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Abstract

We propose four multiplicative-component volatility MIDAS models for disentangling short-

and long-term volatility sources. Three of our models specify short-term volatility as Markov-

switching processes. We establish statistical properties, covariance-stationarity conditions,

and an estimation framework, using regime-switching filter techniques. A simulation study

shows the robustness of the estimates against several mis-specifications. An out-of-sample

forecasting analysis with daily S&P500 returns and quarterly-sampled (macro)economic vari-

ables yields two major results. (i) Specific long-term variables in the MIDAS models signif-

icantly improve forecast accuracy (over the non-MIDAS benchmarks). (ii) We find superior

and robust performance of one Markov-switching MIDAS specification (among a set of com-

petitor models) when using the ’term structure’ as the long-term variable.
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1 Introduction

The last four decades have expedited the already substantial progress in modeling and fore-

casting financial-market volatility, predominantly inspired by stylized empirical facts like

volatility clustering and kurtotic nature of return-distributions (Cont, 2001). The most popu-

lar frameworks—the GARCH-type and Stochastic Volatility (SV) models, both in univariate

and multivariate variants—have contributed profoundly to our understanding of financial-

market volatility at relatively short horizons (for a recent overview and current research lines,

see Zaharieva et al., 2020). While these approaches are capable of reproducing important

statistical volatility features, they are less suited (i) to identifying major volatility sources,

and (ii) to explaining why volatility typically changes over time. Aiming to tackle these lat-

ter issues, several authors suggest modeling volatility as multiple heterogeneous components

and correspondingly document notable forecast-accuracy gains via this approach (Ding and

Granger, 1996; Engle and Lee, 1999; Gallant et al., 1999; Alizadeh et al., 2002; Chernov et al.,

2003; Adrian and Rosenberg, 2008). Despite such improvements, controversy remains on how

to specify the dynamics of the respective components. Early proposals already emphasize the

role of the macroeconomic environment in driving long-term movements of financial-market

volatility (Officer, 1973; Schwert, 1989) and, following this line of argument, we propose some

novel multi-component volatility specifications with explicit economic volatility drivers.

In line with the multiplicative-component Mixed Data Sampling (MIDAS) framework in

Engle et al. (2013), our modeling approach also decomposes financial-market volatility into

(i) a short-term high-frequency component reflecting financial-market characteristics, and

(ii) a long-term (low-frequency) component (representing macroeconomic impacts). Engle

et al. (2013), Conrad and Loch (2015), and Conrad and Kleen (2020) represent short-term

volatility with standard GARCH and GJR-GARCH processes (Bollerslev, 1986; Glosten et

al., 1993), thus constituting the GARCH-MIDAS and GJR-GARCH-MIDAS models.1 In this

paper, we complement this family of volatility MIDAS models by employing the following four

short-term specifications: (1) the Markov-Switching-Multifractal (MSM) model (Calvet and

Fisher, 2004), (2) the Factorial Hidden Markov Volatility (FHMV) model (Augustyniak et al.,

2019), (3) the Markov-Switching GARCH (MSGARCH) model (Haas et al., 2004), and (4) the

Hyperbolic GARCH (HYGARCH) model (Davidson, 2004). Beyond the volatility MIDAS

1 See Wei et al. (2017), Fang et al. (2020) for recent applications.
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framework, the first two models (MSM, FHMV) have turned out to possess salient volatility

forecasting properties (Calvet and Fisher, 2004; Lux, 2008; Lux et al., 2016; Segnon et al.,

2017; Augustyniak et al., 2019), and—per design—offer a unified framework for modeling (i)

persistence in the volatility process, and (ii) structural breaks through regime-switching. In

order to account for nonlinearity and long memory in the volatility process, we additionally

embed the models (3) and (4) (MSGARCH, HYGARCH) into the multiplicative-component

MIDAS framework.

In the subsequent sections, we (i) formalize our four volatility MIDAS specifications

(MSM-, FHMV-, MSGARCH-, HYGARCH-MIDAS), (ii) explore their statistical proper-

ties (stationarity conditions, autocorrelation and moment structures), and (iii) establish the

estimation framework. In our empirical out-of-sample investigation, we analyze daily cumu-

lative variance forecasts (at quarterly forecast horizons) of S&P500 returns (observed over

a 40-year time span). We apply predicitve ability tests (Giacomini and White, 2006) and

model confidence sets (Hansen et al., 2011) to compare the forecast accuracy of our volatil-

ity MIDAS specifications with those of several conventional benchmark models. Using the

robust MSE and QLike loss functions, we make inferences as to whether the inclusion of

macroeconomic information leads to forecast accuracy gains. Our investigation has three

major findings. (i) Several macroeconomic variables have substantial predictive content for

financial-market volatility. (ii) The MSGARCH-MIDAS model has generally good forecast-

ing properties at the 1-quarter (the shortest) horizon. (iii) There are two (macroeconomic)

long-term variables (’Term spread’, ’Housing starts’), which have the potential to improve

the forecast accuracy of several volatility MIDAS models. This is unambiguously true for the

FHMV-MIDAS specification across all forecast horizons.

The remainder of the paper is organized as follows. Section 2 presents the modeling

framework and statistical properties of the novel volatility MIDAS specifications. Section

3 establishes the estimation approach and provides simulation results. In Section 4, we

describe our data set, present the forecast evaluation strategy, and conduct the out-of-sample

forecasting analysis, using S&P500 returns and macroeconomic data. Section 5 concludes.
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2 Basic volatility MIDAS setup

Let {ri,t} represent a financial process of daily (log) returns, where the subscript i denotes a

day within period t (i = 1, . . . , N (t); t = 1, . . . , T ). We assume the conditional mean return,

µ ≡ Ei−1,t(ri,t), to be constant over time. As in Engle and Rangel (2008) and Engle et

al. (2013), we specify

ri,t − µ =
√
τt · gi,t · εi,t, (1)

with innovation process {εi,t}
i.i.d.∼ (0, 1). The volatility term, σi,t ≡

√
τt · gi,t, consists of the

long-term and short-term components τt and gi,t. We consider long-term volatility movements

as constant during period t, and write τt = τi,t for i = 1, . . . , N (t). We adopt the convention

that the start of period t exactly coincides with the end of the previous period t − 1 plus 1

day, i.e. rN(t−1)+1,t−1 = r1,t.

Following the MIDAS framework in Engle et al. (2013), we assume the long-term com-

ponent τt to be the weighted K-lag average of an explanatory variable {Xt}. To ensure

positivity, we specify the logarithm of the long-term component as

log(τt) = m+ θ
K∑
k=1

ϕk(ω1, ω2)Xt−k, (2)

with ϕk(ω1, ω2) chosen as the positive beta-weights

ϕk(ω1, ω2) =

(
k

K+1

)ω1−1 ·
(
1− k

K+1

)ω2−1∑K
j=1

( j
K+1

)ω1−1 ·
(
1− j

K+1

)ω2−1 , (3)

which sum to unity for k = 1, . . . ,K. This beta-weighting scheme generates extremely flexible

weights (Ghysels et al., 2007), with (i) equal weights for all lags k when ω1 = 1 and ω2 = 1,

(ii) monotonically decreasing weights for increasing lags k when ω1 = 1 and ω2 > 1, and (iii)

hump-shaped and convex weights for unrestricted parameters. In Case (ii), ω2 determines

the rate of weight-decline, i.e. the larger ω2, the faster the decrease of the weights ϕk. In

Case (iii), the ratio of ω1/ω2 indicates whether higher weights are allocated to more recent

or more distant lags.

Next, we address the modeling of the short-term component {gi,t} in Eq. (1), leading to

the MSM-, FHMV-, MSGARCH-, and HYGARCH-MIDAS specifications.
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2.1 MSM-MIDAS

In the Markov-Switching Multifractal (MSM) model, the short-term volatility process {gi,t} is

modeled as the product of the NM random volatility components called multipliers,

{M (1)
i,t }, {M

(2)
i,t }, . . . , {M

(NM )
i,t },

gi,t =

NM∏
j=1

M
(j)
i,t , (4)

where the specific dynamics of the multipliers constitute the multifractality of the model. At

date i in period t, each multiplier M
(j)
i,t is drawn from a base distribution M with positive

support (specified below). Depending on its rank in the hierarchy of multipliers, M
(j)
i,t changes

from one date (index i) to the next with probability γj , or remains unchanged with probability

1− γj , which generates a broad spectrum of multiplier renewal.

Specifically, the parametric approach of Calvet and Fisher (2004), which ensures the

convergence of the discrete-time MSM model to the continuous-time Poisson multifractal

process, specifies the NM transition probabilities as

γj = 1− (1− γNM )(bj−NM ), (j = 1, . . . , NM ) (5)

where γj ∈ (0, 1), b > 1. Eq. (5) establishes a hierarchical structure among the multipliers, as

γ1 < γ2 < . . . < γNM < 1. Thus, the multiplier M
(NM )
i,t has the highest probability of being

renewed, M
(1)
i,t has the lowest, and the transition matrix of the j-th multiplier is given by

P(j) =

(
1− 0.5γj 0.5γj

0.5γj 1− 0.5γj

)
. (6)

To complete the MSM-MIDAS setup, we need to specify the base distribution M . In case

of a change, each multiplier M
(j)
i,t is drawn from a discrete distribution with the two mass

points {m0, 2 −m0}, 1 < m0 < 2, and point probabilities Prob(M
(j)
i,t = m0) = Prob(M

(j)
i,t =

2−m0) = 0.5, implying the unconditional expectation E(M
(j)
i,t ) = 1 for j = 1, . . . , NM .2 As-

suming stochastic independence among the contemporaneous multipliers, we obtain the tran-

sition probability matrix of the short-term volatility process {gi,t} as the 2NM × 2NM matrix

PM = P(1)⊗P(2)⊗ . . .⊗P(NM ), and {gi,t} has the finite support XM =
{

(m0, 2−m0)⊗NM
}

.3

2 Liu et al. (2008) report that alternative base distributions like the lognormal and gamma yield very similar
results in empirical applications.

3 We denote the Kronecker product by ⊗, and the N -fold Kroecker power of X by X⊗N ≡ X ⊗ . . . ⊗X. We
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To state important properties of the Markov chain {gi,t}, let 1n denote the n× 1 column

vector of ones. The parameter restrictions γj ∈ (0, 1), b > 1 in Eqs. (5) and (6) ensure that

the transition probability matrix PM satisfies Requirement (21) in Shiryaev (1996, Theorem

1, pp. 118-120). It follows directly that {gi,t} (i) has the stationary distribution πMSM =

(1/2)2NM 12NM , and (ii) is geometrically ergodic. We collect all parameters of the MSM-

MIDAS model in the vector ΘMSM = (m0, γNM , b, µ,m, θ, ω1, ω2)′.

2.2 FHMV-MIDAS

In the Factorial Hidden Markov Volatility (FHMV) model (Augustyniak et al., 2019), the

short-term volatility process {gi,t} is represented as the product of two stochastically inde-

pendent components,

gi,t = Ci,t · Zi,t. (7)

{Ci,t} has the function of capturing persistent impacts on the volatility, while the jump

component {Zi,t} captures non-persistent impacts. In Eq. (7), {Ci,t} is modeled as the

product of the NC independent volatility multipliers {C(1)
i,t }, {C

(2)
i,t }, . . . , {C

(NC)
i,t },

Ci,t = c0

NC∏
j=1

C
(j)
i,t , (8)

where the normalizing constant c0 =
[
E
(∏NC

j=1C
(j)
i,t

)]−1
ensures E(Ci,t) = 1. The NC mul-

tipliers {C(j)
i,t } are all assumed to have the transition probability matrix

P =

(
p 1− p

1− p p

)
, p ∈ (0, 1). (9)

A hierarchical structure among the multipliers is induced by their distinct supports, which

(for j = 1, . . . , NC and given parameter c1 > 1) are recursively defined as

supp(C
(j)
i,t ) = {cj , 1} with cj = 1 + θj−1

C (c1 − 1), θC ∈ [0, 1]. (10)

Eq. (10) implies c1 ≥ c2 ≥ . . . ≥ cNC ≥ 1, so that the first multiplier C
(1)
i,t has the highest

impact on the volatility, when activated. The component {Ci,t} from Eq. (8) constitutes a

use the ⊗-operator in matrix expressions, and likewise in the representation of sets.
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Markov chain with state space (of cardinality 2NC )

XC = {c0 · (c1, 1)⊗ (c2, 1)⊗ . . .⊗ (cNC , 1)} , (11)

and the associated 2NC × 2NC transition probability matrix

PC = P⊗NC . (12)

The component {Zi,t} in Eq. (7) is assumed to have the support

XZ = {z0 · z1, z0 · z2, . . . , z0 · zNz−1, z0 · zNZ}, (13)

(z0 a normalizing constant defined below), where—for a given q ∈ (0, 1)—(i) each of the first

(NZ − 1) outcomes occurs with probability q
NZ−1 , and (ii) the outcome z0zNZ occurs with

probability 1−q. Per construction, the probability of a {Zi,t}-renewal is path-independent, so

that {Zi,t} is able to capture sudden and non-persistent volatility jumps. Formally, for a given

prespecified individual outcome z1 > 1, the NZ − 2 non-normalized outcomes z2, . . . , zNZ−1

are specified as

zj = 1 + θj−1
Z (z1 − 1), θZ ∈ [0, 1]. (14)

In order to ensure E(Zi,t) = 1, the normalizing constant is set to

z0 =

[
1 + q

(z1 − 1)(1− θNZ−1
Z )

(NZ − 1)(1− θZ)

]−1

.

