modifications
of Newton’s method and use the second order derivatives or approximations of
the second order derivatives to numerically find solutions for the optimization
problem. The most common of such methods is the so-called BFGS method,
named after the researchers who proposed it first (Fletcher, 1970; Broyden, 1970;
Goldfarb, 1970; Shanno, 1970).16

4 Data Description and Preprocessing

In order to provide answers to the research questions stated in the introduction,
data on house prices, on wind turbine locations in Germany and on factors po-
tentially influencing both house prices and the construction of wind turbines in
a specific area, to satisfy the unconfoundedness assumption from Section 2.1, is
needed. Therefore, the empirical analysis conducted in this thesis draws on data
from three different sources: The first dataset, RWI-GEO-RED, contains data
on houses for sale in Germany, advertised on ImmoScout24, Germany’s largest
internet platform for real estate advertisements (Boelmann et al., 2019). This
16 Due to the limited scope of this thesis and because the exact optimization algorithm is not

needed to get a basic understanding of how neural networks work, these method are not
explained in more detail here.
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dataset is complemented by another data source, RWI-GEO-GRID, containing
information on sociodemographic data on a square kilometer grid-level, collected
by the commercial data provider microm GmbH (RWI and microm, 2019). The
assignment of houses to the same square kilometer grid allows to combine both
sets in order to obtain an extensive data base on factors influencing both house
prices as well as the construction of wind turbines. These two data sources are
provided by the Research Data Centre Ruhr at the RWI – Leibniz-Institute for
Economic Research (FDZ Ruhr). Lastly, the third dataset contains information
on wind turbines in Germany. It comprises information on the date of commis-
sioning of each power plant as well as the exact location defined by geographic
coordinates. The following section describes the three data sources in more detail
and explains necessary data cleaning and preprocessing steps.

4.1 Real Estate Data and Sociodemographics

Starting with the real estate data, the RWI-GEO-RED dataset comprises in-
formation on the asking price as well as on all additional characteristics of the
properties, which are advertised for sale on the real estate platform ImmoScout24.
The publication dates of the advertisements range from 2007 up to March 2019.
However, since the data on wind turbines is as of December 31, 2018, the real
estate data is restricted to this date as well. The characteristics of the houses
include for example the size of the living and plot area, the number of rooms, the
year of construction or the category of the property. In addition to that, technical
variables as for example the number of views on the website for each house or a
unique ID are available as well. The exact location of each house is anonymized
and instead mapped to multiple geographic areas, with the smallest area being a
one square kilometer grid according to the European standard ETRS89-LAEA,
but also to higher levels such as postcode area, municipalities, districts and labor
market regions (Boelmann and Schaffner, 2019).17

Although the data is already cleaned to some extent by the FDZ Ruhr, there
are still some faulty and implausible values. For example, some houses have a
living or plot area of zero square meters (sqm) or a number of rooms or floors
being zero. Moreover, some entries are unreasonably small, e.g. values of 0.01
for certain variables, as for example the number of rooms. Those faulty data
points are replaced by missing values. Furthermore, asking prices below 20,000e,
living and plot areas below 40 sqm, and number of rooms below one are replaced
by missing values as well, following Frondel et al. (2019). In addition to that,
17 The full, unanonymized dataset containing the exact coordinates of the included houses

can be accessed from a special data security room at the FDZ Ruhr via on-site access.
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there are houses with the same ID occurring multiple times in the data due to
reporting issues by ImmoScout24, or actual multiple occurrences on the platform.
To account for these multiple appearances, only the latest observation of those
is kept in the data, since an advertisement appearing later in time reflects an
updated price, which is most likely to be closer to the properties’ actual value or
market price.

In addition to the information contained in RWI-GEO-RED, the dataset RWI-
GEO-GRID comprises socioeconomic data, which is used to complement the real
estate data. Since the dataset is on the same one square kilometer grid as the
real estate data, both data sources can easily be merged in order to obtain a sin-
gle extensive dataset. RWI-GEO-GRID contains variables from four categories:
household, mobility, building development and population. Additionally, each
category comprises data on the number of households, enterprises, and buildings
(Breidenbach and Eilers, 2018). The variables used for the analysis account for
the relation of residential and commercial buildings, how densely a grid is pop-
ulated, mobility related information, as for example the density of cars, and the
demographic composition of the inhabitants living in each grid.18 While RWI-
GEO-RED contains data from 2007 up to March 2019, the grid data is available
for 2005 and 2009 to 2017 only. In order to use these additional sociodemograph-
ics for all observations in the real estate data, information for the missing years
is imputed. The data points for 2006, 2007 and 2008 are imputed by linearly
interpolating the years 2005 and 2009, while information for 2018 is added using
linear extrapolation. To do so, a linear regression model is fitted to the years
2015 to 2017 and then used to predict the values for 2018. The data on which the
model is trained is restricted to the three most recent years in order to capture a
possible (linear) time trend. Since earlier years are likely not to be too relevant
for the extrapolated year, these are not included in the model to prevent it from
picking up too much noise. The inter- and extrapolations are done for each grid
separately.

Since one of the aims of this thesis is to analyze heterogeneity of treatment effects
based on covariates and also to identify the most and least affected group by their
covariates, missing values in the sample are not imputed. Instead, the sample used
for the estimation should consist of those observations only for which there are
information on all variables. However, the number of observations, for which data
on all covariates is included in the combined dataset, is very small. Therefore, in
18 Table A1 in Appendix A.3 lists all variables in the dataset and indicates which of these

are used throughout this master thesis.
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a first step, variables with a very high share of missing observations are excluded.
A threshold of 60% missing values is chosen to remove variables entirely. Table 1
displays the variables removed for this reason and their corresponding shares of
missings.

Table 1: Share of missing observations

Variable
Share of

Missings (in %)

Number of ancillary rooms 99.9
Heating costs 99.9
Elevator (0/1) 99.9
Rental income 97.3
Price of parking space 96.1
Energy efficiency rating 92.8
Last modernization 88.2
Energy consumption per year & sqm 84.2
Type of energy performance certificates 84.1
Parking space available (0/1) 83.0
Wheelchair-accessible (0/1) 81.3
Construction phase 76.0
Warm water included in energy consumption (0/1) 70.5
Quality of furniture 66.3
Usable floor space 63.3

Notes. (0/1) after the variables denote dummy variables.

In addition to that, the following variables are excluded as well, since they are
not likely to have high explanatory power beyond the variables already included,
and additionally suffer from a relatively high share of missing values: number of
bedrooms (49.4%), rented at sale (48.9%), granny flat (48.6%), cottage (31.3%)
and guest bathroom (26.8%). Moreover, the variable indicating a property being
advertised in 2007 is removed due to very little variation19 and houses categorized
as being castles are included in the category "other" for the same reason.20 In
a second step, for houses which appear multiple times in the data, some of the
missing values in their latest appearance can be filled by forward filling informa-
tion for the missing data points from previous advertisements of the same house.
In a last step eventually, only those observations which contain data on all the
19 Since the year dummies are mutually exclusive, the removed variable can be reconstructed

from the other year dummies. Therefore, this is unproblematic.
20 As for the RWI-GEO-GRID dataset, Table A2 provides a list of all variables included in

RWI-GEO-RED and indicates which of these are used in this thesis.
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remaining variables in the dataset, i.e. only complete cases, are kept in the final
sample, while all other observations are excluded.

A possible concern regarding this approach of excluding a considerable amount of
data as done here, is that there is a risk of unintentionally removing information
in a systematic way such that the remaining sample differs substantially from the
original sample. This may lead to a selected sample which does not represent the
studied population anymore, and thus to selection bias (see for example Imbens
and Wooldridge, 2009). To make sure that this is not a problem in the present
case, Table A3 in Appendix A.3 compares selected measures of the distribution
of both the restricted sample and the original unrestricted sample. Looking at
this table, it can be seen that almost all of the variables are very similarly dis-
tributed, indicating that there is not a systematic removal of information in the
data. Additionally, Figure 3 provides a visual comparison of the distribution of
selected continuous variables of both the restricted and the unrestricted sample
using (modified) so-called beanplots (Kampstra, 2008). These plot the estimated
density of a variable and its median represented by a horizontal line in one group
on the left, and the estimated density and the median of the same variable in a
second group on the right. This provides a simple and intuitive way of visually
comparing distributions between groups and assessing how much both groups
differ in terms of the presented variables. The densities for the variables look
very similar and also the medians do not differ by large amounts in both groups.
The beanplots in Figure 3 thus provide additional evidence that restricting the
sample as described above does not lead to a selected dataset differing severely
from the full sample.

4.2 Wind Turbines and Distances

In order to identify the nearest wind turbines and the corresponding distances to
the properties at the time they are being advertised on ImmoScout24, information
on wind power plants in Germany, namely their exact location and the date of
commissioning, are needed as well. In January 2019, the so-called Core Energy
Market Data Register (MaStR) was initiated by the Federal Network Agency. The
MaStR constitutes a binding institutional register for all actors in the energy and
gas sector in Germany. They are obliged to register and to provide information on
all energy producing plants, including i.a. the location, date of commissioning and
nominal production capacities. However, up until now the register is mandatory
for plants which were taken into operation after July 2019 only. All other plants
which started production earlier do not need to be registered until January 31,
2021 (Bundesnetzagentur, 2020b). Although these are already included in the
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Figure 3: Beanplots
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register due to migration from older registers and data sources, information on
their location is still missing for most plants. Thus, although data on some wind
turbines is already included, the MaStR cannot serve as a sufficient data source
for the wind turbines in Germany. Therefore, to overcome this issue, the data
on wind power plants was collected for each federal state separately. For most
states, this information was freely accessible and downloadable, for Hamburg,
Saxony, Lower Saxony, NRW and Rhineland-Palatine it was provided by the
responsible regional authorities. Unfortunately, no data for Berlin was available,
therefore houses from this state are excluded during the preprocessing procedure
as well.21

Since there is no comprehensive, official data on wind turbines in Germany, dif-
ferent data sources also report differing total numbers of onshore wind turbines.
For example, the aforementioned MaStR lists 28,154 wind turbines as of Decem-
ber 31, 2018 (Bundesnetzagentur, 2020a,b), while according to joint information
from The German Wind Energy Association and the private company Deutsche
WindGuard (2019) 27,765 onshore wind turbines were in operation in Germany
at the end of 2018. A comparison of the number of all wind turbines combining
the data for each state separately, as well as the installed capacity with those
two data sources on the federal state-level can be found in Table A4 in Ap-
pendix A.3. The table reveals that the number of wind turbines for each state is
either slightly lower compared to data from MaStR and Deutsche Windguard or
lies in between both figures. There is no federal state for which the numbers de-
viate by a large amount. The same holds true when comparing the total installed
capacity. Considering both these criteria, the employed dataset can be regarded
as representative and (almost) complete for Germany, excluding Berlin.

In order to find the nearest wind turbines and calculate the distances between
the advertised houses and them, the geographic coordinates are translated into
a mutual coordination system, as the single datasets provided by the regional
authorities use different coordination systems and projections. Although the
exact location of the advertised properties is anonymized in the scientific use file
provided for download, it can be accessed via a special data security room via
on-site access at the FDZ Ruhr in Essen. Using this information and the data
on the location of wind turbines, in a first step the 500 nearest wind turbines
are identified for each house and the corresponding distances are calculated. In a
second step, the date of the advertisement and the commission date of the wind
21 An overview of the exact data sources and the regional authorities who provided the data

is found in Appendix A.3 in Table A5.
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turbine are compared. If the date of advertisement is later than the commission
date of the respective power plant, the distance to this plant is saved as the actual
distance to the nearest wind turbine. If the advertisement date is earlier than the
commission date, the wind turbine was not yet in operation when the house was
advertised on ImmoScout24, and thus it does not represent the nearest turbine
at the time of advertising. In such a case, the second-nearest wind turbine is
investigated in the same way, until a valid wind power plant is identified, and the
corresponding distance is saved. However, for some of the wind turbines the exact
date of commissioning is not available, but only the year, so it is not possible to tell
whether they were already in operation when a property is advertised in the same
year or whether they were constructed afterwards. Furthermore, there is a small
number of wind turbines for which neither an exact date of commission nor the
year is known. If the identified nearest wind turbine belongs to those two cases,
it is explicitly tagged as such. In these cases, further wind turbines are examined
in the same way until one is found, which can be clearly identified as being
in operation when the house was put on ImmoScout24 and the corresponding
distance is additionally saved.
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Figure 4: Relative frequencies of distance band categories

After the identification of the nearest wind turbines, the exact distances are
discretized into distance bands in order to assure that the exact location of the
properties cannot be reconstructed from the distances. The following bands are
used: 0–0.5 km, 0.5–1 km, 1–2 km, 2–3 km, 3–4 km, 4–5 km, 5–6 km, 6–7 km, 7–
8 km, 8–9 km, 9–10 km, 10–11 km, 11–12 km, 12–13 km, 13–14 km, 14–15 km, 15-
16 km, 16–17 km, 17–18 km, 18–19 km, 19–20 km, 20+km. Figure 4 plots the
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relative frequency of each group against the distance bands. It can be seen that
only a very small share of houses lies in the range of up to 1 km to the nearest wind
turbine. A distance of between 3 and 4 km constitutes the largest group in the
data. In addition to Figure 4, Figure 5 also plots the cumulative relative frequency
for the distance bands as a step function. This plot reveals that more than 25%
of the properties lie in the range of maximum 4km to the nearest wind turbine,
slightly more than 50% in the range of maximum 7km and more than 75% in
the range of maximum 13 km. Moreover, Figure 5 also compares the cumulative
relative frequencies of the restricted sample, which contains complete cases only,
with the cumulative relative frequencies of the entire sample without excluding
the incomplete entries. The two lines are almost indistinguishably similar to each
other, providing further evidence that the conducted data cleaning steps did not
result in a particularly selected sample.
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Figure 5: Share of observations within given distance bands

Figure 6 summarizes the entire data cleaning process in the form of a flowchart.
The original dataset, as obtained from the FDZ Ruhr, which still includes multiple
entries for the same houses, contains 12,419,820 observations. After restricting
the data to the years 2007 to 2018, excluding data for Berlin due to missing
data on wind turbines, and removing the duplicate IDs, the sample consists of
8,691,312 houses. Merging the calculated distance bands to the houses results
in a loss of around one million houses due to missing information on their ex-
act location. Excluding all those observations, which have missings in any of
the remaining variables, and keeping the complete cases only leaves a sample of
943,927 properties. Since some of the grids in RWI-GEO-GRID contain only a
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very small number of houses or households, some of the variables, as for example
the purchasing power, are anonymized to prevent backtracing of these variables
to single households. This results in a loss of additional 7,079 observations after
merging the real estate data with this sociodemographic data. Eventually, the
final sample after the data cleaning process consists of 936,848 observations.

Full sample
N=12,419,820

Restricted
sample

N=8,691,312

Complete cases
N=943,927

Remove houses
from 2019, 
Berlin & 

duplicate IDs
N=3,728,508

Remove all 
incomplete

rows from the
data

N=6,740,385 

Restricted
sample

N=7,684,312

Remove houses
with missing
location data
N=1,007,000

Final sample
N  = 936,848

Remove 
houses from
anonymized

grids
N=7,079 

Figure 6: Data cleaning process

5 Implementation Details

Applying the method discussed in Section 2 in the context of the empirical analy-
sis in this thesis comes with a few caveats and issues which have to be taken care
of. As a reminder, Figure 7 summarizes the estimation procedure as proposed by
Chernozhukov et al. (2018) in the form of pseudocode.

