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1 Introduction

Since the seminal paper of Nakamoto (2008) Bitcoin has witnessed a rapid development

and attracted attention from both the investment and research communities. Some of the

research questions are the center of the debate are: What type of asset is bitcoin? What

is its fundamental value? What are the statistical properties of this new market? And

are the extent volatility models appropriate for modeling and forecasting volatility in

cryptocurrency markets? However, the focus of this paper is more on questions related

to the forecasting performance and the adequacy of the volatility models used in the

literature.

For analysts and other market participants, the forecasting of volatility becomes im-

portant task because such forecasts represent an important ingredient in risk assessment

and allocation, and derivatives pricing theory. A growing number of studies has investi-

gated in considerable detail the statistical properties of bitcoin returns. Pichl and Kaizoji

(2017) found that crypto-currency markets are even more volatile than foreign exchange

markets. Volatility clusterings have been observed by Chu et al. (2017), Bouri et al.

(2017), Katsiampa (2017), Bariviera (2017), Bau et al. (2018), Stavroyiannis (2018) and

Catania and Grassi (2017), among others. Osterrieder and Lorenz (2017) and Begušić

et al. (2018) have studied the unconditional distribution of bitcoin returns and found that

it has more probability mass in the tails than that of foreign exchange and stock market

returns. Regime-switching behaviors are detected by Bariviera et al. (2017), and Bal-

combe and Fraser (2017) and Thies and Molnár (2018) have identified structural breaks

in the volatility process of bitcoin via a Bayesian framework. Recently, Lahmiri et al.

(2018) and Lahmiri and Bekiros (2018) have pointed out that bitcoin markets are char-

acterized by long memory and multifractality.

There is a large body of evidence that crypto-currency markets share the most impor-

tant stylized facts of foreign exchange, stock and commodity markets. These empirical

observations have motivated the use of the GARCH-type models (cf. Chu et al., 2017;

Bouri et al., 2017; Katsiampa, 2017; Bariviera, 2017; Bau et al., 2018; Stavroyiannis,
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2018; Catania and Grassi, 2017), the Markov switching GARCH (cf. Ardia et al., 2018),

and the stochastic volatility model (cf. Phillip et al., 2018).

Our objective in this paper is to revisit some stylized facts of bitcoin markets and pro-

pose new econometrics models that may produce accurate volatility forecasts. In contrast

to previous studies that for simplicity consider a constant conditional mean, in this pa-

per we assume that the mean process follows an autoregressive fractionally integrated

moving average (ARFIMA), and we model the variance process using GARCH-type

processes, Markov switching GARCH (MS-GARCH) and Markov switching multifrac-

tal (MSM) processes. The choice of MSM processes as a candidate for modeling and

forecasting bitcoin returns volatility is based on the findings of previous studies that

have found the MSM processes more appropriate and robust for forecasting volatility

in foreign exchange, stock and commodity markets (cf. Calvet and Fisher, 2004; Lux,

2008; Lux and Morales-Arias, 2010; Lux et al., 2016). We evaluate the performance of

our models in the form of point and density forecasts. We consider two loss functions,

namely square and absolute errors, and apply the model confident set (MCS) and the

likelihood ratio tests of Berkowitz (2001) to evaluate the forecasting performance and

adequacy of our proposed models. Our empirical results indicate that the FIGARCH and

the MSM outperform other specifications. We also find that forecast combinations yield

a gain in forecast accuracy. However, the results of the likelihood test suggest that none

of the models are well specified.

The rest of the paper is organized as follows. Section 2 presents the data analysis and

some stylized facts. In Section 3 we describe our econometric models and Section 4

provides some statistical properties of the models. The empirical study is presented in

Section 5 and Section 6 concludes

2 Data analysis

Our data set consists of daily spot exchange rates (pt) in units of US dollars and is from

the Bloomberg terminal. The price observations range from 01/01/2013 to 28/11/2018
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and fluctuate between 13.28 USD on January 2, 2013 and 18,571.57 USD on December

18, 2017. We compute the percentage continuously compounded returns as

rt = 100 ∗
[
ln(pt−1) − ln(pt)

]
, (1)

where pt denotes the price of bitcoin in USD at a time t.

Figure 1 illustrates the time evolution of bitcoin prices, and their log-returns and

squared returns. The descriptive statistics of daily, weekly and monthly log-returns are

reported in Table 1. The daily returns exhibit high variability, negative skewness and

excess kurtosis. These deviations from the Normal distribution, as in Figure 4, are con-

firmed by the Jarque-Bera test that rejects the null hypothesis of normality. To gain

insight into how the unconditional distribution of bitcoin returns under time aggrega-

tion changes, we also report the descriptive statistics of weekly and monthly bitcoin

returns in Table 1. Figure 4 illustrates the unconditional distributions of bitcoin returns

at different time frequencies. We observe that under time aggregation, the unconditional

distributions of bitcoin returns do not converge to Normal, as shown in Figure 4. The

unconditional distributions of weekly or monthly returns are still characterized by asym-

metries and excess kurtosis. We applied the Augmented-Dicker-Fuller (ADF) unit-root

test of Dickey and Fuller (1979), which suggests stationarity of the log-returns. We also

applied the Phillip-Perron unit root test, which rejects the null of unit root. To confirm

the verdict of the ADF test, we also have adopted the KPSS test for stationarity, and it

cannot reject the null hypothesis.