The final outcome is set to zNZ = 1, so that the entire specification exhibits the hierarchical

structure z1 ≥ z2 ≥ . . . ≥ zNZ = 1. {Zi,t} can be represented as a Markov chain with state

space XZ from Eq. (13), and NZ ×NZ transition probability matrix

PZ = 1NZπ
′
Z , (15)

with NZ × 1 vector πZ = ( q
NZ−1 , . . . ,

q
NZ−1 , 1− q)

′.

Following the approach of Augustyniak et al. (2019), we assume that the short-term

volatility process {gi,t} from Eq. (7) is itself a Markov chain. In view of Eqs. (11), (12), (13),

and (15), its state space (of cardinality NZ · 2NZ ) is given by Xg = XC ⊗ XZ , and {gi,t} has

the NZ · 2NC ×NZ · 2NC transition probability matrix Pg = PC ⊗PZ . Owing to the param-
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eter restrictions p, q ∈ (0, 1) in Eqs. (9), (13), Theorem 1 in Shiryaev (1996, pp. 118-120),

shows that the Markov chain {gi,t} is (i) geometrically ergodic, and (ii) has the stationary

distribution πFHMV = πC ⊗ πZ , where πC = (1/2)2NC 12NC . We collect all parameters of the

FHMV-MIDAS model in the vector ΘFHMV = (c1, θC , p, z1, θZ , q, µ,m, θ, ω1, ω2)′.

2.3 MSGARCH-MIDAS

Haas et al. (2004) propose a k-regime Markov-switching GARCH (MSGARCH) framework,

which has proved to be extremely powerful in empirical applications. Using their setup, we

specify the MSGARCH(k)-MIDAS model with (k-dimensional) short-term volatility process

gi,t = α0 + α1
(ri−1,t − µ)2

τt
+ βgi−1,t, (16)

gi,t =
(
g

(1)
i,t . . . g

(k)
i,t

)′
, α0 =

(
α01 . . . α0k

)′
, α1 =

(
α11 . . . α1k

)′
, β = diag(β1, β2, . . . ,

βk), with α0 = 1k−α1−β1k, and where the (element-wise) inequalities α0 > 0k, α1,β1k ≥

0k are assumed to hold in order ensure the positivity of the variance process.4

The regime dynamics are governed by the Markov-chain {∆i,t} with state space S =

{1, 2, . . . , k}, and we assume that {∆i,t} and the innovation process {εi,t} from Eq. (1) are

independent. Subsequently, we denote the irreducible, aperiodic k × k transition probability

matrix of {∆i,t} by

P∆ = (pjl) = (Pr{∆i,t = l|∆i−1,t = j}) , j, l = 1, . . . , k. (17)

2.4 HYGARCH-MIDAS

Based on Davidson’s (2004) hyperbolic GARCH (HYGARCH) definition, we formalize our

HYGARCH-MIDAS model via its ARCH(∞) representation (Conrad 2010, Eq. (9)). Using

the lag-operator polynomials B(L) = 1 − βL and Φ(L) = 1 − φL with |β| < 1, |φ| < 1, we

specify the dynamics of the short-term volatility process via the HYGARCH(1, 1) represen-

tation

gi,t = (1−Ψ(1)) + Ψ(L)
(ri,t − µ)2

τt
, (18)

4 The operator diag(β1, β2, . . . , βk) creates the diagonal k × k matrix β with βii = βi and βij = 0 for i 6= j
(i, j = 1, . . . , k). 0k is the k-dimensional vector of zeros (analogous to 1k).
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where

Ψ(L) = 1− Φ(L)

B(L)

{
1− κ

[
1− (1− L)d

]}
= ψ1L + ψ2L2 + ψ3L3 + · · · , (19)

for d ∈ (0, 1), κ ∈ (0, 1).

The non-negative ψi-coefficients in the series expansion (19) may be obtained via the

recursion ψ1 = φ − β + κd, ψi = βψi−1 +
(
i−1−d
i − φ

)
χd,i−1 for i = 2, . . . ,∞, where χd,i =

χd,i−1 (i− 1− d) /i with χd,1 = κd.5 Parameters d and κ represent the degree of fractional

differentiation and the process amplitude. Parameters β, φ, d, κ satisfy the following sufficient

conditions to guarantee the non-negativity of the ψi coefficients:

β − κd ≤ φ ≤ (2− d)

3
and κd

[
φ− (1− d)

2

]
≤ β(κd− β + φ). (20)

(For parameter restrictions of general HYGARCH specifications, see Conrad, 2010.) For

d = 0 or κ = 1, which are inadmissible parameter values in our setup, the HYGARCH-

MIDAS model would reduce to GARCH-MIDAS.

2.5 Statistical properties

We establish some statistical properties of the four volatility MIDAS models (Propositions

1–3). The proofs, which we give in the Appendix, are based on the following assumptions.

Assumption 1. For the innovation process in Eq. (1), we stipulate {εi,t}
i.i.d.∼ N(0, 1) (stan-

dard normal distribution). {εi,t} is independent of the long-term and short-term volatility

components {τt}, {gi,t}.

Assumption 2. For the long-term component {τt} and the involved explanatory variable

{Xt} in Eqs. (1)–(3), we assume that {Xt} is a strictly stationary and ergodic process with

E(|Xt|k) = const. < ∞, where (the integer-valued) k is sufficiently large to ensure E(τ2
t ) =

const. <∞. {Xt} is assumed to be independent of {εi,t} for all i, t.

Assumption 3. For each of the MSM-MIDAS and FHMV-MIDAS models in Sections 2.1

5 In our applications, we impose a truncation at lag 1000.

8



and 2.2, we assume the following. (i) The short-term and the long-term components {gi,t}

and {τt} are stochastically independent for all i, t. (ii) The Markov chain {gi,t} is initialized

from its stationary distribution (implying strict stationarity).

We obtain the following stationarity result for the MSM-, FHMV-, and HYGARCH-

MIDAS models.

Proposition 1. Under Assumptions 1–3, the MSM-MIDAS, FHMV-MIDAS, and the

HYGARCH-MIDAS models from Sections 2.1, 2.2, and 2.4 are covariance stationary.

Similarly, for the two-regime MSGARCH-MIDAS model, we have the following result.

Proposition 2. Under Assumptions 1–3, the two-regime (k = 2) MSGARCH(2)-MIDAS

model from Section 2.3 is covariance stationary.

The final proposition characterizes the squared-return autocorrelation functions (ACFs)

for the MSM- and FHMV-MIDAS models.

Proposition 3. Under Assumptions 1–3, the ACFs of the squared returns in the MSM-

MIDAS and FHMV-MIDAS models for the lags of u days and v periods (min{u, v} > 0) can

be decomposed as

ρr2(u, v) ≡ Corr(r2
i,t, r

2
i−u,t−v)

= ρτ (v)
Var(τt)

Var(r2
i,t)

+ ρg(u, v)
Var(gi,t)

Var(r2
i,t)

(
ρτ (v)Var(τt) + E(τt)

2
)
, (21)

where ρτ (v), ρg(u, v) denote the ACFs of the long-term and short-term volatility components,

respectively. For MSM-MIDAS, we have

ρg(u, v) ≡ Corr(gi,t, gi−u,t−v)

=

∏NM
j=1

(
1 + (1− γj)N

(t−v)+...+N(t−1)+u(m0 − 1)2
)
− 1

((m0 − 1)2 + 1)NM − 1
, (22)
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and for FHMV-MIDAS,

ρg(u, v) ≡ Corr(gi,t, gi−u,t−v)

=

∏NC
j=1

(
1 + (2p− 1)N

(t−v)+...+N(t−1)+u
(
cj−1
cj+1

)2
)
− 1

∏NC
j=1

(
1 +

(
cj−1
cj+1

)2
)
· z2

0

(
q

NZ−1

∑NZ−1
j=1 z2

j + (1− q)
)
− 1

. (23)

Remark. Eqs. (22), (23) imply that the MSM-MIDAS and FHMV-MIDAS models are char-

acterized by short-memory, since the ACFs decline exponentially rapidly. However, Calvet

and Fisher (2004, Proposition 1) and Augustyniak et al. (2019, Theorem 1) show that both

non-MIDAS variants are capable of mimicking hyperbolic decay over a wide range of lags.

3 Simulation study

In this section, we analyze the finite-sample estimation performance of the four volatility

MIDAS models (MSM, FHMV, MSGARCH, HYGARCH) within a uniform simulation setup.

3.1 Estimation procedures

We estimate the MSM- and FHMV-MIDAS specifications via analogous regime-switching fil-

tering techniques (Hamilton, 1994) and describe the main steps in one algorithm. We denote

the elements of the respective state spaces χM (MSM) and χg (FHMV) by h(1), . . . , h(d1)

(MSM) and h(1), . . . , h(d2) (FHMV), where d1 = 2NM and d2 = NZ · 2NC . For NM = NC , the

cardinality of χg exceeds that of χM , principally rendering the iteration of the Hamilton filter

for the FHMV-MIDAS model computationally more demanding. We reduced this burden,

making it comparable to that of MSM-MIDAS, by integrating the FHMV jump-component

out of the predictive distribution, so that the filter only needs to iterate over 2NC states. We

implemented the filtering and computation of the log-likelihood functions as follows (Hamil-

ton, 1994, pp. 692-694):
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1. Initialization:

(MSM) Set ξ̂1,1|0,1 = πMSM.

(FHMV) Set ξ̂1,1|0,1 = πFHMV and ξ̂
C

1,1|0,1 = πC .

2. Iterate for i = 1, . . . , N (t) and t = 1, . . . , T :

• Update step:

Compute ξ̂i,t|i,t =
ξ̂i,t|i−1,t � ηi,t

1′dk · (ξ̂i,t|i−1,t � ηi,t)
(� denotes element-wise multiplication).

The conditional densities of the return series {ri,t} for all states h(1), . . . , h(dk)

(k = 1, 2) are summarized in the dk × 1 vector

ηi,t =

 f(ri,t|h(1),Fi−1,t,Θk)
...

f(ri,t|h(dk),Fi−1,t,Θk)

 ≡
 fh(1)

...
fh(dk)

,

where the set Fi−1,t contains all past obervations up to date (i− 1, t),
and Θ1 ≡ ΘMSM,Θ2 ≡ ΘFHMV.

(FHMV) For FHMV-MIDAS, additionally compute ξ̂
C

i,t|i,t =
ξ̂
C

i,t|i−1,t � (ζi,t · πZ)

1′dk · (ξ̂i,t|i−1,t � ηi,t)
,

with

ζi,t ≡


fh(1) fh(2) . . . fh(NZ )

fh(1+NZ ) fh(2+NZ ) . . . fh(2·NZ )

...
...

. . .
...

fh(d2−[NZ−1]) fh(d2−[NZ−2]) . . . fh(d2)

.

• Prediction step:

(MSM) Compute ξ̂i+1,t|i,t = PM · ξ̂i,t|i,t.

(FHMV) Compute ξ̂
C

i+1,t|i,t = (PC · ξ̂
C

i,t|i,t), and ξ̂i+1,t|i,t = ξ̂
C

i+1,t|i,t ⊗ πZ .

3. Computation of log-likelihood (for k = 1, 2):

ln(L(Θk)) =

T∑
t=1

N(t)∑
i=1

ln
(
1′dk(ξ̂i,t|i−1,t � ηi,t)

)
.