The first thing to notice is that the method requires a binary treatment indica-
tor, and hence a clear identification of observations being treated and not being
treated. Since the data used in this thesis contains the distance to the nearest
wind turbine in form of distance bands, an appropriate distance threshold has to
be chosen to divide houses into a treatment and a control group. As discussed
in Section 1, Sunak and Madlener (2016) estimate the impacts on wind turbines
on property prices in three cities in North Rhine-Westphalia. In a preliminary
analysis, the authors construct indicators of visual impact levels and find that for
houses, exposed to a visibility classified as "marginal", two wind turbines can be
seen on average, and that these are located around 4,500m from the nearest tur-
bine. In the analysis by Frondel et al. (2019) the authors find significant negative
effects on properties for house – power plant distances of up to 8 km. However,
other studies find effects up to 2 km (Dröes and Koster, 2016) or up to 4 km only
(Gibbons, 2015). Therefore, as a compromise between the cited studies and re-
ferring to Sunak and Madlener (2016), a distance of maximum 5km is chosen
as a treatment threshold. Thus, using the calculated distances and the derived
distance bands as described in Section 4.2, houses in a range of maximum 5km to
the nearest wind turbine are considered being treated, while houses for which the
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Algorithm 1:
Input: Data on units i = 1, . . . N with covariates Zi and a binary

treatment indicator Di

Result: BLP, GATES, CLAN

1: begin
2: Fix the number of splits S and significance level α, e.g. S = 100 and

α = 0.05

3: Compute the propensity scores p(Zi)
4: Split the data S times into equally sized subsamples DataA, DataM
5: for s = 1 . . . S do
6: for Algo in ML Algorithms do
7: Tune and train Algo in DataA to learn B(Zi) and S(Zi)

8: Predict B(Zi) and S(Zi) in DataM
9: Construct k groups based on proxy S(Zi)

10: Estimate BLP parameters in DataM
11: Estimate GATES parameters in DataM
12: Estimate CLAN parameters in DataM
13: Compute performance measures
14: end
15: end
16: Compute medians of parameters of interest, confidence intervals,

p-values using VEIN methods and medians of performance measures
17: end

Figure 7: Algorithm as proposed by Chernozhukov et al. (2018)

nearest wind turbine is farther away are classified as control observations. For
properties for which it could not be clearly stated whether the identified nearest
wind turbine was already in operation when the advertisement was placed, the
first wind turbine which is clearly identified as already in operation is taken into
consideration. If the distance to the latter is smaller than 5 km the property
belongs to the treatment group, regardless of a possibly even closer wind turbine.
If this distance however is larger than the chosen threshold of 5 km, the treat-
ment indicator is tagged as missing and the observation hence gets excluded from
the data, since it is not possible to tell whether there was a wind turbine in the
maximum distance range at the time of the advertisement.

During the actual estimation, the machine learning algorithms are used to con-
struct the BCA B(Z) and the proxy treatment effect S(Z) for each split of the
data. In their paper, Chernozhukov et al. (2018) suggest tuning each algorithm’s
hyperparameters separately for every data split. Since hyperparameter tuning is
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done using a repeated procedure of fitting a model with fixed hyperparameters
on some resampled data and evaluating the model’s performance on a separate
hold-out test set, hyperparameter tuning can be very computational expensive
and time consuming. The most frequently used strategy for model tuning is via
k-fold CV, as already mentioned in Section 3.1.22 For a choice of k = 5, a model
is trained 5 times to 80% of the data and tested 5 times on 20% for each set
of hyperparameters. Thus, evaluating a single hyperparameter set requires each
algorithm to be fitted 5 times which might lead to long computation times for
large data sizes. This issue becomes even more pronounced the larger the num-
ber of folds k is set. With increasing k, the models need not only to be trained
more often, but also on larger sized training sets, since for example for k = 4

the training data makes up 75% of the data, while it corresponds to 90% of the
whole sample for k = 10 (see for example Wainer and Cawley, 2017). Due to
the size of the dataset used in this thesis, repeating the tuning process for every
split separately would result in a runtime of several weeks for the ML algorithms
described in Section 3. Therefore, all of the ML algorithms are tuned extensively
on the whole dataset prior to running the actual estimation. The best performing
set of hyperparameters is then chosen and held fixed for all the splits. In addition
to reducing computational time, this approach is reasonable, since, while different
hyperparameters may also lead to different performances of models on different
data sets, it is likely that (nearly) optimal hyperparameters for the whole dataset
yield similarly good results for the respective subsamples as well, especially in
the present case, where each subsample corresponds to 50% of the entire sample
and is randomly drawn. As the dataset used in this thesis is fairly large, a value
of k = 3 is chosen to balance computational time and reliability of the obtained
performance measures. Furthermore, k-fold CV may suffer from high variance
due to the random splitting into subsamples. One commonly used approach to
reduce this variance is by repeating the CV process, called repeated CV (Kim,
2009). In repeated CV, the data shuffling process is repeated prior to splitting
the sample into k folds, thus resulting in different data splits. Repeated CV is
therefore used here with two repeats and k = 3.

The simplest approach for hyperparameter optimization is performing an exten-
sive search over a prespecified grid, which defines possible values for each parame-
ter. This procedure is called grid search. However, a full grid search often results
in a very large number of parameter combinations, and thus is neither efficient
nor even feasible in many cases, especially for algorithms with many hyperparam-
22 There are also other resampling approaches commonly used for hyperparameter tuning,

e.g. drawing bootstrap samples from the data. However, since CV is the most widely used
approach it is also used in this thesis and described here.
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eters. As an alternative to grid search Bergstra and Bengio (2012) proposed a
more efficient way of hyperparameter optimization called random search. Instead
of testing all possible combinations, random search randomly draws hyperparam-
eters from a prespecified grid and evaluates only a fixed number of combinations.
This makes the approach more efficient, especially in high-dimensional hyperpa-
rameter spaces with a low effective dimensionality, i.e. in settings where only
some hyperparameters are actually relevant. Due to the design of grid search,
only a few values are tested for each dimension, while random search picks a
different value for each draw and each dimension.23 Thus, even though the same
number of combinations is tested, random search evaluates more distinct values
in each dimension compared to grid search. Because of these reasons, the ML
algorithms in the present work are tuned using random search over prespecified
grids.24

The analysis in this thesis is conducted using the statistical programming lan-
guage R (R Core Team, 2020). Tuning and training the ML models as well as the
predictions in the main sample are done using the caret package (Kuhn, 2008).
caret provides a unified interface for various ML methods and convenience func-
tions for model training. Therefore, the library is especially suited for projects
relying on multiple algorithms, as the present work. It does so by providing wrap-
per functions, which themselves call functions from other R libraries, in which the
algorithms and techniques are actually implemented. The algorithms used in the
empirical analysis of this thesis are implemented in the libraries elasticnet (Zou
and Hastie, 2020) for elastic net, ranger (Wright and Ziegler, 2017) for random
forests, xgboost (Chen et al., 2020) for XGBoost and nnet (Venables and Ripley,
2002) for neural networks. Since some algorithms are sensitive to the scaling of
the input data, e.g. regularized linear models as explained in Section 3.2, all
predictors are normalized to be in a range between 0 and 1 before tuning and
training. Moreover, as recommended by, for example, LeCun et al. (2012), before
training the neural networks, the outcome variable is transformed to be between
0 and 1 as well.
23 For example, using grid search with two parameters and nine draws evaluates only three

distinct values for each hyperparameter, while random search chooses nine distinct values
for both parameters (for a visual representation of this example see also Bergstra and
Bengio, 2012).

24 In addition to grid search and random search there are also more sophisticated strategies
for hyperparameter optimization. Such strategies often exploit techniques from Bayesian
statistics and can be roughly seen as informed searches using the results from previous
combinations for the choice of the next parameter combinations (see for example Shen
et al., 2011; Kuhn, 2014; Snoek et al., 2012). However, such techniques are out of the
scope of this thesis, and hence neither described nor used.
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As discussed above, all algorithms are tuned using repeated 3-fold CV on the
entire sample via random search, evaluating 50 parameter combinations. The
only exception is the random forest algorithm. Probst et al. (2019b) show in a
simulation study on tunability of different ML algorithms that although tuning
RFs, as implemented in the ranger package, results in some slight improvements
regarding their predictive power, these improvements are rather small and come
at large computational costs. Moreover, RFs are known to work well out-of-the-
box using default settings without much tuning (see also Probst et al., 2019a).
Therefore, the RF implemented in the ranger package is applied using its default
parameters. Referring back to the notation from Section 3, the tuning parame-
ters for the algorithms, and their respective names in the caret package, are as
follows: α ("fraction") and λ ("lambda") for elastic net; the number of boosting
iterations ("nround"), the maximum depth of a single tree ("max_depth"), the
learning rate parameter used for iteratively updating the prediction η ("eta"), the
regularization parameter γ penalizing a larger number of leaves ("gamma"), the
ratio of columns considered for each tree ("colsample_bytree"), the minimum
sum of instance weights, i.e. the Hessian, needed in a node to keep splitting
the data ("min_child_weight")25, and the share of rows considered at each tree
("subsample") for XGBoost26; the number of hidden neurons ("size"), and the
weight decay parameter λ ("decay") for the neural net; the number of variables
considered at each split ("mtry"), and the minimum number of observations in
terminal nodes ("min.node.size") for RF.27 The tuning grids from which the hy-
perparameters are randomly drawn are prespecified in caret. Table 2 displays the
possible values for all hyperparameters as well as the best performing hyperpa-
rameters found via the above stated tuning process and the default parameters
for the RF.

Looking at Algorithm 1 in Figure 7 again, before splitting the sample into an
auxiliary and a main sample, the propensity scores are to be computed. The esti-
mation strategy was originally developed for randomized controlled trials (RCT).
In such experiments the propensity scores, i.e. the probability of being treated,
25 For regression tasks, this simply corresponds to the minimum number of observations in

each terminal node, see also Section 3.3.3 and Chen and Guestrin (2016).
26 caret does not allow to tune the L2 regularization parameter λ, therefore its default value

of 1 is used.
27 caret does not allow to tune the number of trees grown in a forest since this parameter

does not have a large impact on the forest’s performance. Probst and Boulesteix (2017)
show that the biggest improvements are made growing the first 100 trees and only small
gains are achieved after this. However, growing more trees does not increase the risk of
overfitting due to the low correlation between the single trees. Thus, it is common to
grow a rather large number of trees, possibly even more than needed, to avoid limiting
the algorithm’s ability to pick up the relevant characteristics and patterns from the data.
Thus, caret ’s default of 500 trees is confidently used here as well.
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Table 2: Hyperparameter grids and chosen values

Algorithm Hyperparameter
Range

Best
Min Max

Elastic Net fraction 0 1 0.9518
lambda 0.00001 10 0.00008

XGBoost nround 1 1000 577
max_depth 1 10 8
eta 0.001 0.6 0.1687
gamma 0 10 8.6623
colsample_bytree 0.3 0.7 0.6726
min_child_weight 0 20 3
subsample 0.25 1 0.7392

Neural Net size 1 20 14
decay 0.00001 10 0.0143

Random Forest mtry 1 # cols
√
# cols

min.node.size 1 20 5

Notes. The hyperparameters listed in the last column are found using repeated 3-fold CV,
except the parameters for the RF, which correspond to the default parameters for regression
settings, as implemented in the ranger package.

are usually set by the researchers, and thus known by definition. In the present
analysis however, the dataset stems from observational data rather than from
RCTs, hence these scores are not known. Following Deryugina et al. (2019), who
used the same empirical strategy in a health economics related context estimat-
ing the effect of acute fine particulate matter exposure on mortality in the US,
as well as Chernozhukov and co-authors themselves, who applied the strategy
to the example of the gender wage gap28, the propensity scores are estimated.
The process follows the construction of the CATE proxy, thus a model for the
propensity scores is estimated on the auxiliary sample and then the scores are
predicted and further utilized in the main sample. Estimating propensity scores
can be framed as a prediction problem, hence using ML models for this step
might improve the estimation due to their superior predictive performance (Mul-
lainathan and Spiess, 2017). Prior research on this topic indicates that ML can
indeed outperform the most widely used approach of using logistic regression. For
example, McCaffrey et al. (2004) compare the performance of propensity scores
estimated via boosted trees with scores from logistic regression and find that the
28 The application example changed in a later version of the paper, and thus cannot be found

in the NBER Working Paper Series version, however the version can be found on arXiv,
Chernozhukov et al. (2017).
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first outperform the latter. Lee et al. (2010) also compare the performance of de-
cision trees as well as bagged and boosted tree algorithms with logistic regression
in a simulation study and obtain similar results. Therefore, in addition to stan-
dard logistic regression, RFs and XGBoost are considered for the estimation of
propensity scores as well. One of the most important aspects of propensity scores
is that they should account for differences between groups, usually a treatment
and a control group, in observational settings to remove systematic differences
and selection bias (Austin, 2011). Therefore, in order to choose the algorithm
used to estimate the propensity scores in the empirical analysis, an experiment is
conducted based on their ability to remove group differences. In a first step, the
XGBoost algorithm is tuned on the whole sample in the same manner as the mod-
els for the proxy predictor using repeated 3-fold CV. The RF is again used with
default parameters. In a second step, to mimic the actual estimation approach,
the data is split into two equally sized subsamples, of which one sample is used
to train the models and the other one to actually predict the propensity scores.
The obtained scores are then used to weight the sample using inverse probability
of treatment weighting (IPTW). In IPTW, treated observations are assigned a
weight of 1/pi and control group observations get a weight of 1/1 − pi with pi

being the estimated propensity score for observation i (Austin and Stuart, 2015).
If the propensity scores are estimated correctly, the weighted groups should be
equal or at least close to being equal in terms of their covariates. In order to
compare the groups after weighting, three different statistics are used and com-
pared as balance diagnostics. Following Lee et al. (2010), the absolute differences
between groups are calculated for the covariates and standardized by dividing by
their pooled standard deviation. The resulting standardized differences are then
averaged and referred to as the average standardized absolute mean difference
(ASMD) (Stuart et al., 2013). This statistic is not affected by the sample size or
the covariates’ scale or units of measurement. A standardized difference of 0.1 or
less is usually seen as acceptable and not a concern (Austin, 2011). Therefore,
in addition to the ASMD, the number of covariates exceeding this threshold is
taken into consideration as well. Furthermore, the so-called Kolmogorov-Smirnov
(KS) test statistic is reported. It is defined as the maximum distance between
the empirical cumulative distribution functions of continuous variables between
two groups (Austin and Stuart, 2015). Similar to the ASMD, the average KS
statistic over the continuous covariates is considered. Additional to the ASMD,
the KS aims at comparing not only the means, but also takes into account higher
order parameters of the distribution. To mitigate the possibility of obtaining a
particular well-suited data split induced by random splitting, the experiment is
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repeated ten times. Table 3 displays the average results over all ten runs for the
logistic regression, XGBoost and RF.29

Table 3: Covariate balance before and after propensity score weighting

Criterion Unadjusted Logit Random Forest XGBoost

ASMD 0.1243 0.0248 0.0937 0.0605
KS 0.0880 0.0280 0.0672 0.0527
# Unbalanced 29.1 1.0 24.9 17.4

Notes: ASMD is the average of standardized absolute mean differences over all covariates.
KS denotes the Kolmogorov-Smirnov statistic. # Unbalanced refers to the number of
variables which exhibit a standardized absolute mean difference of more than 0.1. Smaller
values indicate better balance after propensity score weighting for all three criteria. The
reported results are means over 10 runs of the experiment, each with a different data
split.