Figure 3 shows the autocorrelation functions for log-returns, absolute and squared

log-returns. Absolute and squared log-returns are highly correlated, and this observation

conforms with the Ljung-Box statistic, Q(8). To measure the degree of persistence we

compute the Hurst exponents via Detrended Fluctuation Analysis (DFA), the results of

which are reported in Table 1. The values for the bitcoin log-returns are slightly above

0.5, as in Table 1. For absolute and squared returns, the tendency is clear that the Hurst

index values are significantly above 0.5, indicating the presence of high persistence in
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the volatility process. To gain insight into how the unconditional distribution of returns

behaves in the tails, we compute the so-called Hill estimator for the tail index. The results

for daily, weekly and monthly returns are less than 3 and suggest that the tails of the

unconditional distribution may behave differently from that of stock, foreign exchange

and commodity markets (cf. Begušić et al., 2018).

We applied the modified iterated cumulative squares (ICSS) algorithm, as developed

by Sansó et al. (2004), to detect the structural breaks that may occur in the unconditional

variance. We refer the reader to Sansó et al. (2004) for more detail on the framework and

technical issues related to the test. We detected three break points, and the dates at which

the break points occurred are: 15/04/2014, 24/11/2017 and 22/02/2018. Furthermore,

We applied a multifractal detrented fluctuation analysis (MFDFA) recently developed

by Kantelhardt et al. (2002), which is based on the local root-mean square (RMS). The

MFDFA permits the estimation of the multifractal spectrum of power law exponents

from the bitcoin price changes and compares its characteristics to those of monofractal

time series. We first compute the q-order Hurst exponent as slopes of regression lines

for each q-order RMS, and the results are depicted in Figure 5. We observe that the

slopes of the regression lines vary with q-order, in other words, are q-order dependent.

The Hq’s values decrease with increasing segment sample size, suggesting that the small

segments are able to distinguish between the local periods with high and low volatility.

We observe, for bitcoin price changes, a large arc that depicts the multifractal spectrum.

However, we note that the reliability of tools used here to detect multifractality is subject

to debate in the literature (cf. Barndorff-Nielsen and Prause, 2001; Lux, 2004). For

example, Barndorff-Nielsen and Prause (2001) show that one can obtain the appearance

of scaling due to the presence of fat tails in the absence of true scaling.

In general, we observe that bitcoins share the typical salient features of financial as-

sets such as volatility clustering, fat tails, asymmetry, long memory and multifractality.

However, we observe that the Ljung-Box statistic, Q(8) indicates the existence of auto-

correlation in the log-returns, and the value of Hurst exponent for log-returns is signif-
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icantly greater than 0.5, indicating the presence of high persistence in bitcoin returns.

These observations suggest that the bitcoin market is not as efficient as stock or foreign

exchange markets, which display a complete lack of predictability (cf. Lahmiri et al.,

2018).

3 Theoretical framework

We assume that returns {rt} in crypto-currencies markets follow an autoregressive frac-

tionally integrated moving average process (cf. Granger and Joyeux, 1980; Hosking,

1981), given by the following equation

Φ(L) (1 − L)d (rt − µ) = Θ (L) εt. (2)

The lag polynomials in eq. 2 are defined as: Φ(L) = 1 − φ1L − · · · − φpLp and

Θ(L) = 1 − θ1L − · · · − θqLq where the p and q are autoregressive and moving average

orders, respectively. d ∈ (−1/2, 1/2), L is the lag operator and (1 − L)d is the fractional

differencing operator that is given by

(1 − L)d =

∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, (3)

with Γ(·) being the gamma function.

In general, the innovation process, εt, in Eq. (2) can be formalized as follows:

εt = utσt, (4)

where ut is a sequence of independent identically distributed normal random variables

with zero mean and unit variance.

In this study, we proposed various traditional and modern models for capturing the

time-varying dynamics of σt:

1. Markov-switching multifractal (MSM) model:
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In this framework, volatility is modeled as product of k random volatility compo-

nents, M(1)
t ,M(2)

t , . . . ,M(k)
t , and a scaling factor σ̄

σ2
t = σ̄2

k∏
j=1

M( j)
t . (5)

The dynamics governing the random volatility components ( also called multi-

pliers) determines the unique framework that characterizes the multifractal mod-

els. At date t, each multiplier M( j)
t is drawn from the base distribution M (to be

specified) with positive support. Depending on its rank within the hierarchy of

multipliers, M( j)
t changes from one period to the next, with probability γ j, and

remains unchanged with probability 1 − γ j, providing a spectrum of low and high

frequencies of multiplier renewal.