Based on the MSM- and FHMV-MIDAS log-likelihood functions from Step 3, we obtain

the ML estimates as

Θ̂k = argmax
Θk

ln
(
L(Θk)

)
, k = 1, 2.

We used an adapted version of the 3-step algorithm to estimate our MSGARCH-MIDAS

specification, while we applied standard ML techniques for the HYGARCH-MIDAS model.
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3.2 DGP parameters

We generate our simulation data according to Eq. (1) with {εi,t}
i.i.d.∼ N(0, 1), and let the

short-term component {gi,t} be driven by the respective processes (i) MSM, (ii) FHMV,

(iii) MSGARCH, and (iv) HYGARCH. We combine each short-term process with the same

long-term component {τt}, whose dynamics—according to Eq. (2)—hinge on the explanatory

variable Xt, for which we specify Xt = 0.9 · Xt−1 + νt with νt
i.i.d.∼ N(0, 0.32). Our index-t

frequency is monthly, with each month consisting of N (t) = 22 days (index-i frequency). In

line with Conrad and Kleen (2020), we set the parameters of our beta-weighting scheme in

Eqs. (2), (3) as m = 0.1, θ = 0.3, ω1 = 1, ω2 = 4, and use the lag length K = 36 months

(3 years). For the {gi,t}-volatility components, we use the following parameter values in our

data-generating process (DGP). MSM: m0 = 1.2, γNM = 0.5, b = 2, NM = 8. FHMV: c1 =

2.5, θC = 0.8, p = 0.995, NC = 8 (persistent components), z1 = 5, θZ = 0.5, q = 0.1, NZ = 8

(jump components). MSGARCH: α11 = 0.09, α12 = 0.05, β1 = 0.55, β2 = 0.7, p11 = p22 =

0.8 ≡ p. HYGARCH: φ = 0.2, d = 0.4, β = 0.4, κ = 0.8.

Besides the ML estimates under the above-described DGP, we also report the {gi,t}-

estimates obtained either under empirical misspecifications and/or under a (slightly) dis-

turbed {τt}-DGP. In particular, we consider the effects on the {gi,t}-estimates (i) when using

an incorrect lag-length in the empirical specification (K = 12 instead of the true K = 36),

(ii) when using a noisy explanatory variable X̃t in the {τt}-DGP (instead of Xt as described

above), (iii) when using both (i) plus (ii), and (iv) when setting the {τt}-component as

constant in the empirical specification (i.e. when essentially ignoring the long-term vari-

able).6 For each setting, we conduct 1000 Monte-Carlo replications and use the 3 observation

lengths T = 2670, 5280, 10560, which correspond to 10-, 20-, and 40-year simulation periods.

Throughout this section, we waive the inclusion of the mean return µ, set the parameters of

the declining beta-weighting scheme to ω1 = 1, ω2 = 4, and only estimate ω2. Technically,

we imposed the upper bound of 300 for the ML-estimates of ω2 throughout our estimation

routines (cf. Engle et al., 2013).

Tables 1–4 about here

6 Explicitly, pertaining to (ii), we add noise to the explanatory variable in the form of X̃t = Xt + υt with

υt
i.i.d.∼ N(0, 0.2 + 0.8|Xt|).
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3.3 Simulation results

Tables 1–4 illustrate the estimation results for our four volatility MIDAS models, using sim-

ulated data. We report average deviations of the ML-estimates from their true DGP-values

and standard errors (in parentheses), computed across the 1000 Monte-Carlo replications.

We first analyze the correctly specified empirical benchmark models ’MSM-MIDAS’,

’FHMV-MIDAS’, ’MSGARCH-MIDAS’, ’HYGARCH-MIDAS’ in the respective upper rows

within each of the three blocks (T = 2640, T = 5280, T = 10560) of Tables 1–4. Except for

ω2, all average deviations are near zero and, for the vast majority, shrink towards zero in

absolute value for increasing sample size T . For ω2, we observe (as a trend) the same pattern

of convergence towards zero, but substantial deviations appear to persist in large samples

(most apparently in Tables 1, 2, 4). Two comments on the ω2-estimates are in order at this

point. (i) The associated standard errors in Tables 1, 2, 4 are large vis-à-vis the deviations.

(ii) For beta-weights ϕk(ω1, ω2) in Eq. (3), we find that (for fixed ω1), the ϕk-weights are

often not very sensitive to changes in ω2.7

When analyzing the 4 (non-benchmark) specifications in Rows 2–5 of each block in Tables

1–4, we still (largely) find {gi,t}-estimates close to their DGP-values (except for ω2). Strik-

ingly, under the MSM-MIDAS and FHMV-MIDAS DGPs in Tables 1 and 2, these deviations

across all 4 non-benchmark misspecifications appear to be small vis-à-vis their standard er-

rors. By contrast, in Tables 3 and 4, we often find the reverse (small standard errors vis-à-vis

the deviations) for the HYGARCH-MIDAS and MSGARCH-MIDAS DGPs.

4 Empirical Application

4.1 Data

In this section, we analyze the forecasting performance of the four volatility MIDAS mod-

els and, for comparative purposes, include results for the GARCH-MIDAS (Engle et al.,

2013) and GJR-GARCH-MIDAS (Conrad and Loch, 2015; Conrad and Kleen, 2020) speci-

fications. We use daily observations on the S&P 500 and quarterly US macroeconomic data

from 1980:Q1 until 2019:Q4. Our macroeconomic variables are real GDP (1) , industrial pro-

duction (2), the unemployment rate (3), housing starts (4), nominal corporate profits after

7 For example, for the correctly specified ’MSM-MIDAS’ model in Table 1 with T = 10560, the first 36 ϕk-weights
(averaged across the 1000 Monte-Carlo replications) virtually coincide with the ϕk(ω1 = 1, ω2 = 4)-weights.
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tax (5), the inflaton rate (6), real personal consumption (10), and the term spread (11). As

sentiment-based indicators of business-confidence and uncertainty-assessments, we use the

Chicago National Activity Index ’NAI’ (7), the new-order index of the Institute for Supply

Management (8), and the consumer-sentiment index published by the University of Michigan

(9).8

Following the lines of argument in Fang et al. (2020), we use real-time data. We apply the

NAI and the new-order indices, the inflation rate and the term spread in levels, taking first

differences for the unemployment rate and the consumer-sentiment index. For the remaining

variables, we compute the annualized quarterly percentage changes as 100 · (Xt/Xt−1 − 1)4.

We obtain the daily S&P500 returns as ri,t = 100·[ln(pi,t)− ln(pi−1,t)], and compute quarterly

realized volatility as RVt =
∑N(t)

i=1 r2
i,t. (We use {RVt} as the 12th long-term variable in Tables

5–11.)

4.2 Forecasting strategy

We partition our data set into (i) an estimation period ranging from 1980:Q1 until 2003:Q4,

and (ii) an out-of-sample period from 2004:Q1 until 2019:Q4. Our target variable to be

forecasted is the cumulative S&P500-return variance, which we forecast for 1, 2, 3, 4 quarters

ahead, using a rolling-window scheme (with updated parameter estimates).

Formally, using all information available at day N (t) in quarter t, the optimal variance

forecast for day k in quarter t+ s, with forecast horizon s ≥ 1, is given by

σ̂2
k,t+s|N(t),t

= EN(t),t(τt+s · gk,t+s) = Et(τt+s) · EN(t),t(gk,t+s) = τ̂t+s|t · ĝk,t+s|N(t),t.

For the horizon s = 1, the forecast of the long-term component τ̂t+1|t is predetermined by

Eq. (2). For s > 1, we need to know the distribution of the economic variable Xt in order

to predict the long-term component. As in Conrad and Loch (2015), we assume smooth

movements in the long-term component and set τ̂t+s|t = τ̂t+1|t for s > 1.

For the MSM-MIDAS and FHMV-MIDAS models, we base the forecasts of the short-term

components on the updated conditional probability ξ̂N(t),t|N(t),t, as obtained for last day of

the estimation period, via the Hamilton filter from Section 3.1. According to the prediction

8 The numbers in parentheses refer to the enumeration of the long-term variables in Tables 5–11.
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step, we respectively obtain the MSM and FHMV probability-vector forecasts as

ξ̂k,t+s|N(t),t = PN(t+1)+...+N(t+s−1)+k
M · ξ̂N(t),t|N(t),t,

and

ξ̂k,t+s|N(t),t = PN(t+1)+...+N(t+s−1)+k
g · ξ̂N(t),t|N(t),t,

from which we compute the forecasts of the respective short-term components as

ĝk,t+s|N(t),t = h · ξ̂k,t+s|N(t),t,

where h =
(
h1 . . . hdk

)
denotes either the MSM- or the FHMV-specific row vector con-

taining all elements of the state spaces XM or Xg. Pertaining to the computation of the

GARCH-based model forecasts, we refer to Haas et al. (2004), Conrad (2010), and Conrad

and Kleen (2020). Finally, aggregating the daily variance forecasts over the period t + s

yields the cumulative variance forecasts σ̂2
1:N(t+s),t+s|N(t),t

= τ̂t+s|t
∑N(t+s)

i=1 ĝi,t+s|N(t),t (our

target variable).

The first step of our out-of-sample analysis below, consists of investigating whether the

inclusion of explanatory variables yields accuracy gains over the non-MIDAS models (without

the long-term component). We conduct these accuracy comparisons via the mean-squared

error (MSE) and the quasi-likelihood (QLike) loss functions, defined as

MSE(σ2
1:N(t+s),t+s

, σ̂2
1:N(t+s),t+s|N(t),t

) = (σ2
1:N(t+s),t+s

− σ̂2
1:N(t+s),t+s|N(t),t

)2,

QLike(σ2
1:N(t+s),t+s

, σ̂2
1:N(t+s),t+s|N(t),t

) = log
(
σ̂2

1:N(t+s),t+s|N(t),t

)
+

σ2
1:N(t+s),t+s

σ̂2
1:N(t+s),t+s|N(t),t

,

where σ2
1:N(t+s),t+s

is a suitably chosen proxy for the unobservable variance. In our analysis

below, we approximate this unobservable variance by the (aggregated) squared returns RVt

defined above, although this proxy may be noisy. However, Patton (2011) demonstrates that

the forecast rankings induced by MSE and QLike loss functions are consistent, as long as the

chosen proxy is conditionally unbiased. In order to test for equal (unconditional) predictive

ability, we use Giacomini and White’s (2006) test, which is applicable for nested models.
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Based on the loss differential of two competing models i and j,

dij(t+ s) = L(σ2
1:N(t+s),t+s

, σ̂
2,(i)

1:N(t+s),t+s|N(t),t
)− L(σ2

1:N(t+s),t+s
, σ̂

2,(j)

1:N(t+s),t+s|N(t),t
)

(L(·, ·) is either the MSE or QLike loss), we test the null hypothesis

H0 : E (dij(t+ s)) = 0 for all t+ s

via the test statistic

tij =
d̄ij√

V̂ar(d̄ij)
,

with d̄ij = 1
T

∑T
t=1 dij(t + s), T the number of out-of-sample forecast periods, and where

we use an HAC-estimate of the variance in the test statistic. We consider Model j as the

baseline model (non-MIDAS, i.e. no long-term component) and conduct all tests against the

correponding MIDAS specifications with long-term component (Model i).

In a second step, we compare forecast accuracy among our model classes, by identifying

the set of models with superior forecasting performance via Hansen et al.’s (2011) model

confidence sets. We sequentially eliminate the ’worst-performing’ model from the initial set

M (encompassing all model specifications), if the null hypothesis

H0,M : E(dij) = 0 for all i, j ∈M, (24)

is rejected at the significance level α. This iterative testing procedure is terminated once the

null hypothesis cannot be rejected any further, and the set of remaining models constitutes the

so-called model confidence set (MCS) M̂∗1−α at the confidence level 1 − α. To approximate

the nonstandard asymptotic distribution of the involved test statistic TM = max
i,j∈M

|tij |, we

apply a block-bootstrap.9

4.3 Forecasting results

In a preliminary model-selection analysis, we estimated the following two specifications per

explanatory long-term variable and MIDAS model. (i) One variant with a restricted, declin-

ing beta-weighting scheme (ω1 = 1), and (ii) one with an unrestricted beta-weighting scheme.