The unadjusted samples exhibit on average modest imbalances as indicated by the
ASMD value of 0.1243. Weighting the observations with the estimated propen-
sity scores improves the balance considerably for all algorithms. The propensity
scores estimated via logistic regression reduce the ASMD to only 0.0280, which
constitutes the lowest ASMD across models. XGBoost yields good results as
well with an ASMD value of 0.0605, and also the RF algorithm manages to keep
the ASMD for the adjusted sample below the threshold of 0.1 (0.0937). This
ranking of algorithms is also represented by the number of unbalanced variables,
i.e. variables with an absolute standardized difference of more than 0.1. In the
unadjusted sample on average 29.1 variables are unbalanced. This number is re-
duced to only a single variable using logistic regression. Although also reducing
the number of unbalanced variables, the RF and XGBoost still leave on average
24.9 and 17.4 covariates with larger absolute differences than 0.1, thus both are
clearly outperformed by the logistic regression model. A very similar pattern
is observed for the results of the KS statistic, where logistic regression yields
the smallest value with 0.0280, followed by the XGBoost (0.0527) and the RF
algorithm (0.0672).

These numerical indications can also be seen graphically in Figure 8 for one of
the ten runs. Each grid of the plot compares the absolute standardized difference
in means for the unadjusted and the propensity score weighted sample. The
thresholds of 0.1 and -0.1 are indicated by the dotted lines. Compared to the RF
and XGBoost, the adjusted means are on average closer to zero for the logistic
regression. Moreover, the superior performance of this model in terms of the
29 The comparison of the different algorithms for the propensity score estimation as well as

the plots in Figure 8 are created using the cobalt package (Greifer, 2020).
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Age: 65+ (%)*
Age: 40-65 (%)*
Age: 25-40 (%)*
Age: 0-25 (%)*

Housing blocks (%)*
6-9 Family houses (%)*
3-5 Family houses (%)*

Detached houses (het.) (%)*
Detached houses (hom.) (%)*

Industrially used buildings (%)*
Families (%)*
Children (%)*

# Inhabitants*
Unemployment rate (%)*

Foreign household head (%)*
Purchasing power*

Car density*
# Living buildings*

# Industrial buildings*
# Private households*

Thuringia (0/1)
Saxony-Anhalt (0/1)

Saxony (0/1)
Mecklenburg-Vorpommern (0/1)

Brandenburg (0/1)
Saarland (0/1)
Bavaria (0/1)

Baden-Württemberg (0/1)
Rhineland-Palatine (0/1)

Hessen (0/1)
NRW (0/1)

Bremen (0/1)
Lower Saxony (0/1)

Hamburg (0/1)
Villa (0/1)

Semidetached house (0/1)
Terraced house (0/1)

Multi-family house (0/1)
One-family house (0/1)

Bungalow (0/1)
Farmhouse (0/1)

Property condition
Basement (0/1)

Protected building (0/1)
# Bathrooms

# Rooms
# Floors
Plot area

Living area
Year of construction

Asking price

-0.3 0.0 0.3 0.6

Logit

-0.3 0.0 0.3 0.6

Random Forest

-0.3 0.0 0.3 0.6

XGBoost

Adjusted Unadjusted

Notes. (0/1) after variables denote dummy variables, asterisks indicate grid-level
variables.

Figure 8: Balance grid
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ASMD and the number of unbalanced variables after weighting becomes clear
here as well. All in all, while all methods are able to improve balance in the
adjusted sample compared to the unadjusted one, the logistic regression clearly
outperforms both the RF and XGBoost algorithm. This is also consistent for
all considered balance criteria. Therefore, logistic regression is used throughout
the empirical analysis to predict the propensity scores. In order to avoid very
large observation weights in the weighted regressions for the BLP and GATES
parameters, observations with propensity scores below 0.05 and above 0.95 are
removed from the estimation sample following Deryugina et al. (2019). This leads
to the exclusion of on average 6.8% of the utilized main samples.

As stated in Section 2.1, Chernozhukov et al. (2018) assume independence of
treatment conditional on the observed covariates. The extensive dataset described
in Section 4.1 contains a lot of factors which are likely to be determinants of
house prices. At the same time, via the RWI-GEO-GRID dataset, the data base
is extended by locality characteristics, which further influence property prices,
while at the same time are very likely to have an impact on the construction
of wind turbines in a specific location. For example, it is reasonable to assume
that wind turbines are less likely to be placed in wealthier areas compared to
poorer ones. This would be accounted for by the grid-level data on purchasing
power. However, there might be further factors which are correlated with the
placing of wind turbines, i.e. with treatment assignment, and the outcome, i.e.
house prices. For example, there might be different local policies or restrictions,
which differ between municipalities and influence the construction of wind power
plants as well as the property prices. This would violate the unconfoundedness
assumption and lead to unreliable results. To combat this issue, fixed effects are
included in the estimation procedure. Following Frondel et al. (2019), these are
included on the municipality-level.30 The simplest approach to fixed effects is to
include dummy variables for every level of the grouping variable. However, since
the data comprises information on houses in 10,501 different municipalities, and
since for many municipalities there are only very few observations, including a
full set of dummy variables would result in a very large and sparse input ma-
trix. This would lead to reduced predictive power for some ML algorithms and
increases the number of predictors in the data drastically (Kuhn and Johnson,
2019). Therefore, the fact that fixed effects can also be implemented using the
so-called within-transformation (see for example Gormley and Matsa, 2014), is
30 The authors also provide evidence in favor of the unconfoundedness assumption after

controlling for the locality characteristics obtained from the RWI-GEO-GRID data and
municipality fixed effects by estimating multiple regression specifications and placebo re-
gressions.
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utilized in this thesis. The within-transformation computes the mean for each
variable in each group and then subtracts these means from the levels for each
observation. In order to ensure independence of the auxiliary and the main sam-
ple, the within-transformation is done for every split separately. At first, the
means are computed on the auxiliary sample and used to demean this data. The
predictive models are trained on this transformed sample. In a second step, the
same means are then subtracted from the variables in the main sample and pre-
dictions are produced from this transformed sample. To get the predictions back
to the original scale, the mean house prices in the corresponding municipalities
from the auxiliary sample are again added to the predictions before constructing
the CATE proxy. In order to ensure that all the municipalities which are present
in the main sample also appear in the auxiliary sample, stratified data splitting
on the municipality-level is used. This way, houses from all municipalities are
present in both samples. That approach however comes with two possible prob-
lems: For municipalities, for which the data contains only a single observation,
the stratified splitting does not work as intended, since the same house is not
allowed to end up in both samples. Moreover, the within-transformation makes
sense only if there are at least a few houses in a municipality. In the extreme case
of only two houses in a municipality, the transformed house in the auxiliary sam-
ple would have values of zero for all variables after demeaning, since it is the only
observation used for calculating the means. In order to avoid such cases and to
have meaningful transformed data, municipalities with less than ten observations
are excluded. This leads to the exclusion of 13,750 houses.31 One typical issue
in fixed effects estimation is that time-invariant attributes or variables which are
common among all observations in a group, i.e. municipality, are removed from
the model, thus inference on these is not possible. However, the estimation is a
two-step procedure, and the first step is purely a prediction step, therefore there
is no interest in estimated parameters, but rather in unconfoundedness, as de-
scribed earlier. Thus, this is not considered a problem in the present case. In
addition to the municipality fixed effects, year fixed effects are included as well.
Since the time span of the data is eleven years only, year fixed effects are simply
included as year dummies before performing the within-transformation (Gormley
and Matsa, 2014).
31 As an alternative to fixed effects on municipality-level, it would also be possible to use

fixed effects on square kilometer grid-level. This would allow to control for unobserved
factors on an even more detailed level. However, using the same approach of excluding
grids with less than ten observations would result in the exclusion of 185,791 houses.
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With respect to all of the previously discussed details and aspects, Figure 9
summarizes the implementation details and presents the adjusted estimation al-
gorithm, as applied in this thesis.

Algorithm 2:
Input: Data on units i = 1, . . . N with covariates Zi and a binary

treatment indicator Di

Result: BLP, GATES, CLAN

1: begin
2: Fix the number of splits S and significance level α, e.g. S = 100 and

α = 0.05

3: Split the data S times into equally sized subsamples DataA, DataM
4: for s = 1 . . . S do
5: Train logistic regression in DataA for propensity scores*
6: Predict propensity scores in DataM*
7: Compute means for within-transformation in DataA*
8: Apply within-transformation to DataA and DataM*
9: for Algo in ML Algorithms do

10: Tune and train Algo in DataA to learn B(Zi) and S(Zi)

11: Predict B(Zi) and S(Zi) in DataM
12: Reverse within-transformation for predictions*
13: Construct k groups based on proxy S(Zi)

14: Estimate BLP parameters in DataM
15: Estimate GATES parameters in DataM
16: Estimate CLAN parameters in DataM
17: Compute performance measures
18: end
19: end
20: Compute medians of parameters of interest, confidence intervals,

p-values using VEIN methods and medians of performance measures
21: end

Notes. Asterisks denote steps which are different from the original implementation algorithm
as depicted in Figure 7.

Figure 9: Adjusted estimation algorithm

6 Results

Before presenting and discussing the results obtained during the empirical analy-
sis, summary statistics for the sample used during the estimation are displayed in
Table 4. This is done to give an overview and intuition about the average values
of the variables, which is useful in order to put the results from the classification
analysis into perspective later on. Using a treatment threshold of 5 km to the
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Table 4: Summary statistics

Variable
Means

Full sample Treatment Control

Asking price 341,360 270,276 382,578

Year of advertisement 2013.5 2013.7 2013.4
Year of construction 1976.4 1976.1 1976.6
Living area 174.1 168.3 177.4
Lot area 683.9 730.8 656.7
Number of floors 2.2 2.1 2.3
Number of rooms 6.1 6.0 6.2
Number of bathrooms 1.9 1.9 1.9
Protected building (0/1) 0.01 0.01 0.02
Basement (0/1) 0.62 0.57 0.66
Property condition 4.9 4.9 4.9
Farmhouse (0/1) 0.01 0.01 0.01
Bungalow (0/1) 0.04 0.04 0.03
Semidetached house (0/1) 0.15 0.14 0.16
Single-family house (0/1) 0.48 0.52 0.46
Multi-family house (0/1) 0.11 0.10 0.12
Terraced house (0/1) 0.13 0.12 0.14
Category: Other (0/1) 0.05 0.05 0.04
Car density* 1.1 1.2 1.1
Purchasing power / capita* 22,962 21,871 23,594
Unemployment rate (%)* 5.2 5.7 4.9
Number of inhabitants* 1,848 1,583 2,002
Housing blocks (%)* 6.9 5.4 7.8
Skyscrapers (%)* 3 2.1 3.5
Age: 0–25 (%)* 24.4 24.4 24.5
Age: 25–40 (%)* 16.9 16.3 17.2
Age: 40–65 (%)* 37.6 38.2 37.3
Age: 65+ (%)* 21.0 21.0 21.0

# Observations 854,041 313,460 540,581

Notes. (0/1) after variables denote dummy variables, asterisks indicate grid-level variables. For
improved readability of this table, dummy variables constructed from the categorical variables
federal state, category of the advertised house, and type of heating are excluded. The full table
including all variables can be found in Table A6 in Appendix A.3.
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nearest wind turbine, the treatment group consists of 313,460 houses, and thus
36.7% of the entire sample. The control group comprises the remaining 540,581
houses or 63.3%. Looking at the asking prices in both groups, it is noticeable
that the house prices are substantially lower in the treatment group. Together
with a lower purchasing power of around 21,871e per capita in the treatment
group compared to almost 23,000e in the control group, this indicates that wind
turbines might in fact rather be built in poorer areas as hypothesized in Section 5.
Furthermore, they are more likely to be placed in less densely populated areas,
as the average numbers of inhabitants (1,583 and 2,002, respectively) indicate.
The average plot area is bigger for treated properties which is likely to directly
stem from the fact that the treatment group consists of houses in less densely
populated areas.32 Other property characteristics, as for example the year of
construction, living area, or number of floors, rooms and bathrooms, are similar
in both groups. The same holds true for many of the remaining grid variables
like the car density or the demographic composition of inhabitants.33

6.1 Estimation Results

As discussed in Section 3, four different algorithms are used to construct the
CATE proxy: elastic net (ENet), random forests, XGBoost, and single-layer feed-
forward neural networks. Table 5 displays the performance metrics for each of
these algorithms. The first row contains the performance criterion Λ calculated
in the BLP estimation following Equation (2.21), the second row the criterion
Λ calculated from the GATES estimation as defined in Equation (2.23). As
a reminder: maximizing Λ corresponds to maximizing the correlation between
the true CATE function s0(Z) and the ML proxy S(Z), while maximizing Λ is
the same as maximizing the R-squared from regressing s0(Z) on the demeaned
proxy S(Z). Thus, the higher these criteria are, the better does the respective
algorithm approximate the CATE function. Considering Λ, the ENet achieves
a figure of 482,478,151, and thus outperforms the other algorithms by far. The
RF (159,749,816) seems to perform a bit better than XGBoost (123,526,210),
while the neural network lags far behind (16,032,440). In terms of the second
criterion, Λ, ENet (71,684,309) again produces the highest number. Moreover,
the neural network (41,131,787) predicts the CATE function slightly better than
the tree-based algorithms with Λ-values of 29,304,652 for the RF, and 25,459,158
for XGBoost. All in all, the elastic net results by far in the highest figures for
both criteria, and hence the proxy constructed via ENet provides the best ap-
32 Of course, this could also be the other way round: The lower number of inhabitants per

grid could be a result of properties with larger plot areas.
33 For a complete overview see also Table A6 in Appendix A.3.
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proximation to the true CATE function. Therefore, this algorithm is considered
producing the most reliable and credible results, and is chosen as the preferred
specification. Although it clearly dominates the other techniques in terms of both
criteria, the estimation results from the tree-based algorithms RF and XGBoost
are presented in the further course of this section as well, as recommended by
Chernozhukov et al. (2018). The estimates obtained via the neural network are
excluded due to its overall poor performance.

Table 5: Performance metrics for ML algorithms

Elastic Net Random Forest XGBoost Neural Net

BLP - Λ 482,478,151 159,749,816 123,526,210 16,032,440
GATES - Λ̄ 71,684,309 29,304,652 25,459,158 41,131,787

Notes. The reported results are medians over 100 splits. Higher numbers indicate better performance for
both criteria.

The results from the BLP estimation are presented in Table 6. It shows the
medians for the coefficients, confidence intervals (CI), and p-values computed
using the VEIN methods described in Section 2.5. Thus, although originally
being 95% CIs, their nominal significance level is reduced to 90% to account
for the splitting uncertainty. The reported p-values are sample splitting adjusted
p-values. The coefficients for the BLP of the CATE function using the proxy
constructed via ENet are -6,195 for the intercept β1, and 0.316 for the slope
β2. The CIs for the parameters are far from zero, and both are significant at
any conventional significance level, indicated by the adjusted p-values of 0.000.
Since β1 identifies the ATE, these results imply that being treated, i.e. a house
being located in the range of 5 km to the nearest wind turbine, reduces the average
asking price by around 6,200e. Further, the result for β2 indicates that first, there
exists heterogeneity in treatment effects, and second, this heterogeneity is also
successfully predicted by the elastic net algorithm. Similar to these results, the
XGBoost algorithm yields a significant and negative ATE as well, however with
a coefficient of -2,657 it is lower than the ATE estimated via ENet. In contrast to
that, the RF does not identify a negative ATE. The estimated coefficient of -21 is
further very close to zero and not statistically significant. Overall, the estimated
ATEs are rather small, keeping in mind that the average asking price in the
sample is around 340,000e (Table 4). As for ENet, the heterogeneity coefficients
β2 (HET) are significantly different from zero for both tree-based algorithms
as well, again implying that there exists heterogeneity in the treatment effects
of wind turbines on property prices. However, both are considerably smaller
compared to the HET coefficient derived from ENet with 0.143 for RFs and 0.072
for XGBoost. This again illustrates that both algorithms provide a much worse
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approximation to the true CATE function, and that the elastic net captures
the effect heterogeneity by far the best. Nonetheless, the results are consistent
across algorithms in the sense that they all provide evidence in favor of effect
heterogeneity.