We adopt both a parametric and non-parametric specification for the transition

probabilities. Our objective is to investigate whether the non-parametric one can

provide a satisfactory fit to this new market, and thus reduce the number of esti-

mated parameters in the model:

a) The parametric specification was proposed by Calvet and Fisher (2001) and

ensures the convergence of the discrete-time MSM model to the Poisson

multifractal process in the continuous-time limit. The k transition probabil-

ities are given by

γ j = 1 − (1 − γk)(b j−k), (6)

where γk ∈ (0, 1) and b > 1, j = 1, . . . , k.

b) The non-parametric specification was proposed by Lux (2008) and is given

by

γ j = 2 j−k, j = 1, . . . , k. (7)
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The transition matrix related to the jth multiplier is given by

P j =


1 − 0.5γ j 0.5γ j

0.5γ j 1 − 0.5γ j

 .

To finalize the specification of the MSM model we draw each multiplier, M( j)
t (in

the event of a change) from a binomial distribution with support {m0, 2 − m0}, 1 <

m0 < 2, and (binomial) probability 0.5, implying the unconditional expectation

E(M j
t ) = 1. If we assume stochastic independence among the multipliers, the

transition matrix of the vector Mt ≡ (M(1)
t , . . . ,M(k)

t )′ becomes the 2k × 2k matrix

P = P1 ⊗ P2 ⊗ · · · ⊗ Pk, where ⊗ denotes the Kronecker product. Using the

binomial base distribution2 for the single multipliers implies the finite support

Γ ≡ {m0, 2 − m0}
k for Mt and allows implementing of the maximum likelihood

approach.

Remark. Note that a higher k increases the number of regimes (which is 2k), and

generates proximity to long memory over a longer number of lags, but comes at an

additional computational cost in our maximum likelihood approach. In contrast to

the traditional Markov switching models, in which the number of parameters to be

estimated doubles with an additional regime, the number of parameters in MSM

model remains constant with an increasing number of regimes. We note that the

MSM processes exhibit only apparent long memory with an asymptotic hyperbolic

decay of the autocorrelation of absolute powers over a finite horizon and does not

obey the traditional definition of long memory. This means that the asymptotic

power-law behavior of autocorrelation functions at the limit or with a divergence

of the spectral density (cf. Beran, 1994).

2. Markov-switching GARCH model

2Liu et al. (2007) find that assuming other base distributions, such as lognormal and gamma, makes little
difference in empirical applications
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Following Haas et al. (2004), we define the Markov switching GARCH (MS-

GARCH) model as:

εt = utσδt ,t, (8)

where {δt, t ∈ Z} is a Markov chain with finite-state space S = {1, 2, . . . , q} and an

irreducible and primitive q × q transition matrix, P, whose element pi j, are given

by

P = [pi j] =
[
P(δt = j|δt−1 = i)

]
, i, j = 1, . . . , q. (9)

Furthermore, it is assumed that ut and δt are independent and that the (q×1) vector

σ(2)
t = (σ2

1t, σ
2
2t, . . . , σ

2
qt)
′ of regime variances follows the standard GARCH(1,1)

σ(2)
t = ω + αε2

t−1 + βσ(2)
t−1. (10)

3. Short-memory GARCH-type models:

We consider a general class of GARCH(1, 1) models proposed by He and

Terasvirta (1999) of the form

σκt = g(ut−1) + c(ut−1)σκt−1, (11)

with Pr(σκt > 0) = 1, κ > 0, and where {ut} is a sequence of i.i.d. standard

normal random variables, and g(x), c(x) are nonnegative functions. This class

of GARCH-type models includes, among others, the specifications of Bollerslev

(1986) (standard GARCH), Glosten et al. (1993) (GJR-GARCH), Nelson (1991)

(EGARCH), and Ding et al. (1993) (APARCH).

4. Long-memory GARCH-type models:

To reproduce the long-term dependence of bitcoin returns volatility as documented
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in the high Hurst coefficients of absolute and squared returns, meaning that these

volatility measures are characterized by a slowly decaying autocorrelation func-

tion rather than an exponentially decaying one (as imposed, for instance, by

the baseline GARCH approach) various long-memory GARCH-type models have

been developed. These models obey the following ARCH(∞) representation:

σκt = g(εt) + c(εt). (12)

This class of models includes:

(a) HYGARCH(p,d,q) model for κ = 2, gt ≡ ω/β(1), ct = Ψ (L) ε2
t with Ψ (L) =

1 −
Φ
(
L

)
β
(
L

) [
1 − τ

(
1 − (1 − L)d

)]
. The lag polynomials Φ (L), β (L) are given

by Φ (L) = 1−
∑max (p,q)

i=1 φiLi and β (L) = 1−
∑p

i=1 βiLi with L being the lag

operator.

(b) HYGARCH(p,d,q) model reduces to FIGARCH(p,d,q) model for τ = 1.

Remark. Long-range dependence shows up in the fact that in principle, all avail-

able past data should be used in constructing of forecasts of future volatility (while

in GARCH, its short-range dependence makes it sufficient to use the filtered real-

ization of the conditional variance, σt, at the forecast origin, time t). This feature

makes the long memory processes more appropriate for bitcoin returns volatility

forecasting.

4 Statistical properties of the theoretical models

In this section we show that our proposed models for modeling and forecasting of bitcoin

market volatility are stationary, ergodic and exhibit high-order moments.