9 Specifically, we use Kevin Sheppard’s Matlab toolbox ’MFE’ (see https://www.kevinsheppard.com/code/matlab/mfe-
toolbox).
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Overall, the estimated variable-specific weighting-schemes appeared to be similar across most

model specifications. We also conducted likelihood ratio tests for the hypotheses ’restricted’

(null) versus ’unrestricted weighting scheme’ (alternative), but only found unambiguous evi-

dence in favor of an unrestricted weighting scheme at the 5% level (across all MIDAS models)

for the variable ’housing starts’, supporting the widespread view that housing starts may serve

as a leading indicator (cf. Kydland et al., 2016). Ultimately, we decided to exclusively use

the unrestricted beta-weighting scheme for the ’housing starts’, and to apply the restricted

variant (ω1 = 1) for all other long-term variables. Additionally, we opted to use (i) NM = 8

short-term volatility multipliers in the MSM-MIDAS models, and (ii) NC = 6 persistent

volatility components plus NZ = 6 distinct jump outcomes in the FHMV-MIDAS models. In

line with the literature, we chose K = 12 lags in the long-term component (covering 3 years

of macroeconomic data) for all specifications (cf.,inter alia, Conrad and Loch, 2016; Conrad

and Kleen, 2020).

Tables 5 – 10 about here

Tables 5–10 display the forecasting performance of six volatility MIDAS models (MSM-

, FHMV-, MSGARCH-, HYGARCH-, GJR-GARCH, GARCH-MIDAS). For each MIDAS

model (i.e. in each table), we consider 12 variants, where each variant includes one single (out

of 12) long-term variable. We measure forecasting performance in terms MSE and QLike

losses relative to their counterpart-losses from the non-MIDAS benchmark model (MSE,

QLike ratios), implying that ratios falling below 1 indicate superior forecasting accuracy of

the MIDAS model compared with its non-MIDAS benchmark model.

For all volatility MIDAS models (except for HYGARCH in Table 8), the inclusion of

(specific) long-term variables yields significant forecast-accuracy gains via the Giacomini-

White test. For MSGARCH-MIDAS (Table 7), the results hinge on the loss type. Under

MSE loss, adding long-term information leads to accuracy gains for forecast horizons longer

than 2 quarters ahead. The (numerically) largest improvement occurs under the inclusion of

’housing starts’ (4) with an accuracy improvement of about 65% for the 4-quarter forecast

horizon. However, under QLike loss, MSGARCH-MIDAS exhibits (often significant) accuracy

losses, except for the inclusion of ’housing starts’ (4). For MSM-MIDAS (Table 5), FHMV-

MIDAS (Table 5), GJR-GARCH-MIDAS (Tables 9), and GARCH-MIDAS (Table 10), the
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inclusion of the ’Term spread’ (11) yields the (numerically) largest accuracy gains under

both loss functions, a finding consistent with Estrella and Hardouvelis (1991), Estrella and

Mishkin (1998) and Ang et al. (2006), who all classify the term spread as a powerful predictor

of economic growth.

Table 11 about here

Up to now, our out-of-sample analysis focuses on pairwise comparisons between each

volatility MIDAS model and its non-MIDAS counterpart. To assess the forecasting per-

formance among the MIDAS models, we apply Hansen et al.’s (2011) MCS approach, as

outlined in Section 4.2. Table 11 displays MCS p-values under MSE and QLike losses for

1 to 4 quarter-ahead cumulated variance forecasts.10 A gray-shaded cell indicates that the

associated variable-specific MIDAS variant belongs to the 90% MCS M̂∗0.9 (see Eq. (24) in

Section 4.2).11

We start with the 1-quarter (1q) horizon under both losses. Across the 12 variable-

specific MIDAS variants (Blocks (1)–(12) in Table 11), the confidence sets (most notably

under the QLike loss) retain ’many’ MIDAS models, and therefore, prima facie, appear to be

rather uninformative. We recognize, however, that under the MSE loss, all 12 MSGARCH-

MIDAS variants belong to the 90% MCSs, documenting some evidence in favor of the short-

horizon predictor quality of MSGARCH-MIDAS. By contrast, for the 2, 3, 4 quarter horizons,

MSGARCH-MIDAS constantly fails to attain the 90% MCSs (except for the 3q horizon in

Block (2)). We also note that a qualitatively similar forecasting performance prevails for the

MSM-MIDAS specifications.

Next, we address the contribution of the specific long-term variables to identifying volatil-

ity MIDAS models with superior forecasting performance. Two striking variables in Table 11

are (i) the ’Term spread’ in Block (11), and (ii) ’∆ Hous.’ (the housing starts) in Block (4).

For the ’Term spread’, the FHMV-MIDAS model belongs to the 90% MCSs across all forecast

horizons under both losses (in all 8 cases). The same pattern emerges for GJR-GARCH-

MIDAS and GARCH-MIDAS (in 7 out of 8 cases). A qualitatively similar finding holds for

the housing-start variable in Block (4) under the QLike loss. These variable-specific find-

10 For the computation of the p-values, we used 9,999 bootstrap replications.
11 We included the non-MIDAS models in the MCS approach, but do not report results for these specifications

here. Details are available upon request.
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ings may appear to contradict the results in Conrad and Kleen (2020), who identify distinct

long-term variables—entailing superior forecasts—for almost all of their forecast horizons.12

However, our major finding is that the long-term variables ’term spread’ and ’housing starts’

can substantially improve the forecast accuracy of several volatility MIDAS models.13 This

result appears to apply particularly to the FHMV-MIDAS model across all forecast horizons.

5 Conclusion

We propose four new multiplicative-component volatility MIDAS models, three of which

are based on Markov-switching short-term components. We establish covariance-stationarity

properties of the models, and—for two of them (MSM-, FHMV-MIDAS)—we derive an-

alytically closed-form formulae for the autocorrelation functions of the squared returns.

Based on regime-switching filtering techniques (the Hamilton-filter), we set up a fully-fledged

maximum-likelihood estimation approach and check for the unbiasedness of the ML estimates

via Monte Carlo analyses. Our in-sample estimates turn out to be robust against (i) con-

taminated measurements of the long-term variable in the data-generating process, and (ii)

misspecification of the lag-length in the estimated empirical specification.

In an out-of-sample analysis, we apply the volatility MIDAS models to forecast (cumu-

lative) variances of S&P500 returns (daily observations), using quarterly US macroeconomic

data (on 12 variables) from a 40-year time span. In a first step, we analyze whether the

inclusion of specific long-term variables entails forecast accuracy gains for the volatility MI-

DAS models relative to their non-MIDAS counterparts which waive information from the

long-term variables. We find that the inclusion of the variables ’Housing starts’ and ’Term

spread’ can entail substantial forecast accuracy gains for several multiplicative volatility MI-

DAS models. In a second step, we construct model confidence sets to identify groups of

volatility MIDAS models with superior forecasting performance. Again, the long-term vari-

able ’Term spread’ plays an accentuated role in that it robustly distils the FHMV-MIDAS

model as a model-confidence-set member across (i) all forecast horizons, and (ii) the two loss

functions used.

12 This difference may be due to the differing time-dimensions of the forecast horizons used by Conrad and Kleen
(2020) and those used in our study.

13 The same long-term variables have also been identified as accuracy-improving by Conrad and Loch (2015) and
Fang et al. (2020).
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In this paper, we focus on modeling the short-term component of the volatility MIDAS

framework as Markov-switching specifications. However, (Markovian) regime changes have

generally turned out to constitute an important empirical feature, so that the inclusion of

Markov-switching approaches in long-term MIDAS components in the spirit of Guérin and

Marcellino (2013) could usefully be tackled in future research. Finally, we note that the

current literature mostly uses long-term variables from macro-financial data. In view of the

current global crises, it might be worth processing other conceivably non-economic data, such

as variables representing geopolitical and/or pandemic risks.

Appendix: A. Proof(s) and remark(s)

Proof of Proposition 1. Let r̄i,t ≡ ri,t−µ denote the demeaned return from Eq. (1). From

Assumption 1, we have E(r̄i,t) = E(
√
τtgi,t) · E(εi,t) = 0, implying E(ri,t) = µ (= const.).

From Assumptions 1–3, we first have Var(ri,t) = Var(r̄i,t) = E(r̄2
i,t) − [E(r̄i,t)]

2 =

E(gi,t)E(τt)E(ε2
i,t) = E(gi,t)E(τt). Owing to Assumption 3(ii), the MSM and FHMV Markov-

chains {gi,t} are (strictly) stationary, and—per construction—have expectation E(gi,t) =

1. Our HYGARCH-MIDAS short-term volatility process from Eqs. (18), (19) satisfies the

covariance-stationarity condition (1−κ)Φ(1) = (1−κ)(1−φ) > 0 (cf. Conrad, 2010), and—per

construction—E(gi,t) = 1. Overall, for the MSM-, FHMV- and HYGARCH-MIDAS models,

Assumption 2 implies Var(ri,t) = E(τt) = const.

Finally, at the lags of u days and v periods (min{u, v} > 0), the autocovariance function

of {ri,t} is

Cov(ri,t, ri−u,t−v) = Cov(r̄i,t, r̄i−u,t−v)

= E(r̄i,t · r̄i−u,t−v)− E(r̄i,t) · E(r̄i−u,t−v)

= E(r̄i,t · r̄i−u,t−v)

= E
(√
τtgi,t ·

√
τt−vgi−u,t−v

)
· E(εi,t) · E(εi−u,t−v)

= 0.

Proof of Proposition 2. Using the independence of {∆i,t}, {εi,t} and Assumptions 1–3,
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similar calculations to those in the proof of Proposition 1 yield

E(r̄i,t) = 0 (implying E(ri,t) = µ),

Cov(ri,t, ri−u,t−v) = 0.

The variance of the (k-regime) MSGARCH-MIDAS(k) model is

Var(ri,t) = E(g
(∆i,t)
i,t )E(τt),

which, in view of Assumption 2, is constant if the short-term component {g(∆i,t)
i,t } is covariance

stationary. To prove the latter, we first consider the matrix

M =


M11 M21 . . . Mk1

M12 M22 . . . Mk2
...

...
. . .

...
M1k M2k . . . Mkk

 , with Mjl = pjl(β + α1e
′
l) for j, l = 1, 2, . . . , k,

where pjl,β,α1 as in Eqs. (16), (17), and el denotes the lth Euclidian standard basis vector of

dimension k× 1. Following Haas et al. (2004), the short-term process {g(∆i,t)
i,t } is covariance-

stationary, if and only if the spectral radius ρ(·) of the matrix M is less than 1 (i.e. iff

ρ(M) < 1). For the two-regime case (k = 2), M reduces to the 4× 4 matrix

M =


p11(α11 + β1) 0 p21(α11 + β1) 0

p11α12 p11β2 p21α12 p21β2

p12β1 p12α11 p22β1 p22α11

0 p12(α12 + β2) 0 p22(α12 + β2)

 ,
for which we can establish an upper bound for the spectral radius ρ(M). Defining the vector

x = (p21 p21 p12 p12)′, we apply Theorem 8.1.26 in Horn and Johnson (2012, p. 522) to obtain

ρ(M) ≤ max{α11 + β1, α12 + β2}.

In view of the restriction α0 = 1k − α1 − β1k > 0k in Eq. (16), we have ρ(M) < 1 for

k = 2.