Table 6: BLP estimation results

Elastic Net

ATE (β1) HET (β2)

Coefficients -6,195 0.316
Confidence bands (-7,499 ; -4,868) (0.252 ; 0.379)
Adjusted p-values [0.000] [0.000]

Random Forest

ATE (β1) HET (β2)

Coefficients -21 0.143
Confidence bands (-1,079 ; 993) (0.130 ; 0.157)
Adjusted p-values [0.810] [0.000]

XGBoost

ATE (β1) HET (β2)

Coefficients -2,657 0.072
Confidence bands (-3,706 ; -1,611) (0.064 ; 0.079)
Adjusted p-values [0.000] [0.000]

Notes. The reported results are medians over 100 splits. The CIs are at the
90% significance level. Adjusted p-values are from t-tests with H0: estimated
coefficient is equal to zero.

Table 7 presents the results for the estimation of the group average treatment
effects. The groups are constructed based on the deciles of the proxy S(Z),
thus there are ten groups. Assuming a negative effect of wind turbines on house
prices, as suggested by the existing literature (see also Section 1), the most af-
fected group, i.e. the group with the largest negative effect, is identified by the
observations in the first decile, while the least affected group is given by the
properties in the last decile. Table 7 shows the estimated effects for the most and
least affected groups as well as the difference between both groups. Starting again
with the elastic net, the point estimate for the least affected group still suggests
a small negative treatment effect of -3,760, however not significant, as indicated
by the CI, which includes zero, and the adjusted p-value of 0.163. The ATE in
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Table 7: GATES estimation results

Elastic Net

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients -3,760 -20,419 16,031
Confidence bands (-7,950 ; 494) (-24,379 ; -16,521) -
Adjusted p-values [0.163] [0.000] [0.000]

Random Forest

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients 5,124 -13,028 18,410
Confidence bands (1,491 ; 8,717) (-16,571 ; -9,552) -
Adjusted p-values [0.010] [0.000] [0.000]

XGBoost

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients -1,434 -12,956 11,900
Confidence bands (-4,721 ; 1,885) (-16,431 ; -9,446) -
Adjusted p-values [0.167] [0.000] [0.000]

Notes. The reported results are medians over 100 splits. The CIs are at the 90% significance
level. Adjusted p-values are from t-tests with H0: estimated coefficient is equal to zero. Since
a negative effect of wind turbines on house prices is assumed, the most affected group is the
group with the largest negative effect proxy, i.e. the first decile.

the most affected group however is substantial in both statistical significance and
its magnitude. It is significant at any conventional significance level given the
adjusted p-value of 0.000 and amounts to -20,419. The difference between both
groups is estimated to be 16,031, i.e. houses in the most affected group react to
wind turbines in the range of up to 5 km with a price reduction, which is around
16,000e higher compared to the least affected group. In line with the ENet re-
sults, XGBoost also does not find significant positive treatment effects, even in
the least affected group. The point estimate is negative (-1,434), although again
not significant. Additionally, the estimated group average treatment effect in the
first decile is significant and negative with -12,956. The estimated difference is
11,900 and significant as well. The RF is the only algorithm which finds signifi-
cant positive treatment effects in the least affected group with a significant point
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estimate of 5,124 and an adjusted p-value of 0.010. However, in line with the
other two algorithms, an estimation result of -13,028 reveals negative effects in
the most affected group as well. Due to the positive estimate in the last decile,
the difference between the groups is 18,410, and thus the largest among all three
algorithms. Therefore, all algorithms find large and significant differences be-
tween the most and least affected groups as well as substantial negative effects
for the most affected group, which range from -12,956 to -20,419. Only the RF
finds positive treatment effects at all, which is however not confirmed by the other
two models.

Additional to the results on the HET coefficient β2 from the BLP estimation dis-
cussed earlier, the GATES hence provide further evidence in favor of treatment
effect heterogeneity. This is also supported by an F-test on the equality of all the
GATES coefficients in the deciles: the adjusted p-values derived from the elastic
net, random forest and XGBoost are all very close to zero, thus the hypotheses
that these do not differ from each other is rejected. Furthermore, Figure 10 plots
the GATES for all ten groups and the three algorithms considered in more de-
tail.34 The point estimates are illustrated by the dots, while the 90% CIs are
represented by the errorbars. The dashed and dotted lines denote the ATEs and
the upper and lower bounds of the 90% CIs obtained from the BLP estimation.
The pattern of the estimated parameters is almost as expected given the mono-
tonicity assumption introduced in Section 2.3, i.e. the GATES are increasing
with the groups based on the CATE proxy S(Z). The only exceptions are the
estimates in the least affected groups using elastic net and XGBoost, which are
slightly lower than the coefficients for the second-least affected groups, however
both parameters are not statistically different from zero, as indicated by their
CIs. All algorithms find strong negative and significant treatment effects in the
most affected group, i.e. for the properties in the first decile of the CATE proxy.
As discussed above, only the approach using the RF estimates significant positive
effects, while the other two algorithms do not find any positive impact of nearby
wind turbines on house prices. Furthermore, the estimations building on elastic
net and XGBoost suggest significant negative treatment effects up to group 5
and group 2, respectively. In many groups the GATES differ significantly from
each other as demonstrated by the non-overlapping CIs of the respective groups.
The estimated coefficients in the first decile even differ significantly from all other
group average treatment effects for all three algorithms. All in all, Figure 10 is
seen as additional evidence of treatment effect heterogeneity.
34 The full estimation results for all GATES coefficients including CIs and adjusted p-values

can be found in Appendix A.3 in Table A8.
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Figure 10: GATES results
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Continuing with the classification analysis, Table 8 presents the arithmetic means
for the analyzed variables in the most and the least affected groups derived from
the estimation based on elastic net. Since the elastic net provides the best ap-
proximation to the CATE function, as discussed above, the CLAN results are
reported for this algorithm only for reasons of improved readability. However,
although less pronounced, the results are qualitatively similar for the other algo-
rithms, if not explicitly stated differently. Moreover, the full results can be found
in Appendix A.3 in Table A9. The difference of the means between the most and
least affected group is statistically significant for every variable, even if it is rather
small in absolute size, which is probably due to the large number of observations
in the sample. Therefore, CIs and p-values are not explicitly reported here.

Regarding the covariates, the elastic net finds large differences in the average
number of inhabitants per grid. Properties in the first decile of the proxy are
located in grids with on average 2,473 inhabitants, while the average number of
inhabitants is only 1,896 in the least affected group. This indicates that prices
of houses in more densely populated areas are affected more strongly than house
prices in grids with a lower population density. This is also supported by the
results on the shares of semidetached and terraced houses, which are lower in the
most affected groups (4% and 3% in decile 1, 24% and 30% in decile 10), as
well as by the results on multi-family houses, which is higher in this group (22%
and 7%, respectively). In addition to that, another large difference is found in
the average asking prices of houses in both groups. The mean price of a property
in the most affected group is over 600,000e, and thus more than twice as high
as the average price in the least affected group (289,705e). This is also reflected
by the fact that the share of villas (19%) in the most affected group is almost
seven times as high as the overall share in the entire sample (3%), while the share
in the last decile is only 0.2%, and thus substantially smaller than the overall
mean. These findings however are not surprising. All of the results discussed until
this point stem from a linear specification using the absolute house prices as the
outcome variable throughout the prediction and estimation steps. Therefore, it
is reasonable to assume that the size of the treatment effects is strongly driven by
the level of the house prices. This may lead to somehow misleading results, since
although the absolute effect size might be larger for more valuable properties,
the relative effect size might actually be fairly small and much higher for less
expensive properties. Another concern with this linear approach is that a large
amount of the effect heterogeneity may therefore get absorbed by the levels of
the asking prices.
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Table 8: CLAN results

Variable
Elastic Net

Most Least

Asking price 612,362 289,705
Year of construction 1965.8 1969.9
Protected building (0/1) 0.04 0.01
Purch. power / capita* 24,232 22,654
Unemployment rate (%)* 5.6 5.2
# Inhabitants* 2,473 1,896
Skyscrapers (%)* 4.1 3.7
Housing blocks (%)* 8.6 9.1
Age: 0-25 (%)* 24.2 24.4
Age: 25-40 (%)* 17.6 17.2
Age: 40-65 (%)* 37.1 37.1
Age: 65+ (%)* 21.1 21.3
Farmhouse (0/1) 0.01 0.01
Bungalow (0/1) 0.02 0.03
Semidetached house (0/1) 0.04 0.24
Single-family house (0/1) 0.42 0.27
Multi-family house (0/1) 0.22 0.07
Terraced house (0/1) 0.03 0.30
Category: Other (0/1) 0.07 0.05
Villa (0/1) 0.19 0.002
Property condition 5.2 5.1

Notes. The reported results are medians over 100 splits. (0/1) after variables
denote dummy variables, asterisks indicate grid-level variables.

In order to combat this concern, additional specifications using a logarithmic-
transformed outcome are estimated. The approach and strategy are identical to
the estimation procedure described earlier, the only difference is that the asking
prices are log-transformed prior to the estimation.35 This logarithmic specifi-
cation facilitates the interpretation of the treatment effects, since the estimated
parameters then approximate relative changes instead of effects in absolute asking
35 The results from the proofs provided in Appendices A.1 and A.2 still hold in this case.

The only difference is that the treatment effect is no longer defined as s0(Z) := E[Y (1) |
Z]− E[Y (0) | Z], but instead as s0(Z) := E[log(Y (1)) | Z]− E[log(Y (0)) | Z]. Therefore,
all the steps and operations are still valid and work as explained. Hence, β1 and β2 still
define the BLP of s0 given S(Z), and γk still estimate the GATES parameters.
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prices. Since only the dependent variable is log-transformed and all predictors
enter the model in their linear form, the regressions are log-linear models. In such
models, an estimated coefficient β has the interpretation that a unit change in the
respective predictor is accompanied by (approximately) a 100∗β% change in the
outcome. Since the treatment indicator is binary, a one-unit change corresponds
to a change in treatment status, and thus the parameters β1 from the BLP and
γk are just the approximated (group) average treatment effects in percent. The
exact percentage change can be calculated from the parameters using the formula
%∆y = 100 ∗ (eβ − 1) (see for example Wooldridge, 2016).

Table 9: BLP estimation results - log specification

Elastic Net

ATE (β1) HET (β2)

Coefficients -0.007 0.328
Confidence bands (-0.010 ; -0.005) (0.257 ; 0.403)
Adjusted p-values [0.000] [0.000]

Random Forest

ATE (β1) HET (β2)

Coefficients 0.002 0.068
Confidence bands (-0.0003 ; 0.003) (0.053 ; 0.083)
Adjusted p-values [0.175] [0.000]

XGBoost

ATE (β1) HET (β2)

Coefficients -0.007 0.050
Confidence bands (-0.009 ; -0.005) (0.022 ; 0.080)
Adjusted p-values [0.000] [0.001]

Notes. The reported results are medians over 100 splits. The CIs are at the
90% significance level. Adjusted p-values are from t-tests with H0: estimated
coefficient is equal to zero.

The results of the BLP estimation for the logarithmic specifications, again utiliz-
ing ENet, RFs and XGBoost to construct S(Z), are shown in Table 9. As before,
the ENet and XGBoost algorithms reveal significant negative ATEs of -0.7%,
while the RF-based approach results in a positive point estimate this time, how-
ever still insignificant and very close to zero. Log-transforming the asking prices
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does not seem to affect the ability to approximate the CATE function when using
ENet, as indicated by similar parameters for β2 (0.328 and 0.316, respectively).
The approximation using the tree-based methods however gets worse. While the
linear specification yielded parameters of 0.143 for the RF and 0.072 for XG-
Boost, the log-transformed outcome models result in coefficients of only 0.068
and 0.050, respectively. However, although these are smaller than in the linear
models, all HET coefficients are again different from zero and highly significant,
which is again taken as evidence in favor of the existence of treatment effect
heterogeneity.

Analogous to Table 7, Table 10 presents the results on the GATES estimation
using the logarithmic specifications. The preferred model building on ENet again
does not identify statistically significant positive treatment effects in the least
affected group. The average treatment effect in the first decile on the other hand
is both highly significant and also substantial in size with -2.0%. This results in
a difference of 2.1 percentage points between the groups. The XGBoost yields
similar results. Although it reveals negative point estimates even in the last decile
of the proxy, it is not significant with a p-value of 0.363. Furthermore, in line
with ENet, a significant negative ATE is found in the first decile, which amounts
to -1.5%. Overall, the point estimates from XGBoost are smaller in size and less
divergent with a difference of only 1.1 percentage points between the first and the
last group. In contrast to ENet and XGBoost, which find negative effects only,
the estimation results from the RF again suggest substantial positive treatment
effects of up to 1.9% in the least affected group. However, the ATE in the most
affected group is estimated to be -1.5% and significant as well. The large spread
across the groups also results in the largest estimated difference for all algorithms
of 3.1 percentage points.

The results are mostly consistent across algorithms. All models reveal signifi-
cant negative treatment effects in the most affected group. The RF is the only
model, which suggests positive effects for parts of the sample, however this is
neither confirmed by XGBoost nor by ENet. Furthermore, all algorithms reject
the hypothesis of no heterogeneity in treatment effects. This is again visual-
ized in Figure 11. The first panel plotting the GATES from the ENet model
reveals results, which are similar to the linear specification: significant negative
group average treatment effects are found up to the fifth decile, while all other
groups are not significantly affected, indicated by the CIs including zero. The
XGBoost panel reveals only little variation in the estimated GATES, as already
indicated by Table 10. The properties in the first four groups are estimated to
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Table 10: GATES estimation results – log specification

Elastic Net

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients 0.000 -0.020 0.021
Confidence bands (-0.007 ; 0.008) (-0.027 ; -0.013) -
Adjusted p-values [0.363] [0.000] [0.000]

Random Forest

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients 0.019 -0.012 0.031
Confidence bands (0.013 ; 0.025) (-0.018 ; -0.006) -
Adjusted p-values [0.000] [0.000] [0.000]

XGBoost

Least affected
(γ10)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients -0.003 -0.015 0.011
Confidence bands (-0.010 ; 0.003) (-0.022 ; -0.009) -
Adjusted p-values [0.376] [0.000] [0.029]

Notes. The reported results are medians over 100 splits. The CIs are at the 90% significance
level. Adjusted p-values are from t-tests with H0: estimated coefficient is equal to zero. Since
a negative effect of wind turbines on house prices is assumed, the most affected group is the
group with the largest negative effect proxy, i.e. the first decile.

suffer from a slight decrease in asking prices, while no effects are found for all
remaining groups. Moreover, none of the GATES differ significantly from the
overall ATE, as indicated by the overlapping CIs of the GATES and the ATE
from the BLP estimation. The GATES from the RF show the above discussed
differences compared to the ENet: while statistically significant negative effects
are detected in the first two deciles as well, significant positive point estimates
begin in the ninth decile and increase further in the last group. Although not as
clearly as Figure 10, Figure 11 still provides evidence in favor of existing treat-
ment effect heterogeneity as well. The estimated ATEs in the first decile still
differ from ATEs in many other groups for ENet and RFs. The GATES are only
in the case of the XGBoost-based approach not significantly different from each
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other. However, since especially the elastic net provides a much better approx-
imation to the CATE, as also implied by the much larger HET parameter β2
from the BLP estimation, the results still strongly point towards the existence of
heterogeneity, especially when considered in combination with the results from
Table 10. The lacking heterogeneity from the XGBoost is very likely to originate
from the poor approximation to the CATE, as indicated by the very small HET
coefficient of 0.050, and thus not seen as strong evidence against treatment effect
heterogeneity.