Assumption 1. The roots of the characteristic polynomials Φ(L) and Θ(L) lie outside

the unit circle, the parameter d ∈ (−0.5, 0.5).
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Assumption 2. The random volatility components M1
t ,M

2
t , . . . ,M

k
t with E(M j

t ) = 1,

j = 1, . . . , k, are nonnegative and independent of each other at any time and γ j ∈ (0, 1).

Assumption 3. Let define a matrix G = [G ji], with G ji = p ji(β + αe′i) and ei is the ith

(q × 1) unit vector, i, j = 1, . . . , q and assume that the spectral radius of G, ρ(G) < 1.

Proposition 1. Under Assumption 1 and 2, the ARFIMA(p, d, q)-MSM(k) model given

by 2, 5 and 6 has a unique, second-order stationary solution. It follows that {rt, εt, σt}

are strictly stationary, ergodic and invertible.

Proof. Under Assumption 2, the conditions of Theorem 1 in (Chapter 1, section 12

Shiryaev, 1995) are satisfied. It follows that the chain underlying the dynamics of mul-

tipliers M j
t is geometrically ergodic. The ergodic distribution is given by πl = 1/2k,

l = 1, . . . , 2k. Under Assumptions 1 and 2, {rt, εt, σt} are strictly stationary, ergodic and

invertible. �

Proposition 2. Under Assumption 1, the ARFIMA(p,d,q)-GARCH-class model given by

2 and 11 has a unique, ακ−order stationary solution. It follows that {rt, εt, σt} are strictly

stationary, ergodic and invertible.

Proof. Under Assumption 1 and the conditions of Theorem 2.1 in Ling and McAleer

(2002a) with a constant mean process replaced by a stationary univariate ARFIMA pro-

cess, {rt, εt, σt} are strictly stationary, ergodic and invertible. �

Proposition 3. Under Assumptions 1 and 3, the ARFIMA(p,d,q)-MS-GARCH model

given by 2 and 8 to 10 has a unique strictly stationary and ergodic solution with the

finite second-order moment. It follows that {rt, εt, σt} are strictly stationary, ergodic and

invertible with the finite second-order moment.

Proof. Under Assumption 3 the conditions of Corollary 1 in Liu (2006) are met. Com-

bined with a stationary univariate ARFIMA process under Assumption 1, it follows that

{rt, εt, σt} are strictly stationary, ergodic and invertible with the finite second-order mo-

ment. �
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Proposition 4. Under Proposition 1, it follows that the 2mth moments of {rt, εt, σt} are

finite, where m is a strictly integer.

Proof. Under Proposition 1 and the conditions of Theorem 1 in (Chapter 1, section 12

Shiryaev, 1995), the 2mth moments of {rt, εt, σt} are finite. With the specification à la

Lux (2008) that sets the parameter b in the formula of the transition probabilities derived

by Calvet and Fisher (2001) to 2, it is obvious that all the elements of the transition

matrix of the chain underlying the multipliers are strictly positive, γ j ∈ (0, 1), without

any restriction on the parameter b. �

Proposition 5. Under Proposition 2, it follows that the mκth moments of the {rt, εt, σt}

exist.

Proof. Under Proposition 2 and the conditions of Theorem 2.2 in Ling and McAleer

(2002a), the mκth moments of the {rt, εt, σt} exist. �

Remark. The second moment and autocovariances of the MSM(k) for a binomial distri-

bution of the multipliers are available in Lux (2008). As pointed out in Ling and McAleer

(2002a), Proposition 5 cannot easily be extended to higher orders of the class of GARCH

processes defined by eq. 11. However, for GARCH(p,q) of Bollerslev (1986), Ling (1999)

provides a sufficient condition for the existence of the 2mth moment. Ling and McAleer

(2002b) extend the results of Ling (1999) to establish the necessary and sufficient higher-

order moment conditions for GARCH(p,q) and asymmetric power GARCH(p,q) of Ding

et al. (1993).

Denoting ρ(h) = cov(rt, rt−h)/var(rt), the autocorrelation function of the process de-

fined by eq. 2 and ρq(h) = cov(|εt|
q, |εt−h|

q)/var(|εt|
q) the autocorrelation of εt for every

moment q and every integer h. Consider two arbitrary numbers κ1 and κ2 in the open

interval (0, 1). The following set of integers S k =
{
h : κ1k ≤ log 2(h) ≤ κ2k

}
contains a

large range of intermediate lags.

Proposition 6. Under Assumption 1, it follows that ρ(n) ∼ c|h|2d−1 as h → ∞, where c

is a constant.
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Proof. Under Proposition 2 and Theorem 2.4 in Hosking (1981), ρ(h) is proportional to

|h|2d−1. �

Proposition 7. Under Assumption 2, it follows that ln ρq(h) ∼ −ψ(q) ln h as k → ∞,

where ψ(q) = log2

(
E(Mq)

[E(Mq/2)]2

)
.