Proof of Proposition 3. (i) To prove Eq. (21), we first show that Cov(r2
i,t, r

2
i−u,t−v) =
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Cov(r̄2
i,t, r̄

2
i−u,t−v), where r̄2

i,t = (ri,t − µ)2 = gi,tτtε
2
i,t. For all i, t and min{u, v} > 0, we have

Cov(r̄2
i,t, r̄

2
i−u,t−v) = Cov(r2

i,t − 2µri,t + µ2, r2
i−u,t−v − 2µri−u,t−v + µ2)

= Cov(r2
i,t, r

2
i−u,t−v)− 2µCov(r2

i,t, ri−u,t−v)

− 2µCov(ri,t, r
2
i−u,t−v) + 4µ2Cov(ri,t, ri−u,t−v). (A.1)

Under Assumptions 1–3, the term Cov(r2
i,t, ri−u,t−v) in Eq. (A.1) is

Cov(r2
i,t, ri−u,t−v) = Cov(µ2 + 2µ

√
gi,tτtεi,t + gi,tτtε

2
i,t, ri−u,t−v)

= 2µCov(
√
gi,tτtεi,t, ri−u,t−v) + Cov(gi,tτtε

2
i,t, µ+

√
gi−u,t−vτt−vεi−u,t−v)

= 2µ
[
E(
√
gi,tτtεi,tri−u,t−v)− E(

√
gi,tτtεi,t)E(ri−u,t−v)

]
+ Cov(gi,tτtε

2
i,t,
√
gi−u,t−vτt−vεi−u,t−v)

= 2µ
[
E(
√
gi,tτtri−u,t−v)E(εi,t)− E(

√
gi,tτt)E(εi,t)E(ri−u,t−v)

]
+ E(gi,tτtε

2
i,t
√
gi−u,t−vτt−vεi−u,t−v)

− E(gi,tτtε
2
i,t)E(

√
gi−u,t−vτt−vεi−u,t−v)

= 2µ
[
E(
√
gi,tτtri−u,t−v) · 0− E(

√
gi,tτt) · 0 · E(ri−u,t−v)

]
+ E(gi,tτtε

2
i,t
√
gi−u,t−vτt−v)E(εi−u,t−v)

− E(gi,tτtε
2
i,t)E(

√
gi−u,t−vτt−v)E(εi−u,t−v)

= 2µ · 0 + E(gi,tτtε
2
i,t
√
gi−u,t−vτt−v) · 0− E(gi,tτtε

2
i,t)E(

√
gi−u,t−vτt−v) · 0

= 0. (A.2)

Similarly,

Cov(ri,t, r
2
i−u,t−v) = 0, (A.3)

and, from the proof of Proposition 1,

Cov(ri,t, ri−u,t−v) = 0. (A.4)

Inserting (A.2)–(A.4) into (A.1) yields

Cov(r̄2
i,t, r̄

2
i−u,t−v) = Cov(r2

i,t, r
2
i−u,t−v). (A.5)
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Next, the autocovariance function of the squared demeaned returns can be written as

Cov(r̄2
i,t, r̄

2
i−u,t−v) = E

(
τtτt−vgi,tgi−u,t−vε

2
i,tε

2
i−u,t−v

)
− E

(
τtgi,tε

2
i,t

)
E
(
τt−vgi−u,t−vε

2
i−u,t−v

)
= E (τtτt−v)E (gi,tgi−u,t−v)

− E (τt)E (τt−v)E (gi,t)E (gi−u,t−v)

= [E(τtτt−v)− E(τt)E(τt−v)]E (gi,tgi−u,t−v)

+ E(τt)E(τt−v)
[
E(gi,tgi−u,t−v)

− E (gi,t)E (gi−u,t−v)
]

= Cov (τt, τt−v)
[
E (gi,tgi−u,t−v)

− E (gi,t)E (gi−u,t−v)
]

+ Cov (τt, τt−v) + E(τt)
2Cov (gi,t, gi−u,t−v)

= Cov (τt, τt−v)

+ Cov (gi,t, gi−u,t−v)
[
E(τt)

2 + Cov (τt, τt−v)
]
. (A.6)

Using Eqs. (A.5) and (A.6), we write the ACF of the squared returns as

ρr2(u, v) =
Cov(r2

i,t, r
2
i−u,t−v)

Var(r2
i,t)

=
Cov(τt, τt−v)

Var(τt)
· Var(τt)

Var(r2
i,t)

+
Cov(gi,t, gi−u,t−v)

Var(gi,t)
· Var(gi,t)

Var(r2
i,t)

[
E(τt)

2 +
Cov(τt, τt−v)

Var(τt)
Var(τt)

]

= ρτ (v)
Var(τt)

Var(r2
i,t)

+ ρg(u, v)
Var(gi,t)

Var(r2
i,t)

(
E(τt)

2 + ρτ (v)Var(τt)
)
,

as claimed in Eq. (21).

To prove Eq. (22), we first recall from Section 2.1 that theNM multipliersM
(1)
i,t , . . . ,M

(NM )
i,t

are independent, each with expectation E(M
(j)
i,t ) = 1 for j = 1, . . . , NM . Thus, the autoco-

variance function of {gi,t} from Eq. (4) is

Cov(gi,t, gi−u,t−v) =

NM∏
j=1

E
(
M

(j)
i,t M

(j)
i−u,t−v

)
− 1. (A.7)
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To compute the product in Eq. (A.7), we first apply the law of iterated expectation and the

pull-through property to obtain

E
(
M

(j)
i,t M

(j)
i−u,t−v

)
= E

(
M

(j)
i,t M

(j)
i−u,t−v|M

(j)
i−u,t−v = m0

)
Prob

{
M

(j)
i−u,t−v = m0

}
+ E

(
M

(j)
i,t M

(j)
i−u,t−v|M

(j)
i−u,t−v = 2−m0

)
Prob

{
M

(j)
i−u,t−v = 2−m0

}
= 0.5 ·m0 · E

(
M

(j)
i,t |M

(j)
i−u,t−v = m0

)
+ 0.5 · (2−m0) · E

(
M

(j)
i,t |M

(j)
i−u,t−v = 2−m0

)
. (A.8)

Next, we decompose the multiplier transition probability matrix from Eq. (6):

P(j) =

(
1− 0.5γj 0.5γj

0.5γj 1− 0.5γj

)

=

(
1√
2

1√
2

1√
2
− 1√

2

)(
1 0
0 1− γj

)( 1√
2

1√
2

1√
2
− 1√

2

)

= EA(j)E′, (A.9)

where the columns of E are two eigenvectors of P(j), and the elements on the main diagonal

of A(j) are the corresponding eigenvalues. For ease of notation, we stack the two mass points

of the multipliers’ base distribution in the vector m = (m0, 2 − m0)′, and define the lag

h = N (t−v) + · · ·+N (t−1) + u. Then, using (A.9), we write the right-hand side of (A.8) as

E
(
M

(j)
i,t M

(j)
i−u,t−v

)
= 0.5m′

(
P(j)

)h
m

= 0.5m′E
(
A(j)

)h
E′m

= 1 + (1− γj)h (m0 − 1)2. (A.10)

Inserting (A.10) into (A.7) yields the autocovariance function

Cov(gi,t, gi−u,t−v) =

NM∏
j=1

(
1 + (1− γj)h (m0 − 1)2

)
− 1. (A.11)

Along similar lines, we obtain

Var(gi,t) =
(
1 + (m0 − 1)2

)Nm − 1, (A.12)
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and taking the ratio of (A.11) and (A.12) yields Eq. (22).

We prove Eq. (23) for FHMV-MIDAS with the same technique. First,

Cov(gi,t, gi−u,t−v) = E [(Ci,tZi,t) (Ci−u,t−vZi−u,t−v)]− E (Ci,tZi,t) · E (Ci−u,t−vZi−u,t−v)

= E (Ci,tCi−u,t−v)E (Zi,t)E (Zi−u,t−v) (A.13)

− E (Ci,t)E (Zi,t)E (Ci−u,t−v)E (Zi−u,t−v)

= E (Ci,tCi−u,t−v)− 1

=

NC∏
j=1

E
(
C

(j)
i,t C

(j)
i−u,t−v

)
E
(
C

(j)
i,t

)
E
(
C

(j)
i−u,t−v

) − 1, (A.14)

where we used in (A.13) the jump component {Zi.t}, per construction, being independent

of its own past (see Section 2.2). We decompose the transition probability matrix P of the

C
(j)
i,t -multipliers in Eq. (9) as

P =

(
p 1− p

1− p p

)

=

(
1√
2

1√
2

1√
2
− 1√

2

)(
1 0
0 2p− 1

)( 1√
2

1√
2

1√
2
− 1√

2

)

= EAE′. (A.15)

We collect the two elements of the C
(j)
i,t -support in the 2 × 1 vector c = (cj , 1)′ and obtain

(for h = N (t−v) + · · ·+N (t−1) + u)

E
(
C

(j)
i,t C

(j)
i−u,t−v

)
= E

(
C

(j)
i,t C

(j)
i−u,t−v|C

(j)
i−u,t−v = cj

)
Prob

{
C

(j)
i−u,t−v = cj

}
+ E

(
C

(j)
i,t C

(j)
i−u,t−v|C

(j)
i−u,t−v = 1

)
Prob

{
C

(j)
i−u,t−v = 1

}
= 0.5 · cj · E

(
C

(j)
i,t |C

(j)
i−u,t−v = cj

)
+ 0.5 · E

(
C

(j)
i,t |C

(j)
i−u,t−v = 1

)
(A.16)

= 0.5 · c′Phc = 0.5 · c′EAhE′c

= 0.25 (cj + 1)2 + 0.25(2p− 1)h (cj − 1)2 , (A.17)

where we used in (A.16) the unconditional distribution on the FHMV multiplier C
(j)
i,t being
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given by Prob
{
C

(j)
i−u,t−v = cj

}
= Prob

{
C

(j)
i−u,t−v = 1

}
= 0.5.14 With these point probabili-

ties, it follows that

E
(
C

(j)
i,t

)
= 0.5 · (cj + 1) and Var

(
C

(j)
i,t

)
= 0.25 · (cj − 1)2, (A.18)

so that Eq. (A.17) can be written as

E
(
C

(j)
i,t C

(j)
i−u,t−v

)
=
[
E
(
C

(j)
i,t

)]2
+ Var

(
C

(j)
i,t

)
· (2p− 1)h. (A.19)

Inserting (A.18), (A.19) into Eq. (A.14) yields the covariance function

Cov(gi,t, gi−u,t−v) =

NC∏
j=1

[
E
(
C

(j)
i,t

)]2
+ Var

(
C

(j)
i,t

)
(2p− 1)h[

E
(
C

(j)
i,t

)]2 − 1

=

NC∏
j=1

[
1 +

(
cj − 1

cj + 1

)2

(2p− 1)h
]
− 1. (A.20)

Similarly, we obtain

Var (gi,t) = E
(
C2
i,t

)
· E
(
Z2
i,t

)
− 1,

where E
(
Z2
i,t

)
= z2

0

(
q

NZ−1

∑NZ−1
j=1 z2

j + (1− q)
)

, and

E
[
C2
i,t

]
=

NC∏
j=1


E
[
(C

(j)
i,t )2

]
[
E(C

(j)
i,t )
]2

 =

NC∏
j=1

(
0.5 + 0.5c2

j

0.25(cj + 1)2

)
=

NC∏
j=1

(
1 +

(
cj − 1

cj + 1

)2
)
,

and thus,

Var (gi,t) =

NC∏
j=1

(
1 +

(
cj − 1

cj + 1

)2
)
· z2

0

 q

NZ − 1

NZ−1∑
j=1

z2
j + (1− q)

− 1. (A.21)

Taking the ratio of (A.20) and (A.21) yields Eq. (23).