Lastly, the CLAN results from the logarithmic models are presented in Table 11.
As before, only the classification analysis from the elastic net is shown here.
Again, the full results for all algorithms can be found in Appendix A.3 in Ta-
ble A11. The first thing to notice is that the asking prices differ much less in
the most and least affected groups compared to the linear specification. This
implies that higher-priced or more valuable properties do not necessarily suffer
more strongly from nearby wind turbines when examining effects relative to the
properties’ values instead of treatment effects in absolute values. In fact, the clas-
sification analysis implies that the relative price decrease for houses in a range of
5 km to the nearest wind turbine is even stronger for less expensive houses. Such
a finding would imply undesired allocation effects. More valuable properties are
more likely to be owned by wealthier owners and owners with higher income.
Thus, if less valuable properties’ prices would additionally be reduced by a larger
amount, wind turbines would affect less wealthy people disproportionately more.
However, this result is not consistent across algorithms (Table A11) and is also not
supported by the average grid-level purchasing power, which is roughly identical,
or even slightly higher in the most affected group. Moreover, the CLAN from the
log-linear model reveals further heterogeneity in the covariates: while the average
year of construction in the least affected group is slightly above the overall sam-
ple average with 1983.5, the mean construction year in the most affected group is
much lower (1944.1). Therefore, especially old houses are more severely affected
by the proximity to wind turbines compared to newer houses. Moreover, the share
of protected historic buildings is twice as high in the most affected group (4%
and 2%, respectively). This difference might simply be a result from the much
lower average construction year, however it may also indicate, that houses, whose
appearance is in sharp contrast to the more modern look of wind turbines and the
landscape they are built in, undergo a larger price reduction. Furthermore, the
large difference in the average number of inhabitants per grid becomes apparent
in the log-linear specification as well with an average of 2,596 in the first, and
of only 1,693 in the last decile. Thus, the difference is even more pronounced in
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Figure 11: GATES results – log specification
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this specification, and further also consistent across algorithms. As before, this
is also in line with the results on the shares of semidetached, multi-family„ and
terraced houses, and is additionally supported by a higher share of housing blocks
in the most affected grids (8.6% and 7.7%, respectively). These results reveal
that properties in more densely populated areas are affected on average much
more strongly than houses in more rural areas. One possible explanation is that
owners and buyers of such properties in more rural areas might simply be more
used to the look of wind turbines and their visual impact on the landscape, and
do not perceive them negatively. The share of farmhouses, on the other hand, is
higher in the least affected group. This might reflect the fact that wind turbines
are sometimes co-owned by farmers or are built on properties owned by farmers.
However, such wind turbines are often only small plants with a nominal capacity
of less than 30 kW, and such power plants are excluded from the data on wind
turbines due to data privacy reasons. Therefore, this might also result from the
same reasons as above, namely that farmers and people living in or buying farm-
houses simply do not perceive wind turbines as negatively as, for example, people
living in cities, in which wind turbines constitute rather unusual sights.

Another noticeable difference is that values of properties, which are in better
condition, indicated by the average property condition of 4.2 out of 10 in the
last decile compared to 6.2 out of 10 in the first decile, are stronger affected
by nearby wind turbines. This seems intuitive since there are more urgent and
striking issues than possibly being somewhat close to a wind power plant for
owners and potential buyers of properties which are in poor condition or in need
of renovation. Interestingly, there are no substantial differences regarding the
average demographic composition of grids in both groups. One could hypothesize
that younger people might be more aware of climate change and GHG emissions
related problems, as indicated for example by the Fridays for Future movement.
Doing so, one would expect to find a higher willingness-to-accept nearby wind
turbines in order to promote environmentally friendly energy generation among
younger people, which in turn would result in a less negative treatment effect of
nearby wind turbines on the house prices. However, this hypothesis cannot be
confirmed with the data at hand and the results found here.

To summarize, all three algorithms, elastic net, random forest and XGBoost, pro-
vide evidence in favor of substantial heterogeneity of the effects of wind turbines
on house prices for properties located in a range of maximum 5km to the nearest
wind power plant. The ENet- and XGBoost-based models estimate rather small,
but significant ATEs, while the RF does not find a significant ATE. However,
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Table 11: CLAN results – log specification

Variable
Elastic Net

Most Least

Asking price 12.6 12.8
Year of construction 1944.1 1983.5
Protected building (0/1) 0.04 0.02
Purch. power / capita* 23,797 22,606
Unemployment rate (%)* 5.7 5.1
# Inhabitants* 2,596 1,693
Skyscrapers (%)* 3.5 3.6
Housing blocks (%)* 8.6 7.7
Age: 0-25 (%)* 24.2 24.5
Age: 25-40 (%)* 17.7 17.0
Age: 40-65 (%)* 37.0 37.5
Age: 65+ (%)* 21.2 21.1
Farmhouse (0/1) 0.01 0.03
Bungalow (0/1) 0.02 0.04
Semidetached house (0/1) 0.07 0.18
Single-family house (0/1) 0.39 0.45
Multi-family house (0/1) 0.25 0.10
Terraced house (0/1) 0.13 0.07
Villa (0/1) 0.05 0.06
Category: Other (0/1) 0.07 0.06
Property condition 6.2 4.2

Notes. The reported results are medians over 100 splits. (0/1) after variables
denote dummy variables, asterisks indicate grid-level variables.

according to the criteria to choose the best ML algorithm provided by Cher-
nozhukov et al. (2018), the elastic net outperforms both tree-based algorithms.
Furthermore, this is also supported by the β2 parameter from the BLP estimation,
which suggests that ENet is the most suitable and best predictor of treatment
effect heterogeneity in the presented work. Since the elastic net hence provides by
far the best approximation to the true CATE function, it is seen as the preferred
algorithm in this case and the estimation results from models building on CATE
proxies constructed via ENet are deemed the most credible ones.
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Regarding the specification of the outcome variable, i.e. the properties’ asking
prices, it is reasonable to assume that in a standard linear-linear model these
prices absorb much of the treatment effect heterogeneity. In order to avoid this,
and also to facilitate the interpretation of the estimated effects, log-linear models
are additionally estimated. Using such models, ENet and XGBoost again find
small ATEs of -0.7%, while the ATE estimated via RFs is not statistically signifi-
cant. Furthermore, all algorithms provide evidence in favor of effect heterogeneity
as well. Due to the same reasoning as above, the elastic net is again considered
providing the most reliable and credible results. The parameters of the GATES
estimation utilizing ENet reveal substantial negative treatment effects of -2.0%
in the most affected group. Such negative treatment effects are moreover ob-
served up to the fifth decile, i.e. for 50% of the analyzed properties. While the
RF-based models suggest positive treatment effects of up to 1.9%, this is not
confirmed by any of the other algorithms. Both do not find positive impacts of
wind turbines at all and instead provide evidence in favor of negative treatment
effects only. Therefore, although not entirely consistent across algorithms, there
is strong evidence for a negative effect of wind turbines on the prices of nearby
houses.

Furthermore, the classification analysis reveals interesting differences in the com-
position of the most and least affected group. Houses located in on average
more densely populated areas are more strongly affected. The same holds true
for much older houses, protected historic buildings and properties in a better
condition. Moreover, slightly less valuable properties tend to experience a more
severely price reduction when wind power plants are located in their proximity,
albeit this is not consistent across algorithms and cannot be stated with certainty.
All in all, the difference in the estimated GATES indicate that there is a difference
of up to 3.1 percentage points regarding the treatment effect between properties
in the most and least affected groups.

The obtained results are only partly in line with the findings from Frondel et al.
(2019). On the one hand, the authors estimate larger negative treatment effects
for houses which are built before 1950. This is supported by the results from the
empirical analysis in this thesis. Properties in the most affected group are on
average built in 1944, while the average construction year in the least affected
group is 1984. On the other hand, Frondel et al. (2019) also find stronger negative
treatment effects for houses in rural areas, measured as being further away than
10 km from the nearest city center. This finding, however, is diametral to the
results obtained here. These reveal much stronger impacts of wind turbines on
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prices of properties, which are on average located in much more densely populated
grids. This is also consistent with other covariates, as for example higher shares
of large housing blocks or multi-family houses in the most affected group, and also
across all algorithms used to construct the CATE proxy. Moreover, in contrast to
Frondel et al. (2019), the estimated effects are substantially smaller here. While
the authors find effects of up to -7.1% for houses in a range of 1 km to the
nearest wind turbine and even -20.9% for houses built before 1950, the largest
negative effects found here are -2.0% in the most affected decile. Given the
extremely high prices of houses in general, compared to almost all other purchase
decisions, such a moderate treatment effect of a few percents appears to be more
reasonable, especially assuming that the main effect stems from visibility effects
and negatively perceived landscape disturbances (Gibbons, 2015).

6.2 Robustness Checks

In addition to the main estimations, of which the results are discussed in the
previous section, two further specifications are estimated as robustness checks.
For both these robustness checks only the preferred estimation approach is used,
i.e. the CATE proxy is constructed via the elastic net algorithm and the asking
prices are log-transformed, thus the coefficients can be interpreted as approximate
percentage changes.

The first additional estimation is related to the sizes of the treatment effects. In
the main specifications depicted above, the properties are divided into 10 groups
based on deciles of the CATE proxy. However, it might be possible that the
properties in the first decile, i.e. the most affected group, are not evenly affected
by the negative treatment effect of -2.0%, but that this effect is rather driven by
a small fraction of this group, which reacts very strongly, while the majority of
the properties are affected to a much lesser extent. In order to verify or reject this
hypothesis, the estimation is repeated, however, the main sample is not divided
into 10 groups only, but into 50 groups. As expected, the number of groups has
no impact on the best linear predictor, thus the BLP estimation yields the same
results, and is therefore not presented again here. The results from the GATES
estimation are reported in Table 12.

These still reveal no positive treatment effects in the least affected group, here
identified by the 2% of observations with the largest CATE proxy values. Albeit
positive (0.004), the point estimate is close to zero and far from statistical signifi-
cance with an adjusted p-value of 0.199. On the contrary, the GATES coefficient
for the most affected group is the largest negative effect identified up to now with
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Table 12: GATES estimation results – 50 groups

Elastic Net

Least affected
(γ50)

Most affected
(γ1)

Difference
(γ10 − γ1)

Coefficients 0.004 -0.030 0.035
Confidence bands (-0.013 ; 0.021) (-0.047 ; -0.012) -
Adjusted p-values [0.199] [0.002] [0.006]

Notes. The reported results are medians over 100 splits. The CIs are at the 90% significance
level. Adjusted p-values are from t-tests with H0: estimated coefficient is equal to zero. Since
a negative effect of wind turbines on house prices is assumed, the most affected group is the
group with the largest negative effect proxy, i.e. the first decile.

-3.0%, and significant at any conventional significance level as well. This also
yields a large difference of treatment effects between the most and least affected
group of 3.5 percentage points. The results depicted in Table 12 thus at least
point towards the above stated hypothesis that the negative treatment effect of
-2.0% in the most affected decile of properties is driven by a part of more severely
affected houses.

Figure 12 provides further insight into the composition of the group average treat-
ment effects. In the same way as in Section 6.1, the figure shows the estimated
GATES coefficients for all 50 groups and the accompanying 90% CIs as well as
the results from the BLP estimation. In line with the results using 10 groups, the
specification with 50 groups does not find significant positive treatment effects
in any of the groups. Moreover, it is notable that the estimated CIs are much
wider compared to the CIs from Section 6.1. This is most probably due to the
much lower number of observations in each group, which does not allow to esti-
mate the GATES coefficients as precisely as in the approach with 10 groups only.
Furthermore, the plot reveals the hypothesized pattern, albeit not as pronounced
as expected: the estimated effect in the most affected 2% of the properties is the
largest in absolute size, however there is no clear gap or jump from the first to
the second group. Therefore, while the group average treatment effect in the first
decile still differs between properties within this group, there is no small number
of houses which clearly drive this effect, while the remaining houses are affected
to a much lesser extent.

Since the less affected groups are fairly small, but do not differ much in terms
of their estimated treatment effects, there is a risk of accidentally comparing the
most affected group to a particularly selected group, which might not be represen-
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Figure 12: GATES results - 50 groups

tative for most of the unaffected properties, when conducting the classification
analysis. Therefore, during the CLAN, the most affected group is not simply
compared to the least affected group, but rather to the least affected 50% of
the sample. This is a reasonable approach since the GATES estimation does not
reveal any significant effects for the least affected 50% of the analyzed proper-
ties, neither did the main specification in Section 6.1 nor the robustness check
conducted here. Table 13 displays the results from the respective classification
analysis.

The results are qualitatively very similar to the results obtained in Section 6.1,
but much more pronounced. The average year of construction is again substan-
tially lower in the most affected group, even compared to the 10% most affected
properties, and amounts to 1917.9. 7% of the properties are protected historic
buildings, which constitutes a very large fraction compared to the sample mean
of only 1%, and which is also much higher than in the first decile. The same
holds true for the number of inhabitants, increasing from 2,596 to 3,833, also in
line with the shares of housing blocks (12.0%), of semidetached houses (4%),
multi-family houses (33%), and even skyscrapers (4.8%).

All in all, the obtained results do not clearly provide evidence in favor of the
hypothesis, that the negative treatment effects are largely driven by a small frac-
tion of the overall sample. While the most affected 2% of the properties are
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Table 13: CLAN results – 50 groups

Variable
Elastic Net

2% Most 50% Least

Asking price 12.7 12.6
Year of construction 1917.9 1986.1
Protected building (0/1) 0.07 0.01
Purch. power / capita* 23,762 22,648
Unemployment rate (%)* 6.6 5.1
# Inhabitants* 3,833 1,711
Skyscrapers (%)* 4.8 3.0
Housing blocks (%)* 12.0 6.9
Age: 0-25 (%)* 24.2 24.6
Age: 25-40 (%)* 18.8 16.8
Age: 40-65 (%)* 36.2 37.7
Age: 65+ (%)* 20.6 21.0
Farmhouse (0/1) 0.01 0.01
Bungalow (0/1) 0.01 0.04
Semidetached house (0/1) 0.04 0.19
Single-family house (0/1) 0.28 0.50
Multi-family house (0/1) 0.35 0.08
Terraced house (0/1) 0.11 0.11
Villa (0/1) 0.08 0.03
Category: Other (0/1) 0.10 0.04
Property condition 6.2 4.3

Notes. The reported results are medians over 100 splits. (0/1) after variables
denote dummy variables, asterisks indicate grid-level variables.

more strongly affected with an estimated ATE of -3.0%, there is no clear cut
or gap between the effects for this group and the preceding groups. Thus, while
there appears to be some heterogeneity in treatment effects between properties
within the most affected decile, it is not as distinct as one would expect given the
just stated hypothesis. However, the results from the classification analysis are
consistent with the results from the main specification, by which they add to the
robustness and credibility of the results.