Proof. Under Proposition 2 and the proof of the Proposition 1 in Calvet and Fisher

(2004), ρ(h) is proportional to ψ(q) ln h. �

Remark. Covariance stationarity in long-memory GARCH models requires that Ψ(1) <

1. We refer the reader to Conrad and Haag (2006) and Conrad (2010) for more details

on covariance stationarity and non-negativity conditions for this class of models. We

note that this condition is not fulfilled by the FIGARCH model. However, using the

results in Bougerol and Picard (1992) one can show that the FIGARCH model is strictly

stationary.

5 Empirical study

5.1 Estimation of models

All the models are estimated via the maximum likelihood approach. Note that we esti-

mate the mean and variance processes separately without an asymptotic loss in efficiency

(cf. Ling and Li, 1997). The optimal lag in the ARFIMA(p, d, q) is obtained based on

the AIC, and the parameters are well estimated, cf. Table 2. The diagnostic tests show

that the ARFIMA can properly capture the dynamics underlying the mean processes of

bitcoin returns. Furthermore, residuals from the model estimation are uncorrelated and

exhibit ARCH effects that justify the use of GARCH-type models.

For the volatility models, we first determine the optimal number of volatility compo-

nents in the MSM model using the log-likelihood values reported in Table 3, which in-

dicate that k = 8 may be the best and stable choice. From now on, we estimate the MSM

model with k = 8 and adopt the different specifications for the transition probabilities.

13
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We observe only a slight difference between the estimates of the binomial parameter m̂0

and the scaling factor in both model specifications. We have fixed lags in GARCH-type

models to p = q = 1. The motivation for this choice is that GARCH(1,1) processes are

very simple, but effective in modeling the clustering effects (cf. Bollerslev et al., 1994).

The estimates of the parameters in the MSM, GARCH-type (short- and long-memory)

and MS-GARCH model with two regimes are well estimated and reported in Table 4.

To investigate which long-memory GARCH specification is appropriate for the bitcoin

returns, we test the null hypothesis that the estimate of τ is equal to one and cannot be

rejected at any confidence level. This result indicates that the FIGARCH is the most

appropriate long-memory model for bitcoin returns.

5.2 Point forecasts

We first focus on the point forecasts. To produce volatility forecasts from our proposed

models in Section 2, we split our data set into appropriate in-sample and out-of-sample

periods and adopt a rolling forecasting scheme that ensures a fixed number of observa-

tions being used for the estimation over the out-of-sample period. The splitting point is

based on the identified break points3 using the modified ICSS algorithm as developed by

Sansó et al. (2004). The in-sample covers the period from 01/01/2013 until 24/11/2017,

and the out-of-sample from 25/11/2017 until 28/11/2018. For each model, we compute

the volatility forecasts for four different horizons, h = 1, 5, 10, 20 trading days.

5.3 Forecasting evaluation criteria

To evaluate the forecast performance of our proposed models, we adopt two well-known

accuracy measures, namely the root mean square error and mean absolute deviation that

are given by

RMSE j =

1
n

n∑
i=1

(
σ2

T+i − σ̂
2
T+i, j

)2
1/2

, MAE j =
1
n

n∑
i=1

|σ2
T+i − σ̂

2
T+i, j|,

3We refer the reader to Pesaran and Timmermann (2007) for more details on selection of an optimal
window in the presence of breaks.
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respectively. j denotes a particular model in our portfolio, n is the number of out-

sample forecast observations and T the forecast origin.

In addition, we utilize the model confidence set (MCS) test that was recently devel-

oped by Hansen et al. (2011) to assess the forecast performance of our proposed models.

The basic idea of the MCS approach is to derive from an initial set of competing models,

M0 without a predefined benchmark model, a set of superior models,M∗ at forecasting

horizon h, with a given confidence level. Formally, we have

M∗ = {i ∈ M0|E
(
dh

i, j

)
≤ 0 ∀ j ∈ M0},

where dh
i, j = g(et,i,h) − g(et, j,h) is the loss differential between models i and j and

et,i,h = σ̂2
t,i,h − σ

2
t,h represents the model-specific forecast errors at date t + h and the

loss function g(·) either denotes the squared error loss g(et,i,h) = e2
t,i,h or the absolute

error loss g(et,i,h) = |et,i,h|. Based on the expected loss functions, competing models

are ranked and the worst performing model at each step is eliminated. This sequential

elimination continues until the null hypothesis of equal loss differentials for all models

cannot be rejected:

H0 : E
(
dh

i, j

)
≤ 0 ∀i, j ∈ M.

The test statistic used under the null is either the range statistic, Tr, or the semi-

quadratic statistic, Tsq, that are given by

Tr = max
i, j∈M

|d̄i, j|√
ˆvar(d̄i, j)

, Tsq =
∑
i, j

(d̄i, j)2√
ˆvar(d̄i, j)

.

We refer the reader to Hansen et al. (2011) for details on the framework of the MCS

approach concerning the impact of the (i) forecasting schemes used, (ii) the relationships

between models under comparison and (iii) its relationship with existing tests in the

literature.
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5.4 Forecasting results

For each model specification we compute the root mean square error (RMSE) and mean

absolute error at different forecasting horizons h = 1, 5, 10, 15, 20. The results are re-

ported in Table 5. Based on the RMSE criterion, the parametric MSM model seems to

be the best, followed by the short-memory GARCH models, the FIGARCH and the MS-

GARCH model. The non-parametric MSM model does not perform well. The results

of the MCS test show that all models perform well at all forecasting horizons, although

we note that the parametric MSM model seems to be the only one that cannot be outper-

formed at any confidence level. The non-parametric specification version of the MSM

model does not perform well here. One reason might be that the non-parametric MSM

model lacks of sufficient flexibility for bitcoin markets.