14 The explicit form of the unconditional distribution follows from the general FHMV framework in Section 2.2.
A proof is given in the supplement of Augustyniak et al. (2019) on pp. 13, 14.
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Tables and Figures



Table 1: Deviations of ML-estimates from the true parameters; DGP: MSM-MIDAS

Empirical specification m0 γNM
b m θ ω2

T
=

2
6
40

MSM-MIDAS 0.010 -0.006 0.175 0.018 -0.065 -29.688
(0.026) (0.295) (0.477) (0.143) (0.317) (82.811)

MSM-MIDAS(K = 12) 0.007 -0.016 0.102 0.010 0.052 -27.080
(0.020) (0.277) (0.450) (0.109) (0.192) (62.792)

MSM-MIDAS(X̃t) 0.010 0.005 0.173 0.017 -0.058 -15.484
(0.029) (0.300) (0.496) (0.130) (0.299) (57.547)

MSM-MIDAS(K = 12, X̃t) 0.007 -0.013 0.079 0.013 0.059 -16.226
(0.028) (0.280) (0.525) (0.105) (0.177) (50.430)

MSM 0.003 -0.021 -0.314 0.043 − −
(0.068) (0.262) (1.654) (0.074) − −

T
=

5
2
80

MSM-MIDAS 0.004 -0.012 0.072 0.009 -0.036 -17.120
(0.013) (0.241) (0.372) (0.083) (0.184) (63.102)

MSM-MIDAS(K = 12) 0.003 -0.022 0.019 0.005 0.040 -14.365
(0.013) (0.233) (0.435) (0.078) (0.127) (48.047)

MSM-MIDAS(X̃t) 0.005 -0.011 0.071 0.008 -0.023 -9.320
(0.019) (0.237) (0.385) (0.084) (0.175) (44.890)

MSM-MIDAS(K = 12, X̃t) 0.003 -0.018 0.033 0.007 0.063 -8.457
(0.013) (0.227) (0.379) (0.077) (0.123) (39.341)

MSM -0.002 -0.023 -0.295 0.043 − −
(0.059) (0.225) (0.968) (0.067) − −

T
=

10
5
60

MSM-MIDAS 0.003 -0.011 0.039 0.005 -0.026 -4.131
(0.009) (0.175) (0.228) (0.057) (0.112) (25.884)

MSM-MIDAS(K = 12) 0.002 -0.012 0.023 0.004 0.037 -1.908
(0.009) (0.169) (0.221) (0.055) (0.088) (23.840)

MSM-MIDAS(X̃t) 0.003 -0.011 0.040 0.005 -0.019 -3.412
(0.009) (0.175) (0.231) (0.055) (0.110) (24.925)

MSM-MIDAS(K = 12, X̃t) 0.002 -0.012 0.021 0.004 0.049 0.112
(0.009) (0.169) (0.226) (0.055) (0.082) (16.220)

MSM -0.010 -0.010 -0.458 0.049 − −
(0.049) (0.163) (1.125) (0.064) − −

Note: Standard errors of the ML estimators are in parentheses. For the innovation process in Eq. (1), we assume

{εt}
i.i.d.∼ N(0, 1). The parameters of the {τt}-DGP from Eqs. (2)–(3) are K = 36,m = 0.1, θ = 0.3, ω1 = 1 (not

estimated), ω2 = 4. The explanatory variable is specified as Xt = 0.9 ·Xt−1 + νt with νt
i.i.d.∼ N(0, 0.32). The DGP

parameters of the MSM short-term volatility component {gi,t} from Eqs. (4)–(6) are m0 = 1.2, γNM = 0.5, b =

2, NM = 8. ’MSM-MIDAS’ denotes the benchmark specification estimated under all the above-mentioned DGP

parameters. ’MSM-MIDAS(K = 12)’ denotes the specification, estimated with K = 12 (instead of K = 36).

’MSM-MIDAS(X̃t)’ denotes the estimated specification when the {τt}-DGP is based on the noisy explanatory

variable X̃t = Xt + υt with υt
i.i.d.∼ N(0, 0.2 + 0.8|Xt|) (ceteris paribus). ’MSM-MIDAS(K = 12, X̃t)’ combines

’MSM-MIDAS(K = 12)’ and ’MSM-MIDAS(X̃t)’. In the empirical specification ’MSM’, we only estimated the

MSM short-term volatility {gi,t} (no long-term component) under the fully-specified DGP.
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Table 2: Deviations of ML-estimates from the true parameters; DGP: FHMV-MIDAS

Empirical specification c1 θC p z1 θZ q m θ ω2

T
=

2
6
40

FHMV-MIDAS -0.262 0.109 0.002 -0.988 0.120 -0.156 0.027 -0.052 -14.549
(0.861) (0.234) (0.003) (14.646) (0.406) (0.265) (0.324) (0.725) (48.332)

FHMV-MIDAS(K = 12) -0.209 0.076 0.001 -0.361 0.103 -0.130 0.022 0.053 -17.218
(0.773) (0.212) (0.002) (4.309) (0.405) (0.243) (0.255) (0.388) (44.759)

FHMV-MIDAS(X̃t) -0.287 0.115 0.001 -0.214 0.101 -0.148 0.042 -0.110 -9.735
(0.841) (0.227) (0.003) (3.964) (0.411) (0.255) (0.308) (0.657) (37.769)

FHMV-MIDAS(K = 12, X̃t) -0.220 0.078 0.001 -0.058 0.096 -0.126 0.037 0.080 -13.710
(0.781) (0.205) (0.002) (3.660) (0.406) (0.232) (0.244) (0.299) (41.574)

FHMV -0.115 0.032 0.001 -0.605 0.131 -0.129 0.045 − −
(0.683) (0.181) (0.002) (7.031) (0.403) (0.237) (0.114) − −

T
=

52
80

FHMV-MIDAS -0.072 0.034 0.001 0.085 0.104 -0.091 0.036 -0.049 -11.442
(0.627) (0.171) (0.001) (2.450) (0.387) (0.196) (0.191) (0.417) (43.991)

FHMV-MIDAS(K = 12) -0.059 0.025 0.001 0.101 0.091 -0.078 0.028 0.053 -13.664
(0.598) (0.161) (0.001) (2.604) (0.383) (0.175) (0.175) (0.279) (41.429)

FHMV-MIDAS(X̃) -0.084 0.041 0.001 0.151 0.107 -0.079 0.026 -0.046 -10.223
(0.615) (0.169) (0.002) (2.586) (0.378) (0.180) (0.195) (0.379) (40.916)

FHMV-MIDAS(K = 12, X̃t) -0.069 0.029 0.001 0.227 0.113 -0.071 0.017 0.081 -9.647
(0.587) (0.161) (0.001) (2.156) (0.378) (0.158) (0.174) (0.215) (34.771)

FHMV -0.042 0.005 0.000 -0.679 0.111 -0.078 0.049 − −
(0.557) (0.144) (0.001) (19.966) (0.376) (0.166) (0.089) − −

T
=

10
56

0

FHMV-MIDAS -0.010 0.008 0.000 0.276 0.084 -0.041 0.013 -0.048 -10.558
(0.487) (0.135) (0.001) (1.628) (0.361) (0.114) (0.125) (0.245) (40.268)

FHMV-MIDAS(K = 12) -0.003 0.003 0.000 0.292 0.091 -0.042 0.008 0.049 -9.876
(0.480) (0.131) (0.001) (1.570) (0.358) (0.112) (0.120) (0.178) (36.510)

FHMV-MIDAS(X̃t) -0.013 0.010 0.000 0.284 0.092 -0.043 0.015 -0.031 -8.088
(0.471) (0.131) (0.001) (1.655) (0.367) (0.107) (0.125) (0.235) (37.008)

FHMV-MIDAS(K = 12, X̃) 0.001 0.004 0.000 0.335 0.083 -0.043 0.012 0.072 -8.201
(0.457) (0.126) (0.001) (1.600) (0.370) (0.113) (0.120) (0.157) (34.296)

FHMV 0.009 -0.010 0.000 0.264 0.106 -0.044 0.046 − −
(0.452) (0.121) (0.001) (2.043) (0.354) (0.108) (0.063) − −

Note: Analogous to the notes for Table 1. The DGP parameters of the FHMV short-term volatility component {gi,t} from

Eqs. (7)–(14) are c1 = 2.5, θC = 0.8, p = 0.995, NC = 8 (persistent components), z1 = 5, θZ = 0.5, q = 0.1, NZ = 8 (jump

components).
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Table 3: Deviations of ML-estimates from the true parameters; DGP: MSGARCH-MIDAS

Empirical specification α11 α12 β1 β2 p m θ ω2

T
=

2
6
40

MSGARCH-MIDAS -0.002 0.036 -0.099 -0.238 -0.299 -0.038 -0.114 -1.005
(0.006) (0.007) (0.083) (0.130) (0.174) (0.002) (0.020) (1.347)

MSGARCH-MIDAS(K = 12) -0.002 0.034 -0.092 -0.249 -0.297 -0.039 -0.122 -1.047
(0.007) (0.007) (0.087) (0.138) (0.176) (0.002) (0.022) (1.427)

MSGARCH-MIDAS(X̃t) -0.007 0.037 -0.101 -0.232 -0.318 -0.043 -0.053 -0.804
(0.005) (0.009) (0.077) (0.118) (0.179) (0.003) (0.005) (0.939)

MSGARCH-MIDAS(K = 12, X̃) -0.003 0.036 -0.099 -0.218 -0.328 -0.044 -0.087 -1.173
(0.006) (0.008) (0.087) (0.122) (0.185) (0.003) (0.011) (1.680)

MSGARCH -0.008 0.036 -0.083 -0.216 -0.300 0.005 − −
(0.005) (0.006) (0.096) (0.133) (0.165) (0.015) − −

T
=

5
28

0

MSGARCH-MIDAS -0.009 0.032 -0.076 -0.215 -0.297 -0.035 -0.108 -0.973
(0.004) (0.005) (0.063) (0.102) (0.151) (0.002) (0.017) (1.286)

MSGARCH-MIDAS(K = 12) -0.011 0.029 -0.064 -0.220 -0.309 -0.035 -0.116 -1.026
(0.003) (0.004) (0.070) (0.112) (0.163) (0.002) (0.019) (1.397)

MSGARCH-MIDAS(X̃t) -0.012 0.029 -0.060 -0.219 -0.304 -0.044 -0.048 -0.805
(0.002) (0.004) (0.057) (0.102) (0.152) (0.003) (0.004) (0.917)

MSGARCH-MIDAS(K = 12, X̃t) -0.011 0.030 -0.037 -0.216 -0.311 -0.041 -0.075 -1.281
(0.003) (0.004) (0.074) (0.119) (0.162) (0.003) (0.008) (1.926)

MSGARCH -0.012 0.029 -0.037 -0.212 -0.279 0.010 − −
(0.003) (0.003) (0.091) (0.139) (0.146) (0.009) − −

T
=

10
5
60

MSGARCH-MIDAS -0.016 0.025 -0.054 -0.195 -0.289 -0.034 -0.097 -0.889
(0.002) (0.002) (0.050) (0.084) (0.135) (0.002) (0.014) (1.128)

MSGARCH-MIDAS(K = 12) -0.016 0.025 -0.047 -0.189 -0.283 -0.033 -0.108 -1.012
(0.002) (0.003) (0.054) (0.087) (0.141) (0.002) (0.016) (1.344)

MSGARCH-MIDAS(X̃t) -0.014 0.023 -0.042 -0.212 -0.295 -0.047 -0.046 -0.754
(0.002) (0.002) (0.046) (0.091) (0.133) (0.003) (0.003) (0.821)

MSGARCH-MIDAS(K = 12, X̃t) -0.016 0.027 -0.021 -0.188 -0.313 -0.044 -0.070 -1.253
(0.002) (0.003) (0.064) (0.099) (0.150) (0.003) (0.007) (1.842)

MSGARCH -0.013 0.027 -0.033 -0.191 -0.231 0.011 − −
(0.002) (0.003) (0.106) (0.141) (0.127) (0.005) − −

Note: Analogous to the notes for Table 1. The DGP parameters of the MSGARCH short-term volatility component

{gi,t} from Eqs. (16)–(17) are α11 = 0.09, α12 = 0.05, β1 = 0.55, β2 = 0.7, p11 = p22 = 0.8 ≡ p.
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Table 4: Deviations of ML-estimates from the true parameters; DGP: HYGARCH-MIDAS

Empirical specification φ d β κ m θ ω2

T
=

26
4
0

HYGARCH-MIDAS -0.063 0.023 -0.025 0.075 0.008 -0.078 3.745
(0.405) (0.619) (0.727) (0.765) (0.195) (0.411) (48.474)

HYGARCH-MIDAS(K = 12) -0.060 0.032 -0.013 0.075 0.010 -0.031 6.915
(0.213) (0.440) (0.479) (0.427) (0.149) (0.226) (51.423)

HYGARCH-MIDAS(X̃t) -0.106 0.227 0.116 0.043 0.006 -0.081 0.806
(0.170) (0.354) (0.380) (0.213) (0.096) (0.032) (43.979)

HYGARCH-MIDAS(K = 12, X̃t) -0.105 0.228 0.118 0.044 0.008 -0.087 2.101
(0.723) (2.210) (1.933) (1.142) (0.105) (0.094) (141.179)

HYGARCH 0.004 -0.049 0.010 0.147 0.019 − −
(0.014) (0.021) (0.022) (0.028) (0.174) − −

T
=

52
8
0

HYGARCH-MIDAS 0.047 0.012 0.037 0.081 -0.003 -0.067 2.102
(0.227) (0.425) (0.416) (0.549) (0.187) (0.204) (33.681)

HYGARCH-MIDAS(K = 12) -0.049 -0.004 -0.032 0.079 0.000 -0.051 5.104
(0.287) (0.586) (0.392) (1.076) (0.181) (0.129) (25.840)

HYGARCH-MIDAS(X̃t) -0.098 0.223 0.133 0.050 -0.000 -0.081 0.688
(0.101) (0.441) (0.545) (0.290) (0.102) (0.041) (108.105)

HYGARCH-MIDAS(K = 12, X̃t) -0.094 0.223 0.129 0.048 0.001 -0.092 1.420
(0.141) (0.262) (0.319) (0.167) (0.109) (0.025) (42.449)