One potential limitation of this thesis and the utilized empirical strategy is that
it is difficult to clearly divide the sample into a treatment and a control group.
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Assuming that the estimated negative impacts of wind turbines on the properties’
asking prices are most likely and mainly due to visibility effects (Gibbons, 2015),
the distance to the nearest wind turbine can at most serve as a proxy for this
visibility. Therefore, depending on the choice of the treatment distance thresh-
old, properties without wind turbines in sight might unintentionally end up in
the treatment group, and vice versa. As a brief reminder: in the first step of the
exploited estimation strategy, separate models are fitted to both the treatment
and the control group. These models are then used to predict (hypothetical) out-
comes under treatment and no treatment for all observations in the main sample,
and the difference between these predictions is further used in the weighted linear
regressions as the treatment effect proxy. If a substantial number of properties in
the treatment group would actually not be treated, this would result in upward
shifted predictions for the treatment group model. The difference between pre-
dictions would then be underestimated, and hence the CATE proxy, and with it
the treatment effects, would be biased downward. The second robustness check
therefore concerns the choice of the maximum treatment threshold. As discussed
in Section 5, based on findings from the literature on the effects of wind turbines
on house prices, a maximum distance of 5 km to the nearest wind turbine is cho-
sen for houses to be assigned to the treatment group in the main specification.
In addition to that, the estimation procedure utilizing the elastic net algorithm
is repeated with a reduced treatment threshold of 3 km.

Table 14: BLP estimation results – 3 km threshold

Elastic Net

ATE (β1) HET (β2)

Coefficients -0.010 0.064
Confidence bands (-0.014 ; -0.007) (-0.065 ; 0.179)
Adjusted p-values [0.000] [0.001]

Notes. The reported results are medians over 100 splits. The CIs are at the
90% significance level. Adjusted p-values are from t-tests with H0: estimated
coefficient is equal to zero.

Using this threshold reduces the number of treated properties from 313,460 (36.7%)
to 150,858 (17.9%).36 The results from the BLP estimation are reported in Ta-
ble 14. While the estimated ATE in the main specification above was -0.7%,
the ATE for a range of 3 km is slightly higher and amounts to -1.0%. This is as
36 Using the same propensity score trimming thresholds of below 0.05 and above 0.95 would

result in the exclusion of 25.3% of the main sample on average. Therefore, the trimming
thresholds are adjusted to propensity scores of below 0.01 and 0.99 only. This removes on
average 5.0% of the properties from the estimation samples.
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expected, assuming both that a closer distance as a threshold reduces the risk of
non-treated houses ending up in the treatment group, and that treatment effects
increase with a smaller distance between properties and wind turbines, as for
example found by Frondel et al. (2019) or Gibbons (2015). The HET coefficient
β2 however decreased drastically from 0.328 to only 0.064. Furthermore, the con-
fidence interval and the adjusted p-value reveal ambiguous findings. While the
former is rather wide and includes zero, the p-value in contrast indicates that the
estimated parameter is significantly different from zero. This difference is due to
the way the CIs and the p-values are calculated. A closer look into the results
for each single data split reveals that the estimated β2 coefficients differ by a
large extent, ranging from -0.916 to 0.691. Since they are roughly symmetrically
spread around zero, the median over all these splits is close to zero as well, as
also indicated by the reported parameter in Table 14. The same holds true for
the upper and lower bounds of the CIs. However, since a large fraction of the
estimated negative coefficients are far from zero and significant, while the same is
true for a large fraction of the estimated positive coefficients, this leads to many
very small p-values. In fact, 39 out of 44 negatively estimated coefficients are
different from zero at the 10% significance level, while this is the case for 43 out
of the remaining 56 positive HET coefficients. Therefore, the median over all the
p-values, and the adjusted p-values are very small as well. Hence, the p-value in
this specific case is misleading and the CI is more accurate and trustworthy, and
thus the null hypothesis that β2 is equal to zero, cannot be rejected. Referring
back to Section 2.2, testing this hypothesis corresponds to testing whether there
is heterogeneity in treatment effects, and whether this heterogeneity can be pre-
dicted by the ML algorithm used to construct the proxy S(Z) at the same time.
Therefore, the wide CI implies that either there are no HTEs on properties in the
range of maximum 3km to the nearest wind turbine, or that the heterogeneity is
simply not captured by the elastic net model.

Figure 13 plots the estimated GATES coefficients and the corresponding 90%
CIs. The average treatment effect in the most affected group amounts to -3.5%,
and thus is larger compared to the ATE in the first decile using the 5 km threshold
(-2.0%). The remaining GATES parameters up to the least affected decile are
very close to the estimated coefficients from Figure 11. However, in contrast to
all the results obtained until now, the ATE in the last group becomes negative
again and is also statistically significant. This result is not as expected, since this
group constitutes the decile, which contains the properties with the largest proxy
treatment effects S(Z). Given the monotonicity assumption from Section 2.3,
the GATES should increase with the groups constructed from the proxy as well.
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Figure 13: GATES results – 3 km treatment threshold

Thus, the results obtained here constitute a clear violation of this assumption.
Chernozhukov et al. (2018) further note that monotonicity holds if the proxy
S(Z) is consistent for the true CATE function s0(Z). Thus, the violation of this
assumption can be seen as evidence that the elastic net algorithm in fact yields
a poor approximation to the CATE when a treatment threshold of 3 km instead
of 5 km is used. Therefore, it seems reasonable to conclude that the insignificant
β2 coefficient is more likely to result from a poor approximation, than to reject
the hypothesis of the existence of treatment effect heterogeneity.

7 Conclusion

Throughout the introduction of this master thesis it became clear that Germany
has already made great efforts to reduce its greenhouse gas emissions in order to
mitigate climate change and to limit the ongoing global warming. The largest
reductions in GHG emissions could be achieved in the sector of electricity gener-
ation via an extensive promotion of renewable energies. In the most recent years,
however, the capacity expansion of energy from renewables has slowed down.
This is especially caused by a drastic decline in the number of new wind turbines.
The construction of new wind power plants is often accompanied by severe local
protest and lawsuits due to perceived negative externalities. Empirical research
aimed at quantifying these negative externalities utilizing hedonic price models.
By estimating the impact of wind turbines on nearby properties’ prices, most of
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these studies find negative effects. Up to now, there exist only a single study
which investigates heterogeneous treatment effects in this context. The authors
find stronger effects on property values for houses in rural areas and for proper-
ties built before 1950. However, the literature still lacks a systematic, data-driven
evaluation of potential heterogeneity. Therefore, this thesis provides additional
details and insights into such heterogeneous effects.

In order to systematically analyze the effects of wind turbines on prices of nearby
properties, a particularly suitable empirical strategy, developed by Chernozhukov
et al. (2018), was explained in Section 2 of this thesis. The described approach
is data-driven in the sense that (non-parametric) machine learning algorithms
are used to flexibly model the relationship between observed covariates and the
outcome, without prespecifying or restricting the functional form of the fitted
models. The strategy is described as "agnostic", since it does not impose any
assumptions on the ML models, which are only difficult or even impossible to
verify. Specifically, the estimation approach does not even assume consistency or
unbiasedness of the estimators. In a first step, a proxy of the treatment effects
is constructed, which is then postprocessed to obtain average treatment effects.
Moreover, the method also identifies the most and least affected groups, the ATEs
in those groups, and the characteristics of the corresponding observations. The
approach even comes with statistically valid confidence intervals and adjusted
p-values, and thus can be used to make inferential statements about the obtained
results.

Since this empirical strategy heavily relies on ML algorithms, Section 3 provided
an overview of the main ideas and techniques of this field and introduced and
explained the algorithms utilized in this thesis. First, the elastic net algorithm
is chosen from the class of regularized linear models. Furthermore, Breiman’s
random forests (2001) and the recently developed XGBoost algorithm (Chen and
Guestrin, 2016) are used as more sophisticated techniques, both building on deci-
sion trees as base learners. Lastly, single hidden-layer feedforward neural networks
are adopted to construct the treatment effect proxy.

Section 4 described the datasets, this thesis’ empirical analysis draws upon, in
more detail. They comprise information on house prices and properties’ charac-
teristics, on locality characteristics on a one square kilometer grid, and on wind
turbines in Germany. Furthermore, this data is used to identify the nearest wind
turbines for all houses in the sample as well as to calculate the distance between
both. Moreover, necessary data cleaning and preprocessing steps were depicted.
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Closely connected to the data, Section 5 discussed various implementation de-
tails, which have to be taken into consideration when applying the previously
illustrated estimation strategy in this work’s specific context. The use of random
search in combination with repeated cross-validation to tune the algorithms’ hy-
perparameters is justified from a theoretical and practical point of view. The em-
pirical approach was originally developed for randomized controlled experiments
with one treated and one control group, and hence requires a binary treatment
indicator. Since only the distances between properties and the respective nearest
wind power plants are known, a maximum distance for houses to be regarded as
treated had to be defined. Relying on findings from the literature, a threshold
of 5 km was chosen. Moreover, in RCTs the propensity scores are known by the
design of the experiment. Since the data used in this paper is observational data,
the propensity scores have to be estimated. An experiment comparing logistic
regression, random forests and XGBoost and their ability to produce propensity
score estimates, which balance the treatment and the control group, was con-
ducted. Logistic regression resulted in the most balanced samples after weighting
with the estimated scores, as indicated by multiple balance diagnostics, and was
therefore chosen for the propensity score estimations. Lastly, the inclusion of
municipality-level fixed effects in order to control for possible unobserved factors,
which might influence the placing of wind turbines and property prices at the
same time, was motivated. The within-transformation approach and its advan-
tages over the use of dummy variables for each group level in this specific context
was further discussed.

Section 6 then presented and discussed the obtained empirical results. Utiliz-
ing criteria provided by Chernozhukov et al. (2018) to assess the performance
of the employed ML algorithms, the elastic net algorithm yielded the best ap-
proximation to the actual conditional average treatment effect function. While no
evidence was found that the prices might increase, when a wind turbine is located
in a range of 5 km to the properties, all algorithms identified significant negative
treatment effects. Building on the preferred specification, negative treatment ef-
fects of up to -2.0% for the most affected group were estimated. Further analyses
revealed even slightly higher effects of -3.0% for the 2% most affected properties
in the sample. Moreover, all estimations consistently provided evidence in favor
of the existence of heterogeneous treatment effects. The classification analysis
comparing characteristics of the most and least affected properties revealed inter-
esting differences between groups: properties, which are located in more densely
populated areas, are affected more strongly. The same holds true for much older
houses, protected historic buildings and properties in a better condition. These
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results were consistent across algorithms and the number of groups in the GATES
estimation as well.

One potential limitation of this thesis and the utilized approach lies in the identifi-
cation of the treatment and the control group. Assuming that negative impacts of
wind turbines on house prices are mostly due to visibility effects (Gibbons, 2015),
the employed distances between properties and the nearest wind power plants in
this thesis can only serve as a proxy for this visibility. Dröes and Koster (2016)
argue that people often visit multiple different locations in their neighborhood,
and thus see the wind turbines somewhat regularly, even if the plants cannot be
seen directly from their houses. However, the robustness check in Section 6.2,
using an alternative treatment threshold of 3 km, illustrated that, although the
results were partly as expected, i.e. larger ATEs were found, the exact choice
of the treatment distance actually does seem to be important in this case, as
indicated by the much worse CATE approximation.

All in all, while some of the results obtained here are in line with the only other
study on treatment effect heterogeneity of wind turbines on house prices, as for
example that older houses are much more affected, others are not, and even con-
tradict each other, as the conflicting results on which houses are more strongly
affected, either those in rural areas or in more densely populated areas. There-
fore, further research is needed to provide additional insights into how treatment
effects vary between properties. Due to the above stated reasons, such studies
would likely benefit from clearly identified visibility indicators of wind turbines
instead of utilizing distances between properties and wind turbines. The results
from those studies could help to further enhance the understanding of local cit-
izens’ rejection of new wind power plants and could be used to adequately and
monetarily compensate affected citizens in order to reduce local resistance and
promote acceptance, and hence the further expansion of wind turbines and re-
newable energies in general.
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Appendix

A.1 Proof of BLP Estimation Strategy*

Recall the weighted linear regression equation from Section 2.2 given by:

Y = α′X1 + β1
(
D − p(Z)

)
+ β2

(
D − p(Z)

)(
S(Z)− E[S(Z)]

)
+ ε, (A1.1)

with weights w(Z) =
1

p(Z)
(
1− p(Z)

) .
The minimization problem from this weighted regression yields the following normal
equations:

E
[
w(Z)(Y − α′X1 − β′X2)X2

]
= 0 (A1.2)

Define:

X1 := X1(Z), e.g.
[
1, B(Z)

]′ (A1.3)

X2 :=
[
{D − p(Z)}, {(D − p(Z))(S − E[S])}

]′ (A1.4)

S := S(Z) (A1.5)

Since Y = b0(Z) + s0(Z)D + U , Y can be replaced in Equation (A1.2):

E
[
w(Z)

(
b0(Z) + s0(Z)D + U − α′X1 − β′X2

)
X2

]
= 0 (A1.6)

Using the linearity property of expectations, this equation can be decomposed into
the following terms:

E
[
w(Z)b0(Z)X2

]
(A1.7a)

E
[
w(Z)s0(Z)DX2

]
(A1.7b)

E
[
w(Z)UX2

]
(A1.7c)

E
[
w(Z)α′X1X2

]
(A1.7d)

E
[
w(Z)β′X2X2

]
(A1.7e)

By the law of iterated expectations (LIE), Equation (A1.7a) can also be written
as:

E
[
w(Z)b0(Z)X2

]
= E

[
w(Z)b0(Z)E[X2 | Z]

]
(A1.8)

* The following proof is taken from the project studies thesis as submitted on April 04, 2020.
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Utilizing that the treatment variable D is a binary variable with D ∈ {0, 1} and
that the propensity scores p(Z) are the probability of treatment conditional on the
covariates, i.e. E[D | Z] = Pr(D = 1 | Z) = p(Z), the expectation of both elements
of X2 is zero:

E
[
D − p(Z) | Z

]
= E

[
D | Z

]
− E

[
p(Z) | Z

]
(A1.9)

= p(Z)− p(Z) (A1.10)

= 0 (A1.11)

Therefore Equation (A1.7a) and Equation (A1.7d) are equal to zero:

E
[
w(Z)b0(Z)X2

]
= E

[
w(Z)b0(Z)E[X2 | Z]︸ ︷︷ ︸

=0

]
= 0 (A1.12)

E
[
w(Z)α′X1X2

]
= E

[
w(Z)α′X1E[X2 | Z]︸ ︷︷ ︸

=0

]
= 0 (A1.13)

Since U is the residual from a regression of Y on Z,D, its expectation conditional
on Z,D is zero by construction and therefore Equation (A1.7c) is zero as well:

E
[
w(Z)UX2

]
= E

[
w(Z)E[U | Z,D]︸ ︷︷ ︸

=0

X2

]
= 0 (A1.14)

Thus, the normal equations from Equation (A1.6) simplify to:

E
[
w(Z)

(
s0(Z)D − β′X2

)
X2

]
= 0 (A1.15)

Further, the following relation will be used:

E
[(
D − p(Z)

)(
D − p(Z)

)
| Z
]

= E
[
(D − p(Z))2 | Z

]
(A1.16)

= Var
[
D − p(Z) | Z

]
− E

[
D − p(Z) | Z

]︸ ︷︷ ︸
=0

(A1.17)

Since p(Z) | Z is a constant, Var[D − p(Z) | Z] simplifies to Var[D | Z]. Utilizing
that D | Z ∼ B

(
1, p(Z)

)
, its variance is given by Var[D | Z] = p(Z)(1 − p(Z)),

which corresponds to the inverse of the weights w(Z) as defined in Section 2.2.