According to the MAE criterion, the FIGARCH clearly outperforms its competitors.

The superior model set does only contain the FIGARCH model, whereas other models

are consistently at all forecasting horizons excluded. However when we consider their

ranked positions according to the MCS test, we note that the second best model is the

parametric MSM model followed by the GJR model.

5.4.1 Forecast combination

The difficulty of finding a uniformly best model which outperforms other models based

on the square loss function at both short and long horizons motivates us also to try

weighted average forecast combinations. Granger and Teräsvirta (1999) and Aiolfi and

Timmermann (2006) pointed out that it is often preferable to combine forecasts from

competitive models in a linear manner, thereby hopefully generating superior predic-

tions. Following this idea, we combine forecasts of GARCH-type and MSM models in

order to explore the complementarities of two classes of volatility model. Our combi-

nation strategy consists of weighted linear combinations of both volatility models. The

new predictor, f ∗ is given by

16



5.5 Density forecast Segnon/Bekiros

f ∗t,h = (1 − λ) f M
t,h + λ f G

t,h, (13)

where f M
t,h and f G

t,h denotes the forecasts of MSM and GARCH-type models at different

forecast horizons, respectively.

The estimates of optimal weights related to each forecast are obtained via the forecast

encompassing test developed by Harvey et al. (1998) for non-nested models, based on

least squares regression given by

εM
t,h = λ∆εM,G

t,h + εt, (14)

where εM
t,h and εG

t,h denote the forecasting errors from the MSM and GARCH-type models

at the forecast horizon h, respectively, and εt an i.i.d. normally distributed error term.

∆εM,G
t,h = εM

t,h − ε
G
t,h.

The RMSE of combined forecasts are reported in Table 6. The RMSE values of

the combined models are, in most cases, smaller than those of individual models, indi-

cating that forecast combinations yield improvement in forecasting accuracy. To deter-

mine whether the observed difference between RMSE values of combined and individual

models is statistically significant, we apply the MCS test. The test results show that all

models are contained in the superior model set, suggesting that combined and individual

models perform well, see Table 6.

5.5 Density forecast

To evaluate the forecasting performance of our proposed volatility models, we go be-

yond the point forecasts and adopt the density forecasts that shed substantial light on the

accuracy of the shape of return residuals distribution. The methodology for assessing

density forecasts is based on the integral transform that goes back to Rosenblatt (1952)

and Diebold et al. (1998).

Let us denote by {pt(xt|Ωt)}∞t=1 a sequence of densities identifying the data generat-

17



5.5 Density forecast Segnon/Bekiros

ing process governing the residual returns xt and { ft(xt|Ωt)}∞t=1, the sequence of one-

step-ahead density forecasts produced by any volatility model. Following Diebold et al.

(1998) we test the null hypothesis

H0 : { ft(xt|Ωt)}∞t=1 = {pt(xt|Ωt)}∞t=1.

Diebold et al. (1998) completed the work of Rosenblatt (1952) and showed that under

the null hypothesis, the probability integral transform, zt =
∫ xt

−∞
ft(y)dy, is i.i.d. uni-

formly distributed. Based on these results and the theory of random numbers simula-

tion, we implement the Berkowitz likelihood ratio test to assess whether the probability

integral transform series, {zt}
T
t=1, are i.i.d. U(0, 1).

The computation of one-step-ahead density and the integral transform using GARCH-

type models, two state-Markov switching GARCH model and the Markov switching

multifractal model is straightforward.

1. GARCH-type models:

Under a normality assumption, the one-step conditional probability density func-

tion is normal and the integral transform can easily be obtained.

2. MSM model:

It is not obvious how to derive the one-step conditional probability density func-

tion. The conditional density, given past information Ωt−1 has the following form

f (εt+1|Ωt) =

n∑
j=1

f (εt+1|Mt+1 = m j)P(Mt+1 = m j | Ωt), (15)

where m1, . . . ,mn are the n = 2k variations of the volatility components, i.e. from

m1 = (m0, . . . ,m0) to mn = (2−m0, . . . , 2−m0). Due to the fact that the innovations

in (4) are i.i.d. N(0, 1), the density of one-step-ahead return εt+1 conditional on
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volatility state Mt+1 is Gaussian,

f (εt+1|Mt+1 = m j) =
1

σ̄g(m j)
φ

(
εt+1

σ̄g(m j)

)
, (16)

where φ(.) is the standard normal density and g(m j) =

√∏k
i=1 m(i)

j with m(i)
j being

the i-th element of vector m j.