HYGARCH 0.039 -0.089 0.024 0.186 0.003 − −
(0.010) (0.011) (0.013) (0.036) (0.115) − −

T
=

10
56

0

HYGARCH-MIDAS -0.031 -0.036 -0.041 0.080 0.002 -0.055 2.391
(0.137) (0.274) (0.245) (0.333) (0.098) (0.121) (13.134)

HYGARCH-MIDAS(K = 12) -0.035 -0.030 -0.040 0.079 0.007 -0.063 3.521
(0.166) (0.282) (0.261) (0.376) (0.155) (0.017) (20.476)

HYGARCH-MIDAS(X̃t) -0.103 0.264 0.167 0.056 -0.009 -0.080 -0.108
(0.076) (0.237) (0.300) (0.148) (0.069) (0.017) (22.049)

HYGARCH-MIDAS(K = 12, X̃t) -0.101 0.262 0.166 0.056 -0.006 -0.095 0.323
(0.118) (0.272) (0.339) (0.124) (0.081) (0.022) (54.470)

HYGARCH 0.060 -0.088 0.050 0.199 -0.023 − −
(0.008) (0.009) (0.009) (0.040) (0.070) − −

Note: Analogous to the notes for Table 1. The DGP parameters of the HYGARCH short-term volatility

component {gi,t} from Eqs. (18)–(19) are φ = 0.2, d = 0.4, β = 0.4, κ = 0.8.
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Table 5: MSE and QLike ratios for MSM-MIDAS specifications, benchmark: (non-MIDAS)
MSM(NM = 8)

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 0.992 0.997 0.990 0.991 0.996∗ 0.997 0.994∗ 0.994∗

(0.399) 0.637) (0.123) (0.120) (0.099) (0.162) (0.078) 0.088

(2) ∆ Ind. prod. 1.049 1.072 1.037 1.047 1.000 1.001 0.999 1.000
(0.570) (0.381) (0.414) (0.384) (0.986) (0.507) (0.499) (0.844)

(3) ∆ Unemp. 0.984 0.988 0.980 0.985 0.997∗∗ 0.995∗ 0.988 0.991
(0.409) (0.405) (0.118) (0.255) (0.023) (0.057) (0.137) (0.231)

(4) ∆ Hous. 1.094 1.139 1.120 1.142 0.972∗ 0.966 0.952 0.954
(unrestricted ω1) (0.328) (0.365) (0.449) (0.423) (0.060) (0.240) (0.321) (0.314)

(5) ∆ Corp. prof. 0.967 0.994 0.987 0.999 0.974∗∗ 0.982 0.981 0.986
(0.575) (0.859) (0.504) (0.954) (0.035) (0.151) (0.215) (0.337)

(6) Inflation 0.977 0.989 0.975 0.984 0.997 0.993 0.995∗∗ 1.005
(0.607) (0.444) (0.242) (0.462) (0.434) (0.148) (0.041) (0.532)

(7) NAI 0.983 0.998 0.986 0.981∗ 1.001 1.002 1.002 0.999
(0.398) (0.864) (0.273) (0.083) (0.489) (0.478) (0.529) (0.599)

(8) New orders 1.098 1.099 1.082 1.097 0.995 0.996 0.994 1.000
(0.186) (0.283) (0.285) (0.250) (0.122) (0.272) (0.209) (0.926)

(9) ∆ Cons. sent. 0.985 0.989 0.987 0.993 0.989 0.987∗ 0.982 0.985
(0.296) (0.337) (0.140) (0.396) (0.102) (0.099) (0.115) (0.142)

(10) ∆ Real cons. 1.004 0.999 0.998 1.002 1.000 0.997 0.998 1.002
(0.691) (0.903) (0.635) (0.439) (0.932) (0.311) (0.437) (0.529)

(11) Term spread 0.969 0.981 0.958 0.960 0.973∗∗ 0.960 0.941 0.933
(0.456) (0.709) (0.376) (0.445) (0.029) (0.110) (0.192) (0.142)

(12) RV 1.633 1.656 1.492 1.507 1.002 1.002 1.000 1.006
(0.277) (0.287) (0.277) (0.265) (0.675) (0.671) (0.937) (0.167)

Note: We report ratios of the average MSE and QLike losses relative to their counterparts from the bench-

mark models. ∆ denotes either the first-difference operator or the (annualized quarterly) percentage change.

The long-term variables are: (1) real GDP, (2) industrial production, (3) unemployment rate, (4) housing

starts, (5) nominal corporate profits after tax, (6) inflation rate, (7) Chicago National Activity Index (NAI),

(8) new-order index of the Institute for Supply Management, (9) consumer-sentiment index University of

Michigan, (10) real personal consumption, (11) term spread, (12) realized volatility (cf. Section 4.1). We test

for significant forecasting improvements via the Giacomoni-White (2006) test. p-values are in parentheses.
∗, ∗∗, ∗∗∗ denote significant accuracy gains at the 10, 5, and 1% levels, respectively.
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Table 6: MSE and QLike ratios for FHMV-MIDAS specifications, benchmark: (non-MIDAS)
FHMV(NC = 6, NZ = 6)

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 1.013 1.013 1.009 1.011 0.999 1.000 1.001 1.002
(0.239) (0.206) (0.221) (0.136) (0.619) (0.746) (0.340) (0.173)

(2) ∆ Ind. prod. 1.011 1.011 1.008 1.012 1.002 1.001 1.002 1.005
(0.196) (0.195) (0.242) (0.170) (0.214) (0.485) (0.263) (0.235)

(3) ∆ Unemp. 0.994∗∗ 1.003 0.995 0.998 0.999 1.000 1.000 1.001
(0.020) (0.804) (0.372) (0.848) (0.469) (0.979) (0.959) (0.672)

(4) ∆ Hous. 1.009 1.039 0.979 0.952 0.995 0.995 0.984 0.975
(unrestricted ω1) (0.747) (0.438) (0.609) (0.396) (0.331) (0.644) (0.339) (0.220)

(5) ∆ Corp. prof. 1.001 1.002 1.005 1.010 0.997∗ 0.999 1.002 1.004
(0.878) (0.624) (0.392) (0.276) (0.099) (0.282) (0.566) (0.420)

(6) Inflation 1.005 1.011 1.041∗∗ 1.072∗∗∗ 1.004 1.000 1.012∗∗ 1.017∗∗

(0.932) (0.781) (0.018) (0.000) (0.528) (0.986) (0.003) (0.025)

(7) NAI 0.987 0.998 0.983 0.982 1.000 0.997 0.997 0.996
(0.111) (0.947) (0.227) (0.297) (0.797) (0.466) (0.558) (0.493)

(8) New orders 0.994 1.030 1.004 1.014 1.008∗ 1.008 1.005 1.003
(0.923) (0.525) (0.885) (0.499) (0.057) (0.284) (0.494) (0.615)

(9) ∆ Cons. sent. 1.037 1.140 1.163 1.185 0.989 0.996 1.005 1.007
(0.480) (0.285) (0.220) (0.200) (0.123) (0.618) (0.476) (0.454)

(10) ∆ Real cons. 0.983 0.987 0.979 0.981 0.999 0.998 0.995 0.993
(0.494) (0.525) (0.173) (0.223) (0.556) (0.466) (0.329) (0.305)

(11) Term spread 0.922∗∗ 0.928∗∗ 0.898∗∗∗ 0.890∗∗∗ 0.986 0.979∗∗∗ 0.965∗∗∗ 0.959∗∗∗

(0.021) (0.013) (0.001) (0.002) (0.135) (0.000) (0.004) (0.007)

(12) RV 1.029 1.036 1.009 1.015 1.003∗ 1.007 1.005 1.005
(0.367) (0.276) (0.663) (0.442) (0.097) (0.225) (0.382) (0.447)

Note: Analogous to the notes to Table 5.
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Table 7: MSE and QLike ratios for MSGARCH-MIDAS specifications, benchmark: (non-
MIDAS) MSGARCH

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 1.380 0.922 0.595∗ 0.380∗∗∗ 1.629∗∗∗ 1.684∗∗∗ 1.474∗∗∗ 1.343∗∗

(0.213) (0.745) (0.078) (0.001) (0.000) (0.006) (0.007) (0.025)

(2) ∆ Ind. prod. 1.603 0.875 0.564∗∗ 0.376∗∗∗ 1.530∗∗∗ 1.492∗∗∗ 1.410∗∗ 1.299∗∗

(0.251) (0.523) (0.039) (0.001) (0.000) (0.004) (0.017) (0.045)

(3) ∆ Unemp. 1.865 0.987 0.630 0.405∗∗∗ 2.003∗∗∗ 2.110∗∗∗ 1.820∗∗∗ 1.783∗∗

(0.242) (0.964) (0.141) (0.005) (0.000) (0.006) (0.006) (0.040)

(4) ∆ Hous. 0.939 0.849 0.571∗ 0.357∗∗∗ 0.988 0.992 0.974 0.951
(unrestricted ω1) (0.430) (0.442) (0.062) (0.001) (0.239) (0.857) (0.649) (0.469)

(5) ∆ Corp. prof. 1.781 0.973 0.642 0.374∗∗∗ 1.385∗∗∗ 1.536∗∗ 1.503∗ 1.309∗

(0.261) (0.922) (0.184) (0.001) (0.000) (0.047) (0.088) (0.080)

(6) Inflation 1.863 0.972 0.648 0.400∗∗∗ 1.728∗∗∗ 1.665∗∗∗ 1.705∗∗ 1.539∗∗

(0.227) (0.918) (0.198) (0.004) (0.000) (0.002) (0.017) (0.026)

(7) NAI 1.562 0.909 0.594∗ 0.383∗∗∗ 1.746∗∗∗ 1.631∗∗∗ 1.559∗∗∗ 1.461∗∗∗

(0.219) (0.686) (0.081) (0.002) (0.000) (0.001) (0.007) (0.010)

(8) New orders 1.828 0.950 0.598 0.373∗∗∗ 1.528∗∗∗ 1.439∗ 1.222∗ 1.107
(0.238) (0.852) (0.101) (0.001) (0.004) (0.073) (0.088) (0.366)

(9) ∆ Cons. sent. 1.870 0.996 0.655 0.394∗∗∗ 2.074∗∗∗ 2.210∗∗∗ 2.011∗∗∗ 1.756∗∗

(0.226) (0.989) (0.212) (0.004) (0.000) (0.005) (0.009) (0.037)

(10) ∆ Real cons. 1.676 0.955 0.647 0.395∗∗∗ 1.724∗∗∗ 1.630∗∗∗ 1.558∗∗ 1.526∗

(0.116) (0.843) (0.185) (0.004) (0.000) (0.001) (0.021) (0.093)

(11) Term spread 1.636 0.947 0.646 0.402∗∗∗ 1.647∗∗∗ 1.602∗∗∗ 1.637∗∗ 1.568∗

(0.240) (0.832) (0.194) (0.005) (0.000) (0.001) (0.026) (0.096)

(12) RV 1.820 1.160 0.812 0.546∗∗ 1.203∗∗ 1.220∗ 1.262∗ 1.243
(0.245) (0.585) (0.474) (0.032) (0.024) (0.095) (0.096) (0.204)

Note: Analogous to the notes to Table 5.
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Table 8: MSE and QLike ratios for HYGARCH-MIDAS specifications, benchmark: (non-
MIDAS) HYGARCH

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 1.122 0.972 0.959 0.953 1.002 1.006 1.019 1.009
(0.499) (0.515) (0.385) (0.259) (0.604) (0.338) (0.375) (0.456)

(2) ∆ Ind. prod. 1.123 0.986 0.965 0.958 1.004 1.013 1.008 1.011
(0.495) (0.805) (0.515) (0.373) (0.537) (0.365) (0.487) (0.404)

(3) ∆ Unemp. 1.007 1.009 1.008 1.007 1.002 1.006 1.005 1.008
(0.480) (0.367) (0.522) (0.566) (0.404) (0.241) (0.363) (0.253)

(4) ∆ Hous. 1.012 1.006 1.005 1.002 1.000 1.005 1.006 1.011
(unrrestricted ω1) (0.597) (0.715) (0.809) (0.891) (0.946) (0.429) (0.463) (0.348)

(5) ∆ Corp. prof. 1.013 1.008 1.007 1.002 1.001 1.007 1.008 1.010
(0.578) (0.617) (0.728) (0.899) (0.566) (0.230) (0.273) (0.219)