= Var
[
D | Z

]
(A1.18)

= p(Z)
(
1− p(Z)

)
(A1.19)

= w−1(Z) (A1.20)
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This relation is used to show that both components of X2 are orthogonal under the
weights w(Z). As a reminder, X2 := [{D− p(Z)}, {(D− p(Z))(S −E[S])}]′. Using
the results from Equations (A1.16) to (A1.20), orthogonality can be shown:

E
[
w(Z)(D − p(Z))(D − p(Z))(S − E[S])

]
(A1.21)

= E
[
w(Z)w−1(Z)(S − E[S])

]
(A1.22)

= E
[
S − E[S]

]
(A1.23)

= 0 (A1.24)

Utilizing orthogonality of components of X2 then leads to the following system of
equations:

E
[
w(Z){s0(Z)D − β1(D − p(Z))}(D − p(Z))

]
= 0 (A1.25)

E
[
w(Z){s0(Z)D − β2(D − p(Z))(S − E[S])}(D − p(Z))(S − E[S])

]
= 0 (A1.26)

Solving Equation (A1.25) for β1 yields:

β1 =
E
[
w(Z)s0(Z)D(D − p(Z))

]
E
[
w(Z)(D − p(Z))(D − p(Z))

] (A1.27)

Using the LIE in the denominator and applying the just derived relationship leads
to:

β1 =
E
[
w(Z)s0(Z)D(D − p(Z))

]
E
[
w(Z)E

[
(D − p(Z))(D − p(Z)) | Z

]] (A1.28)

=
E
[
w(Z)s0(Z)D(D − p(Z))

]
E
[
w(Z)w−1(Z)

] (A1.29)

= E
[
w(Z)s0(Z)D(D − p(Z))

]
(A1.30)

Relying on the LIE again, this equation can be rewritten as:

= E
[
w(Z)s0(Z)E[D(D − p(Z)) | Z]

]
(A1.31)

To simplify the inner expectation term, the term p(Z)(D− p(Z)) is simultaneously
added and subtracted. In a next step, the equation is rearranged using the LIE, such
that the relationship from Equations (A1.16) to (A1.20) can be used again. Addi-
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tionally, p(Z) can be pulled out of the expectation since it is constant conditional
on Z, such that Equation (A1.9) can be applied.

E
[
D(D − p(Z)) | Z

]
= E

[
D(D − p(Z)) +

=0︷ ︸︸ ︷(
p(Z)− p(Z)

)
(D − p(Z)) | Z

]
(A1.32)

= E
[
(D − p(Z))(D − p(Z)) + p(Z)(D − p(Z)) | Z

]
(A1.33)

= E
[
(D − p(Z))2 | Z

]
+ E

[
p(Z)(D − p(Z)) | Z

]
(A1.34)

= w−1(Z) + p(Z)E
[
D − p(Z) | Z︸ ︷︷ ︸

=0

]
(A1.35)

(A1.36)

Inserting these results into the equation for β1 yields the desired result:

β1 = E
[
w(Z)w−1(Z)s0(Z)

]
(A1.37)

β1 = E
[
s0(Z)

]
(A1.38)

Solving Equation (A1.26) for β2 gives:

β2 =
E
[
w(Z)s0(Z)D(D − p(Z))(S − E[S])

]
E
[
w(Z)(D − p(Z))(S − E[S])(D − p(Z))(S − E[S])

] (A1.39)

Relying on the LIE again and using the results and relationships derived above, the
equation can be simplified to obtain:

β2 =
E
[
w(Z)w−1(Z)s0(Z)(S − E[S])

]
E
[
w(Z)(D − p(Z))2(S − E[S])2

] (A1.40)

=
E
[
s0(Z)(S − E[S])

]
E
[
w(Z)w−1(Z)(S − E[S])2

] (A1.41)

=
E
[
s0(Z)(S − E[S])

]
E
[
(S − E[S])2

] (A1.42)

Focusing on the numerator first, the term can again be expanded by simultaneously
adding and subtracting E[s0(Z)(S − E[S])]. The equation can then be rearranged
using the linearity property of expectations:

E
[
(s0(Z)(S − E[S])) +

=0︷ ︸︸ ︷
E[
(
s0(Z)− s0(Z)

)
(S − E[S])]

]
(A1.43)

= E
[
{s0(Z)− E[s0(Z)]}{S − E[S]}+ E[s0(Z)(S − E[S])]

]
(A1.44)

= E
[
{s0(Z)− E[s0(Z)]}{S − E[S]}

]
+ E

[
s0(Z)

]
E
[
S − E[S]

]︸ ︷︷ ︸
=0

(A1.45)
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The numerator therefore corresponds to the covariance between s0(Z) and S:

E
[
s0(Z)(S − E[S])

]
= E

[
{s0(Z)− E[s0(Z)]}{S − E[S]}

]
(A1.46)

= Cov(s0(Z), S) (A1.47)

The denominator E
[
(S − E[S])2

]
corresponds to the second central moment of S,

thus:

E
[
(S − E[S])2

]
= Var(S) (A1.48)

Hence, inserting the results from Equations (A1.47) and (A1.48) into Equation (A1.41),
β2 is given by:

β2 =
Cov(s0(Z), S)

Var(S)
(A1.49)

The proof proceeds by showing that the just derived parameters β1 and β2 are
solutions to the optimality criterion of linear prediction of s0(Z) using S(Z) given
by:

E
[
s0(Z)− β1 − β2(S − E[S])

]
= 0 (A1.50a)

E
[
{s0(Z)− β1 − β2(S − E[S])}{S − E[S]}

]
= 0 (A1.50b)

Plugging in β1 and β2 into Equation (A1.50a) yields:

E

[
s0(Z)− E[s0(Z)]−

=Cov(s0(Z),S)︷ ︸︸ ︷
E[{s0(Z)− E[s0(Z)]}{S − E[S]}]

E[(S − E[S])2]︸ ︷︷ ︸
=Var(S)

(S − E[S])

]

Using the linearity of expectation and the fact that E[E[s0(Z)]] = E[s0(Z)], the first
two terms cancel out. Additionally, since both the numerator and denominator
are expectations, the term preceding (S − E[S]) can be pulled out of the outer
expectation resulting in:

E[{s0(Z)− E[s0(Z)]}{S − E[S]}]
E[(S − E[S])2]

E
[
S − E[S]

]︸ ︷︷ ︸
=0

(A1.51)

Plugging in β1 and β2 into Equation (A1.50b) yields:

E

[{
s0(Z)− E[s0(Z)]− E[{s0(Z)− E[s0(Z)]}{S − E[S]}]

E[(S − E[S])2]
(S − E[S])

}{
S − E[S]

}]
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Pulling E[s0(Z)] out of the expectation again and using that E[S − E[S]] = 0,
the second term inside the first parentheses multiplied by (S − E[S]) is zero. The
fraction can be pulled out of the expectation as well leading to:

E
[
s0(Z)(S − E[S])

]
− E[{s0(Z)− E[s0(Z)]}{S − E[S]}]

E[(S − E[S])2
E
[
(S − E[S])2

]
= E

[
s0(Z)(S − E[S])

]
− E

[
{s0(Z)− E[s0(Z)]}{S − E[S]}

]
(A1.52)

In Equation (A1.46) it was derived that both terms are equal:

E
[
s0(Z)(S − E[S])

]
= E

[
{s0(Z)− E[s0(Z)]}{S − E[S]}

]
(A1.53)

Thus,

E
[
s0(Z)(S − E[S])

]
− E

[
{s0(Z)− E[s0(Z)]}{S − E[S]}

]
= 0 (A1.54)

Therefore, the parameters β1 = E[s0(Z)] and β2 = Cov(s0(Z), S))/Var(S) solve
the optimality criteria in the problem of optimal linear prediction of s0(Z) using
S(Z) as stated in Section 2.2.

A.2 Proof of GATES Estimation Strategy*

Recall the weighted linear regression equation from Section 2.3 given by:

Y = α′X1 +
K∑
k=1

γk
(
D − p(Z)

)
1(Gk) + ν.

with weights w(Z) =
1

p(Z)(1− p(Z))
.

The minimization problem from this weighted regression yields the following normal
equations:

E
[
w(Z)

(
Y − α′X1 − γ′X2

)
X2

]
= 0 (A2.1)

Define:

X1 := X1(Z), e.g.
[
1, B(Z)

]′ (A2.2)

X2 :=
[(
D − p(Z)

)
1(Gk)

K
k=1

]′ (A2.3)

* The following proof is taken from the project studies thesis as submitted on April 04, 2020.
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Y is again replaced with b0(Z) + s0(Z)D + U leading to:

E
[
w(Z)

(
b0(Z) + s0(Z) + U − α′X1 − γ′X2

)
X2

]
= 0 (A2.4)

Following the same strategies as described in the proof for the BLP in Appendix A.1,
it is used that:

E
[
w(Z)b0(Z)E[X2 | Z]︸ ︷︷ ︸

=0

]
= 0 (A2.5a)

E
[
w(Z)α′X1E[X2 | Z]︸ ︷︷ ︸

=0

]
= 0 (A2.5b)

E
[
w(Z)X2E[U | Z,D]︸ ︷︷ ︸

=0

]
= 0 (A2.5c)

Thus, the normal equations from Equation (A2.4) simplify to:

E
[
w(Z)

(
s0(Z)D − γ′X2

)
X2

]
= 0 (A2.6)

Since E[(D − p(Z))(D − p(Z)) | Z] = 0, the components of X2 are orthogonal in
this case as well. Thus, the above equation can be solved for γ resulting in:

γk =
E
[
w(Z)s0(Z)D(D − p(Z))1(Gk)

K
k=1

]
E
[
w(Z)(D − p(Z))21(Gk)Kk=1

] (A2.7)

In the numerator, it is exploited that E[D(D−p(Z))] = w−1(Z) as derived in Equa-
tions (A1.32) to (A1.35). In the denominator the equality from Equations (A1.16)
to (A1.20) is used. Since 1(Gk)

K
k=1 is one for observations belonging to group k only

and zero otherwise, it can be omitted by conditioning on the groups Gk. Doing so
yields the expression for γk as stated in Section 2.3:

γk =
E
[
w(Z)w−1(Z)s0(Z) | Gk

]
E
[
w(Z)w−1(Z) | Gk

] (A2.8)

γk = E
[
s0(Z) | Gk

]
(A2.9)
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A.3 Supplementary Tables
Table A1: Variables included in RWI-GEO-GRID

Category Variable

Basic Number of houses
Number of private households*
Number of commercial buildings*
Number residential buildings*

Mobility Car density: Ratio between number of cars and
number of households*
Share Audi of total makes of car
Share BMW of total makes of car
Share Fiat of total makes of car
Share Ford of total makes of car
Share Mazda of total makes of car
Share Mercedes of total makes of car
Share Nissan of total makes of car
Share Opel of total makes of car
Share Peugeot of total makes of car
Share Renault of total makes of car
Share other Asian cars of total makes of car
Share other makes of car of total makes of car
Share Toyota of total makes of car
Share VW of total makes of car
Share convertibles of total cars
Share SUVs of total cars
Share small cars of total cars
Share estate cars of total cars
Share mini cars of total cars
Share medium-sized cars of total cars
Share upper medium-sized cars of total cars
Share luxury cars of total cars
Share other segments of total cars
Share lower medium-sized cars of total cars
Share utility cars of total cars
Share vans of total cars
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Table A1: Variables included in RWI-GEO-GRID (continued)

Category Variable

Building
Development

Share 1-2 family houses in homogeneous built-up road
section*
Share 1-2 family houses in non-homogeneous built-up
road section*
Share 3-5 family houses*
Share 6-9 family houses*
Share block of flats with 10-19 households*
Share high-rise buildings with 20 households or more*
Share predominantly for commercial purposes used
houses*

Household Share households with foreign head of household*
Share single households
Share couple households
Share families with children*
Share children of total people*
Unemployment rate*
Share ethnic background Germany
Share ethnic background Italy
Share ethnic background Turkey
Share ethnic background Greece
Share ethnic background Spain and Portugal
Share ethnic background Balkans
Share ethnic background Eastern Europe
Share ethnic background Africa south of the Sahara
Share ethnic background non-European Islamic states
Share ethnic background Southern/ East/ Southeast
Asia
Share ethnic background others
Share ethnic background late emigrants former Soviet
Union
Lowest default probability in payment
Quite low default probability in payment
Quite below-average default probability in payment
Below-average default probability in payment
Slightly below-average default probability in payment
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Table A1: Variables included in RWI-GEO-GRID (continued)

Category Variable

Average probability
Slightly above-average default probability in payment
Above-average default probability in payment
Highest default probability in payment
Inhabitants (absolute)*
purchase power (total)*

Population Share male inhabitants 0-3 years*
Share male inhabitants 3-6 years*
Share male inhabitants 6-10 years*
Share male inhabitants 10-15 years*
Share male inhabitants 15-18 years*
Share male inhabitants 18-20 years*
Share male inhabitants 20-25 years*
Share male inhabitants 25-30 years*
Share male inhabitants 30-35 years*
Share male inhabitants 35-40 years*
Share male inhabitants 40-45 years*
Share male inhabitants 45-50 years*
Share male inhabitants 50-55 years*
Share male inhabitants 55-60 years*
Share male inhabitants 60-65 years*
Share male inhabitants 65-70 years*
Share male inhabitants over 75 years*
Share female inhabitants 0-3 years*
Share female inhabitants 3-6 years*
Share female inhabitants 6-10 years*
Share female inhabitants 10-15 years*
Share female inhabitants 15-18 years*
Share female inhabitants 18-20 years*
Share female inhabitants 20-25 years*
Share female inhabitants 25-30 years*
Share female inhabitants 30-35 years*
Share female inhabitants 35-40 years*
Share female inhabitants 40-45 years*
Share female inhabitants 45-50 years*
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Table A1: Variables included in RWI-GEO-GRID (continued)

Category Variable

Share female inhabitants 50-55 years*
Share female inhabitants 55-60 years*
Share female inhabitants 60-65 years*
Share female inhabitants 65-70 years*
Share female inhabitants over 75 years*

Notes. The table is provided by the FDZ Ruhr together with the data. Asterisks after
variables denote variables which are used in the empirical analysis during this thesis. The
population variables are summarized as follows: share of inhabitants aged 0-25, share of
inhabitants aged 25-40, share of inhabitants aged 40-65, and share of inhabitants aged 65
and older. For complete variable definitions and descriptions see Breidenbach and Eilers
(2018).

Table A2: Variables included in RWI-GEO-RED

Category Variable

Identifier Object identifier
Unique object identifier

Time period Beginning of ad, year*
Beginning of ad, month*
Ending of ad, year
Ending of ad, month

Object features Facilities of object
Number of bathrooms*
Dummy: Protected historic building*
Dummy: Usable as holiday home
Available from
Dummy: Guest toilet in object
House type*
Dummy: Basement in object*
Dummy: Garage/parking space available
Number of rooms*
Number of floors*
Construction phase
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Table A2: Variables included in RWI-GEO-GRID (continued)

Category Variable

Dummy: Granny flat in object
Type of real estate*
Dummy: Rented when sold
Rental income per month in EUR
Dummy: Wheelchair-accessible, no steps
Number of bedrooms
Plot area*
Usable floor space
Living area*

Energy and structure
information

Year of construction*
Type of energy performance certificates
Energy efficiency rating
Energy consumption per year and square meter
Dummy: Warm water consumption included in
energy consumption
Type of heating*
Year of last modernization of object
Condition of object*

Price information Brokerage at contract conclusion
Asking price in EUR*
Security deposit
Price of parking space in EUR

Regional information Federal state
Local labor market (Kosfeld and Werner, 2012)
1-sqm raster cell following INSPIRE*
Municipality Identifier (AGS, 2015)*
District identifier (AGS, 2015)
Address: postcode

Meta-information of
advertisement

Number of clicks on customer profile
Number of clicks on contact button
Number of clicks on customer URL
Number of clicks on share button
Number of hits of ad
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Table A2: Variables included in RWI-GEO-GRID (continued)

Category Variable

Days of availability of ad
Date of data retrieval

Generated technical
variables

Classification of object identifiers used more than
once
Spell counter within object identifier

Notes. The table is provided by the FDZ Ruhr together with the data. Asterisks after
variables denote variables which are used in the empirical analysis during this thesis. For
complete variable definitions and descriptions see Boelmann and Schaffner (2019).