The integral transform is given by

F(εt+1|Ωt) =

∫ εt+1

−∞

f (xt|Ωt)dxt. (17)

Inserting (15) into (17) we obtain

F(εt+1|Ωt) =

∫ εt+1

−∞

f (xt+1|Ωt)dxt+1

=

∫ εt+1

−∞

n∑
j=1

f (xt+1|Mt = m j)P(Mt = m j|Ωt)dxt+1. (18)

The density f (εt|Mt−1 = m j) is Lebesgue integrable. Due to linearity, F(εt+1|Ωt)

becomes

F(εt+1|Ωt) =

n∑
j=1

P(Mt = m j|Ωt)
∫ εt+1

−∞

[
σ̄g(m j)

]−1
φ
[
xt+1/σ̄g(m j)

]
dxt+1

=

n∑
j=1

P(Mt = m j|Ωt)Φ
(
εt+1

σ̄g(m j)

)
, (19)

where Φ(.) is the standard normal cumulative distribution function.

3. MS-GARCH model:

The one-step conditional probability density function is a mixture of 2 regime-

dependent distributions:

19



5.6 Likelihood ratio test Segnon/Bekiros

f (εt+1|Ωt) =

2∑
k=1

πk,t+1 f (εt+1|δt+1 = k,Ωt),

where πk,t+1 =
∑2

i=1 Pi,kκi,t, with κi,t = P[δt = i|ωt], i = 1, 2 are the filtered

probabilities at time t

5.6 Likelihood ratio test

The likelihood ratio test is a more powerful tool for evaluating density forecasts. Using

a simple transformation to normality, Berkowitz (2001) obtained the following proposi-

tion:

• If the sequence zt =
∫ xt

∞
f (u)du is distributed as an i.i.d. U(0, 1), then

vt = Φ−1
[∫ xt

∞

f (u)du
]

is an i.i.d. N(0, 1). (20)

With the new sequence v, one can test the joint null hypothesis (H0) of independence

and normality against a first-order autoregressive AR(1) with mean and variance differ-

ent from 0 and 1, respectively.

The likelihood ratio test statistic is given by

LR = −2
[
L(0, 1, 0) − L(µ̂, σ̂2, ρ̂)

]
, (21)

where L(0, 1, 0) is the value of the log-likelihood function under H0 and L(µ̂, σ̂2, ρ̂) is

the estimated log-likelihood function associated with the AR(1) process. Under the null

hypothesis, the test statistic is chi-squared distributed with three degrees of freedom,

χ2(3).

One of the shortcomings of the likelihood ratio test is that it may happen that we

cannot reject the null hypothesis, although the sequence v is not normally distributed. To

avoid this, we also applied the Jarque-Bera test as a complement to the Berkowitz’s test,

(cf. Dowd, 2004).
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We use the out-of-sample rolling scheme as described above. We estimate each model,

and then forecast the densities and probability integral transforms (z). The forecasting

probability integral transforms are one, again transformed via the simulation theory to

obtain v series that are used for the likelihood ratio test. The results are presented in

Table 7. The null hypothesis is rejected for all volatility models. It seems that no models

used in this study are successful in capturing the dynamic structure of bitcoin markets.

6 Conclusion

In this paper we have revisited the stylized facts of cryptocurrency markets and pro-

posed various approaches for modeling and forecasting bitcoin returns volatility. We

have briefly discussed the statistical properties of the models used, and evaluated and

compared the out-of-sample forecasting ability the models via two loss functions and the

model confidence set (MCS) test. Furthermore, we have also evaluated the adequacy of

the models, using the likelihood ratio test of Berkowitz (2001). We found that cryptocur-

rency markets share the most stylized facts of other financial markets such as volatility

clusterings and fat tails. However, we note that the persistence in bitcoin marekts is

more pronounced and that the tails have more probability mass than observed in the

stock, foreign exchange and commodity markets. Our out-of-sample empirical results

show that the parametric MSM and FIGARCH models outperform other GARCH-type

models in forecasting bitcoin returns volatility at both short and long horizons. We also

found that forecast combinations yield improvements in forecasting accuracy. Density

forecasts results indicate that all the models used in this study fail to capturing properly

the dynamics of bitcoin returns.
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Table 1: Descriptive statistics of bitcoin returns

Bitcoin returns

Daily Weekly Monthly

No of Obs 1539 309 71

Mean 0.374 1.861 8.101

Standard deviation 5.950 13.093 32.874

Skewness -0.546 0.068 1.923

Kurtosis 24.990 8.740 10.272

Hurst exponent 0.635 0.684 0.939
[0.394 0.589] [0.312 0.663] [0.123 0.940]

Tail index 2.864 2.791 1.796

ADF -28.648 (-2.865) -10.169 (-2.871) -5.106 (-2.905)

ADF∗ -28.718 (-3.414) -10.277 (-3.426) -5.156 (-3.477)

PP -39.571 (-2.865) -16.790 (-2.871) -7.198 (-2.905)

PP∗ -39.629 (-3.414) -16.911 (-3.426) -7.291 (-3.477)

KP 0.351 (0.463) 0.339 (0.463) 0.225 (0.463)

KP∗ 0.212 (0.146) 0.206 (0.146) 0.141 (0.146)

Q(8) 37.410 (15.507) 15.437 (15.507) 11.652 (15.507)

Jarque-Bera 3.109E+4 (5.953) 424.392 (5.779) 200.180 (5.240)

Note: ADF∗ and ADF denote the augmented Dickey-Fuller statistics in a regression with (i) intercept and time trend and
(ii) intercept only. PP∗ and PP are the Phillips-Perron adjusted t-statistics of the lagged dependent variable in a regression
with (i) intercept and time trend and (ii) intercept only. KP∗ and KP represent the KPSS test statistics using residuals
from regressions with (i) intercept and time trend and (ii) intercept only. The critical values at the 1% level are reported
in parentheses. Q(8) denotes the Ljung-Box test for serial correlation at lag 8.