(6) Inflation 1.003 1.009 1.014 1.006 1.003 1.014 1.020 1.020
(0.893) (0.630) (0.553) (0.760) (0.611) (0.301) (0.273) (0.207)

(7) NAI 1.117 0.995 0.985 0.970 1.008 1.023 1.025 1.026
(0.517) (0.942) (0.823) (0.572) (0.398) (0.248) (0.285) (0.208)

(8) New orders 0.907 1.012 1.011 0.968 1.002 1.011 1.013 1.003
(0.203) (0.724) (0.757) (0.138) (0.662) (0.377) (0.348) (0.598)

(9) ∆ Cons. sent. 1.010 0.980 0.969 0.972 1.001 1.002 1.000 1.004
(0.862) (0.539) (0.386) (0.369) (0.541) (0.770) (0.954) (0.617)

(10) ∆ Real cons. 1.138 1.091 1.131 1.124 1.001 1.008 1.015 1.000
(0.343) (0.400) (0.318) (0.375) (0.776) (0.470) (0.442) (0.989)

(11) Term spread 1.092 0.989 0.981 0.977 1.003 1.013 1.027 1.033
(0.542) (0.848) (0.750) (0.666) (0.316) (0.352) (0.213) (0.246)

(12) RV 0.698 0.962 0.975 0.965 0.998 0.999 0.997 0.988
(0.268) (0.208) (0.152) (0.287) (0.242) (0.867) (0.606) (0.426)

Note: Analogous to the notes to Table 5.
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Table 9: MSE and QLike ratios for GJR-GARCH-MIDAS specifications, benchmark: (non-
MIDAS) GJR-GARCH

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 1.015 1.003 1.000 0.996∗∗ 0.999 1.001 1.000 0.997∗∗

(0.309) (0.331) (0.823) (0.034) (0.460) (0.659) (0.826) (0.028)

(2) ∆ Ind. prod. 1.065 1.009 1.005∗ 1.001 0.999 1.003 1.003 1.000
(0.172) (0.125) (0.051) (0.740) (0.652) (0.242) (0.104) (0.825)

(3) ∆ Unemp. 1.244 1.032 1.014 1.022 0.992 0.999 1.002 1.009∗

(0.182) (0.210) (0.262) (0.128) (0.244) (0.845) (0.567) (0.090)

(4) ∆ Hous. 3.532 1.164 1.017 1.014 0.967 0.966 0.966 0.970
(unrestricted ω1) (0.215) (0.437) (0.872) (0.882) (0.208) (0.341) (0.283) (0.304)

(5) ∆ Corp. prof. 1.297 1.031 1.051 1.063 1.017∗ 1.052∗ 1.075 1.094
(0.174) (0.268) (0.173) (0.152) (0.093) (0.077) (0.131) (0.151)

(6) Inflation 1.062 1.021 1.011 1.013 0.998 1.003 1.006 1.011
(0.338) (0.140) (0.230) (0.269) (0.748) (0.440) (0.379) (0.243)

(7) NAI 1.818 1.128 1.051 1.049 0.997 1.001 1.013 1.028
(0.145) (0.184) (0.165) (0.178) (0.740) (0.914) (0.239) (0.205)

(8) New orders 1.758 1.108∗ 1.046 1.040 1.014 1.021 1.032 1.026
(0.144) (0.097) (0.117) (0.145) (0.451) (0.264) (0.246) (0.263)

(9) ∆ Cons. sent. 1.177 0.997 0.995∗ 1.005 0.994 0.996 0.996 1.003
(0.301) (0.781) (0.096) (0.243) (0.480) (0.407) (0.104) (0.370)

(10) ∆ Real cons. 0.982 1.004 0.999 0.998 1.006 1.003 1.000 0.999
(0.331) (0.491) (0.706) (0.417) (0.325) (0.202) (0.785) (0.500)

(11) Term spread 1.494 0.907 0.924 0.940 0.960 0.964 0.962 0.965
(0.387) (0.141) (0.146) (0.152) (0.137) (0.247) (0.163) (0.112)

(12) RV 1.625 1.162 1.151 1.177 1.018 1.032∗ 1.043 1.049
(0.132) (0.144) (0.146) (0.144) (0.172) (0.096) (0.148) (0.143)

Note: Analogous to the notes to Table 5.
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Table 10: MSE and QLike ratios for GARCH-MIDAS specifications, benchmark: (non-
MIDAS) GARCH

MSE QLike

Forecast horizon

Long-term variable 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP 0.986∗ 1.002 1.000 1.001 1.002 1.000 1.001 1.001
(0.082) (0.843) (0.962) (0.846) (0.345) (0.923) (0.802) (0.868)

(2) ∆ Ind. prod. 1.053 1.023 1.012 1.005 1.000 1.001 1.001 0.999
(0.117) (0.153) (0.159) (0.432) (0.761) (0.275) (0.202) (0.652)

(3) ∆ Unemp. 1.618 1.251 1.122 1.091 0.995 1.002 1.005 1.010
(0.115) (0.163) (0.216) (0.194) (0.516) (0.674) (0.290) (0.108)

(4) ∆ Hous. 7.038 2.256 1.379 1.219 0.974 0.978 0.975 0.979
(unrestricted ω1) (0.132) (0.186) (0.309) (0.380) (0.327) (0.480) (0.355) (0.337)

(5) ∆ Corp. prof. 1.613 1.033 1.024 1.063 1.008 1.037∗ 1.054 1.071
(0.126) (0.342) (0.667) (0.284) (0.411) (0.068) (0.173) (0.191)

(6) Inflation 1.086 1.045 1.019 1.013 0.992 0.998 0.998 1.005
(0.319) (0.257) (0.382) (0.283) (0.113) (0.355) (0.600) (0.372)

(7) NAI 0.915 0.954 0.977 0.997 1.000 0.997 1.006 1.017
(0.112) (0.234) (0.372) (0.855) (0.988) (0.201) (0.509) (0.314)

(8) New orders 2.642 1.522 1.185 1.101 1.007 1.010 1.019 1.015
(0.102) (0.153) (0.181) (0.195) (0.617) (0.347) (0.296) (0.379)

(9) ∆ Cons. sent. 1.235 1.048 0.999 1.000 0.990 0.996 0.997 0.999
(0.223) (0.269) (0.958) (0.968) (0.120) (0.428) (0.504) (0.785)

(10) ∆ Real cons. 0.887 0.961 0.984 0.985∗∗∗ 1.009 1.003 1.001 0.995∗∗

(0.228) (0.375) (0.362) (0.005) (0.185) (0.491) (0.911) (0.012)

(11) Term spread 2.025 0.837∗ 0.855∗∗ 0.900∗∗ 0.958 0.964 0.959∗ 0.961∗∗

(0.295) (0.075) (0.046) (0.042) (0.148) (0.204) (0.091) (0.023)

(12) RV 1.649 1.194 1.137 1.170∗ 1.028 1.040 1.045 1.049
(0.189) (0.219) (0.172) (0.093) (0.101) (0.122) (0.180) (0.197)

Note: Analogous to the notes to Table 5.
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Table 11: MCS p-values for MSE and QLike losses and different forecast horizons

MSE QLike

Long-term variable / Forecast horizon

MIDAS model 1q 2q 3q 4q 1q 2q 3q 4q

(1) ∆ Real GDP
MSM 0.322 0.080 0.001 0.002 0.335 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.322 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.169 0.011 0.006 0.000
HYGARCH 0.322 0.634 0.372 0.002 0.763 0.011 0.006 0.000
GJR-GARCH 0.083 0.080 0.336 0.058 0.347 0.011 0.006 0.029
GARCH 0.083 0.080 0.038 0.002 0.347 0.011 0.136 0.003

(2) ∆ Ind. prod.
MSM 0.083 0.080 0.001 0.002 0.253 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.253 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.336 0.002 0.083 0.011 0.006 0.000
HYGARCH 0.322 0.080 0.372 0.012 0.763 0.011 0.163 0.000
GJR-GARCH 0.083 0.080 0.038 0.058 0.347 0.011 0.006 0.029
GARCH 0.083 0.080 0.001 0.005 0.347 0.011 0.136 0.003

(3) ∆ Unemp.
MSM 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.322 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.076 0.011 0.006 0.000
HYGARCH 0.322 0.080 0.001 0.002 0.763 0.011 0.730 0.000
GJR-GARCH 0.083 0.080 0.038 0.002 0.347 0.011 0.006 0.000
GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000

(4) ∆ Hous. (unrestricted ω1)
MSM 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.058 0.347 0.131 0.163 0.029
MSGARCH 0.322 0.080 0.038 0.002 0.763 0.011 0.006 0.000
HYGARCH 0.322 0.080 0.001 0.002 0.764 0.011 0.163 0.000
GJR-GARCH 0.083 0.080 0.038 0.058 0.347 0.581 0.730 0.250
GARCH 0.083 0.080 0.001 0.002 0.347 0.581 0.730 0.250

(5) ∆ Corp. prof.
MSM 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.322 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.221 0.011 0.006 0.000
HYGARCH 0.322 0.080 0.001 0.002 0.764 0.011 0.163 0.000
GJR-GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000

(6) Inflation
MSM 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.221 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.198 0.011 0.006 0.000
HYGARCH 0.663 0.080 0.001 0.002 0.763 0.011 0.006 0.000
GJR-GARCH 0.083 0.080 0.038 0.005 0.347 0.011 0.006 0.000
GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.136 0.000

(7) NAI
MSM 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.076 0.011 0.006 0.000
HYGARCH 0.663 0.080 0.038 0.002 0.763 0.011 0.006 0.000
GJR-GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
GARCH 0.322 0.080 0.038 0.012 0.347 0.011 0.006 0.000
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Table 11: Continued.

MSE QLike
Long-term variable / Forecast horizon
MIDAS model 1q 2q 3q 4q 1q 2q 3q 4q

(8) New orders
MSM 0.083 0.080 0.001 0.002 0.322 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.221 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.221 0.011 0.006 0.000
HYGARCH 0.663 0.080 0.001 0.002 0.763 0.011 0.136 0.000
GJR-GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000

(9) ∆ Cons. sent.
MSM 0.322 0.080 0.001 0.002 0.335 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.043 0.011 0.006 0.000
HYGARCH 0.663 0.080 0.038 0.002 0.763 0.581 0.730 0.003
GJR-GARCH 0.083 0.080 0.372 0.058 0.347 0.011 0.136 0.003
GARCH 0.083 0.080 0.038 0.002 0.347 0.011 0.163 0.003

(10) ∆ Real cons.
MSM 0.322 0.080 0.001 0.002 0.322 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.253 0.011 0.006 0.003
MSGARCH 0.322 0.080 0.001 0.002 0.198 0.011 0.006 0.000
HYGARCH 0.322 0.080 0.001 0.002 0.764 0.011 0.136 0.003
GJR-GARCH 0.322 0.080 0.372 0.247 0.347 0.011 0.006 0.029
GARCH 0.322 0.080 0.038 0.058 0.347 0.011 0.163 0.029

(11) Term spread
MSM 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
FHMV 0.322 0.634 0.372 0.247 0.347 0.599 0.730 0.319
MSGARCH 0.322 0.080 0.001 0.002 0.043 0.011 0.006 0.000
HYGARCH 0.663 0.080 0.038 0.002 0.763 0.011 0.006 0.000
GJR-GARCH 0.083 0.634 0.372 0.247 0.347 0.581 0.730 0.319
GARCH 0.083 1.000 1.000 1.000 0.347 1.000 1.000 1.000

(12) RV
MSM 0.083 0.080 0.001 0.002 0.253 0.011 0.006 0.000
FHMV 0.083 0.080 0.001 0.002 0.253 0.011 0.006 0.000
MSGARCH 0.322 0.080 0.001 0.002 0.347 0.011 0.006 0.000
HYGARCH 1.000 0.634 0.038 0.002 1.000 0.581 0.730 0.029
GJR-GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000
GARCH 0.083 0.080 0.001 0.002 0.347 0.011 0.006 0.000

Note: We report the MCS p-values under MSE and QLike losses for 1 to 4 quarter-ahead (1q, 2q, 3q, 4q)

cumulative variance forecasts. For the significance level α, model i with MCS p-value pi belongs to the

(1− α) MCS M̂∗
1−α, if pi ≥ α; see Eq. (24). Gray-shaded cells indicate that the associated MIDAS model

belongs to the 90% MCS (α = 0.1).
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