Table A3: Distribution measures for the full and restricted sample

Variable Group Mean
Percentiles

5% 25% 50% 75% 95%

Ad year
all 2012.1 2007 2009 2012 2015 2018
compl 2013.9 2009 2012 2014 2016 2018

Asking price
all 296,304 70,000 159,000 229,299 332,000 695,000
compl 339,112 98,000 190,000 270,000 389,000 780,000

Year of all 1972.4 1900 1956 1982 2007 2016
construction compl 1976.2 1900 1960 1984 2009 2017

Living area
all 180 91 121 146 195 352
compl 174 95 125 150 200 323

Lot area
all 744 188 396 600 860 1,906
compl 707 175 352 576 847 1,740

# Floors
all 2.1 1.0 2.0 2.0 3.0 3.0
compl 2.2 1.0 2.0 2.0 3.0 3.0

# Rooms
all 6.0 3.0 4.0 5.0 7.0 11.0
compl 6.1 4 4.5.0 5.0 7.0 11.0

# Bathrooms
all 1.8 1.0 1.0 2.0 2.0 3.0
compl 1.9 1.0 1.0 2.0 2.0 4.0

Protected all 0.01 0 0 0 0 0
(0/1) compl 0.01 0 0 0 0 0
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Table A3: Distribution measures for the full and restricted sample (continued)

Variable Group Mean
Percentiles

5% 25% 50% 75% 95%

Basement all 0.4 0 0 0 1 1
(0/1) compl 0.6 0 0 1 1 1

Property all 4.5 1.0 1.0 5.0 7.0 8.0
condition compl 4.9 1.0 3.0 6.0 7.0 8.0

# Private all 874 48 215 556 1,232 2,623
households compl 896 57 239 592 1,264 2,627

# Industry all 119 5 25 66 145 395
buildings compl 118 6 29 70 149 377

# Housing all 399 35 145 329 595 982
buildings compl 422 41 162 353 624 1,015

Car density
all 1.1 0.7 0.9 1.1 1.3 1.5
compl 1.1 0.7 1.0 1.1 1.3 1.5

Purch. power all 21,593 16,087 18,860 21,024 23,606 28,940
per capita compl 22,932 17,435 20,142 22,318 24,987 30,407

Foreign HH all 7.0 0.2 2.6 5.5 9.8 18.8
head (%) compl 7.6 0.4 3.0 6.2 10.6 19.5

Unemployment all 5.7 0.8 3.0 4.9 7.7 13.4
rate (%) compl 5.2 0.7 2.7 4.4 6.9 12.3

# Inhabitants
all 1,735 100 457 1,146 2,472 51,111
compl 1785 118 501 1,215 2,559 5,170

Children (%)
all 0.3 0.2 0.2 0.3 0.3 0.4
compl 0.3 0.2 0.2 0.3 0.3 0.4

Families (%)
all 33.5 4.5 20.6 32.5 44.7 66.5
compl 32.6 3.3 18.4 31.2 44.5 68

Ind. used all 2.4 0.0 0.9 1.7 2.9 6.3
buildings (%) compl 2.3 0.0 0.9 1.7 2.9 6.3

Det. houses all 27.4 1.0 9.0 21.1 40.0 76.7
(hom.) (%) compl 27.1 1.3 9.2 20.8 39.3 75.3
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Table A3: Distribution measures for the full and restricted sample (continued)

Variable Group Mean
Percentiles

5% 25% 50% 75% 95%

Det. houses all 28.5 4.5 19.8 28.6 36.8 50.4
(het.) (%) compl 28.7 5.7 20.1 28.8 36.9 50

3-5 family all 20.9 7.3 15.8 21.1 26.2 33.8
homes (%) compl 20.9 4.5 15.8 21.0 26.2 3.38

6-9 family all 11.7 0.0 3.5 9.9 17.9 30.6
homes (%) compl 11.7 0.0 3.8 10.0 17.9 30.5

Housing all 6.6 0.0 0.0 3.8 10.1 23.4
blocks (%) compl 6.6 0.0 0.0 4.1 10.0 22.7

Skyscrapers all 2.7 0.0 0.0 0.0 3.0 13.7
(%) compl 2.8 0.0 0.0 0.0 3.3 14.4

Age: 0-25 (%)
all 24.6 19.1 22.9 24.8 26.6 29.3
compl 24.4 19.5 22.9 24.6 26.1 28.6

Age: 25-40 (%)
all 17.1 13.2 15.4 16.9 18.6 22.1
compl 16.9 13.0 15.1 16.6 18.2 22.1

Age: 40-65 (%)
all 37.3 32.8 35.3 37.1 39.1 42.3
compl 37.6 33.0 35.7 37.5 39.3 42.4

Age: 65+ (%)
all 20.9 15.1 18.3 20.6 23.2 27.8
compl 21.2 15.4 18.6 20.9 23.4 27.7

Notes. "all" denotes the full, unrestricted sample, which also contains observations with missing data
for some of the variables, while "compl" denotes the restricted sample, which contains complete cases
only, i.e. observations without missing values in any of the variables. (0/1) after variables denote dummy
variables, asterisks indicate grid-level variables.
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Appendix

Table A6: Full summary statistics

Variable
Means

Full sample Treatment Control

Asking price 341,360 270,276 382,578
Year of advertisement 2013.5 2013.7 2013.4
Year of construction 1976.4 1976.1 1976.6
Living area 174.1 168.3 177.4
Lot area 683.9 730.8 656.7
Number of floors 2.2 2.1 2.3
Number of rooms 6.1 6 6.2
Number of bathrooms 1.9 1.9 1.9
Protected building (0/1) 0.01 0.01 0.02
Basement (0/1) 0.62 0.57 0.66
Property condition 4.9 4.9 4.9
Number of private households* 926.5 781.8 1,010.5
Number of industrial buildings* 127.1 100.2 142.8
Number of living buildings* 433.7 407.9 448.6
Car density* 1.1 1.2 1.1
Purchasing power per capita* 22,962 21,871 23,594
Foreign household head (%)* 7.5 6.2 8.3
Unemployment rate (%)* 5.2 5.7 4.9
Number of inhabitants* 1,848 1,583 2,002
Children (%)* 0.29 0.29 0.28
Families (%)* 32.6 33.8 31.9
Industrially used buildings (%)* 2.4 2.3 2.4
Detached houses (hom.) (%)* 25.3 29.9 22.7
Detached houses (het.) (%)* 29.1 28.9 29.2
3-5 Family houses (%)* 21.2 20.6 21.5
6-9 Family houses (%)* 12.1 10.9 12.8
Housing blocks (%)* 6.9 5.4 7.8
Skyscrapers (%)* 3 2.1 3.5
Age: 0–25 (%)* 24.4 24.4 24.5
Age: 25–40 (%)* 16.9 16.3 17.2
Age: 40–65 (%)* 37.6 38.2 37.3
Age: 65+ (%)* 21 21 21
Heating: Cogeneration (0/1) 0.00 0.00 0.00
Heating: Electric (0/1) 0.00 0.00 0.00
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Appendix

Table A6: Full summary statistics (continued)

Variable
Means

Full Sample Treatment Control

Heating: Self-contained central (0/1) 0.03 0.03 0.03
Heating: District (0/1) 0.01 0.01 0.01
Heating: Floor (0/1) 0.06 0.06 0.05
Heating: Gas (0/1) 0.07 0.10 0.06
Heating: Wood pellet (0/1) 0.00 0.00 0.00
Heating: Night storage (0/1) 0.00 0.00 0.00
Heating: Stove (0/1) 0.03 0.02 0.03
Heating: Oil (0/1) 0.02 0.03 0.02
Heating: Solar (0/1) 0.00 0.00 0.00
Heating: Thermal heat pump (0/1) 0.03 0.03 0.03
Heating: Central (0/1) 0.74 0.72 0.76
Farmhouse (0/1) 0.01 0.01 0.01
Bungalow (0/1) 0.04 0.04 0.03
Semidetached house (0/1) 0.15 0.14 0.16
Single-family house (0/1) 0.48 0.52 0.46
Multi-family house (0/1) 0.11 0.10 0.12
Terraced house (0/1) 0.13 0.12 0.14
Villa (0/1) 0.03 0.02 0.03
Category: Other (0/1) 0.05 0.05 0.04
Schleswig-Holstein (0/1) 0.05 0.05 0.04
Hamburg (0/1) 0.01 0.01 0.01
Lower Saxony (0/1) 0.05 0.10 0.02
Bremen (0/1) 0.01 0.01 0.00
NRW (0/1) 0.30 0.46 0.20
Hessen (0/1) 0.11 0.06 0.14
Rhineland-Palatine (0/1) 0.10 0.11 0.09
Baden-Württemberg (0/1) 0.14 0.04 0.20
Bavaria (0/1) 0.13 0.04 0.18
Saarland (0/1) 0.01 0.01 0.02
Brandenburg (0/1) 0.04 0.04 0.04
Mecklenburg-Vorpommern (0/1) 0.01 0.02 0.01
Saxony (0/1) 0.03 0.03 0.03
Saxony-Anhalt (0/1) 0.02 0.03 0.01
Thuringia (0/1) 0.01 0.01 0.01

Notes. (0/1) after variables denote dummy variables, asterisks indicate grid-level variables.
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Table A7: Covariate balance before and after PS weighting – all runs

Criterion Unadjusted Logit XGBoost Random
Forest

ASMD 0.1246 0.0236 0.0641 0.0945
1 KS 0.0884 0.0234 0.0559 0.0682

# Unbalanced 29 1 18 25
ASMD 0.1243 0.0244 0.0557 0.0936

2 KS 0.0879 0.0242 0.0504 0.0671
# Unbalanced 29 1 17 25
ASMD 0.1236 0.0265 0.0612 0.0936

3 KS 0.0876 0.0244 0.0553 0.0669
# Unbalanced 29 1 17 25
ASMD 0.1247 0.0254 0.0617 0.0942

4 KS 0.0885 0.0261 0.0530 0.0679
# Unbalanced 29 1 17 25
ASMD 0.1243 0.0248 0.0614 0.0935

5 KS 0.0880 0.0240 0.0514 0.0671
# Unbalanced 29 1 18 25
ASMD 0.1243 0.0252 0.0601 0.0936

6 KS 0.0881 0.0244 0.0526 0.0668
# Unbalanced 29 1 17 25
ASMD 0.1246 0.0225 0.0626 0.0946

7 KS 0.0884 0.0229 0.0558 0.0685
# Unbalanced 29 1 18 25
ASMD 0.1243 0.0245 0.0560 0.0930

8 KS 0.0881 0.0238 0.0478 0.0666
# Unbalanced 30 1 16 25
ASMD 0.1244 0.0236 0.0609 0.0938

9 KS 0.0876 0.0229 0.0525 0.0666
# Unbalanced 29 1 18 25
ASMD 0.1236 0.0274 0.0612 0.0927

10 KS 0.0873 0.0259 0.0525 0.0660
# Unbalanced 29 1 18 24

Notes: ASMD is the average of standardized absolute mean differences over all covariates. KS denotes
the Kolmogorov-Smirnov statistic. # Unbalanced refers to the number of variables which exhibit a
standardized absolute mean difference of more than 0.1. Smaller values indicate better balance after
propensity score weighting for all three criteria. The grey cells mark the best results for the respective
criterion and run of the experiment.
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Appendix

Table A9: Full CLAN results

Variable
Elastic Net Random Forest XGBoost

Most Least Most Least Most Least

Asking price 612,362 289,705 624,126 453,416 577,599 494,968
Year of construction 1968.6 1969.9 1974.8 1975.2 1969.4 1968.3
Protected building (0/1) 0.04 0.01 0.03 0.02 0.03 0.03
Purch. power / capita* 24,232 22,654 24,929 24,709 24,626 24,392
Unemployment rate (%)* 5.6 5.2 4.7 4.9 4.8 4.9
# Inhabitants* 2,473 1,896 2,212 2,253 2,121 2,137
Skyscrapers (%)* 4.1 3.7 3.9 4.3 3.9 4.0
Housing blocks (%)* 8.6 9.1 8.4 9.1 8.3 8.6
Age: 0-25 (%)* 24.2 24.4 24.2 24.2 24.1 24.1
Age: 25-40 (%)* 17.6 17.2 17.4 17.6 17.4 17.5
Age: 40-65 (%)* 37.1 37.1 37.1 37.0 37.1 37.0
Age: 65+ (%)* 21.1 21.3 21.4 21.2 21.5 21.4
Farmhouse (0/1) 0.01 0.01 0.01 0.01 0.01 0.02
Bungalow (0/1) 0.02 0.03 0.03 0.03 0.03 0.03
Semidetached house (0/1) 0.04 0.24 0.09 0.15 0.09 0.12
Single-family house (0/1) 0.42 0.27 0.46 0.42 0.44 0.41
Multi-family house (0/1) 0.22 0.07 0.16 0.14 0.17 0.16
Terraced house (0/1) 0.03 0.30 0.08 0.13 0.08 0.10
Villa (0/1) 0.19 0.002 0.11 0.07 0.10 0.09
Category: Other (0/1) 0.07 0.05 0.07 0.05 0.08 0.07
Property condition 5.2 5.1 4.7 4.7 5.0 5.0
Notes. The reported results are medians over 100 splits. (0/1) after variables denote dummy variables,
asterisks indicate grid-level variables.
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Appendix

Table A11: Full CLAN results – log specification

Variable
Elastic Net Random Forest XGBoost

Most Least Most Least Most Least

Asking price 12.6 12.8 12.7 12.5 12.7 12.5
Year of construction 1944.1 1983.5 1970.6 1974.7 1961.1 1967.8
Protected building 0.04 0.02 0.03 0.02 0.03 0.03
Purch. power / capita* 23,797 22,606 24,427 23,029 23,632 22,986
Unemployment rate* 5.7 5.1 5.3 5.3 5.3 5.3
# Inhabitants* 2,596 1,693 2,036 1,868 2,276 1,923
Skyscrapers* 3.5 3.6 3.3 3.1 3.7 3.1
Housing blocks* 8.6 7.7 7.8 7.3 8.3 7.4
Age: 0-25 (%)* 24.2 24.5 24.1 24.3 24.1 24.4
Age: 25-40 (%)* 17.7 17.0 17.1 17.0 17.4 17.1
Age: 40-65 (%)* 37.0 37.5 37.5 37.7 37.1 37.5
Age: 65+ (%)* 21.2 21.1 21.3 21.1 21.4 21.0
Farmhouse 0.01 0.03 0.01 0.01 0.01 0.03
Bungalow 0.02 0.04 0.03 0.03 0.03 0.03
Semidetached house 0.07 0.18 0.11 0.13 0.10 0.15
Single-family house 0.39 0.45 0.49 0.50 0.45 0.41
Multi-family house 0.25 0.10 0.14 0.12 0.15 0.15
Terraced house 0.13 0.07 0.11 0.11 0.12 0.13
Category: Other 0.07 0.06 0.06 0.05 0.07 0.05
Villa 0.06 0.05 0.06 0.05 0.07 0.05
Property condition 6.2 4.2 4.9 4.6 5.5 5.0
Notes. The reported results are medians over 100 splits. (0/1) after variables denote dummy
variables, asterisks indicate grid-level variables.
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