Table 2: Estimates of ARFIMA(2,d,2) using daily bitcoin returns

µ̂ φ̂1 φ̂2 θ̂1 θ̂2 d̂

Estimates 0.378 -0.079 -0.821 -0.018 -0.757 0.058
(0.211) (0.072) (0.070) (0.085) (0.080) (0.023)

Diagnostics

Log-lik -2729.45

AIC 5472.9

BIC 16231.9

Residuals Absolute residuals Squared residuals

Hurst exponents 0.583 {0.394 0.589} 0.892 0.909

Q(8) 7.670 [0.466] 723.701 [0.000] 280.359 [0.000]

ARCH(1) 164.533 [0.000]

Note: The entries in parentheses are the standard error of the estimation. Q(8) denotes the Ljung-Box test at lag 8 and
ARCH(1) is the Engle’s test of heteroscedasticity at lag 1. The numbers in the square brackets are the p-values of both
tests. AIC and BIC represent the Akaike and Bayesian information criterion, respectively.
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Table 3: Estimation results for the MSM model

k 1 2 3 4 5 6 7 8 9 10

m̂0 1.604 1.664 1.732 1.644 1.679 1.621 1.513 1.499 1.467 1.576

σ̂ 5.873 5.922 5.865 5.376 4.345 3.290 6.328 5.853 5.434 3.028

b̂ - 2.004 2.036 3.526 4.018 9.553 1.374 2.120 2.254 3.457

γ̂k 0.071 0.999 0.499 0.999 0.941 0.569 0.250 0.927 0.999 0.941

log(L) -4579.234 -4550.357 -4344.951 -4355.123 -4319.739 -4326.140 -4314.768 -4299.350 -4299.241 -4300.857

Note: k is the number of volatility components (also called multipliers) used in the estimation procedures. log(L) denotes
the logarithm of the likelihood function.

Table 4: Estimation results using bitcoin prices from January 1, 2013 to November 28, 2018

GARCH EGARCH GJR-GARCH APARCH MS-GARCH FIGARCH HYGARCH MSM MSM∗

Regimes 1 2

ω 0.628 0.168 0.580 0.524 1.392 0.040 2.686 2.044
(0.062) (0.012) (0.057) (0.278) (0.542) (0.022) (0.570) (0.758)

α 0.176 0.337 0.195 0.163 0.335 0.044
(0.011) (0.016) (0.013) (0.022) (0.067) (0.013)

β 0.824 0.958 0.833 0.836 0.838 0.819 0.728 0.714
(0.009) (0.003) (0.008) (0.018) (0.028) (0.034) (0.056) (0.061)

γ 0.025 -0.055 0.089
(0.009) (0.014) (0.036)

δ 1.893
(0.422)

φ 0.092 0.109
(0.056) (0.062)

d 0.816 0.782
(0.079) (0.085)

τ 1.027
(0.024)

pii 0.454 0.619
(0.064) (0.044)

m0 1.509 1.502
(0.013) (0.018)

σ̄ 5.893 5.844
(0.504) (0.571)

b 2.253
(0.154)

γk 0.971
(0.026)

Note: The numbers in parentheses are standard errors of the estimations.
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Table 5: Point forecast evaluation results

Models Forecast horizons

h=1 h=5 h=10 h=15 h=20

RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

GARCH 55.541 0.957∗ 56.216 0.551∗ 52.269 0.827∗ 54.724 0.627∗ 56.403 0.542∗

GJR 55.650 0.957∗ 55.556 0.551∗ 51.890 0.936∗ 53.947 0.862∗ 55.200 0.682∗

EGARCH 55.902 0.860∗ 55.775 0.551∗ 52.148 0.906∗ 54.131 0.862∗ 56.087 0.542∗

APARCH 55.699 0.957∗ 56.033 0.551∗ 52.930 0.256∗ 55.734 0.396∗ 57.050 0.521∗

FIGARCH 56.043 0.957∗ 56.588 0.551∗ 54.975 0.256∗ 56.002 0.627∗ 57.028 0.555∗

MSGARCH 56.255 0.574∗ 75.310 0.059∗ 78.910 0.052∗ 80.310 0.077∗ 81.310 0.108∗

MSMNP 57.900 0.060∗ 57.352 0.217∗ 53.407 0.256∗ 54.734 0.627∗ 56.095 0.555∗

MSMP 55.270 1.000∗ 54.423 1.000∗ 51.781 1.000∗ 53.203 1.000∗ 54.368 1.000∗

MAE pMCS MAE pMCS MAE pMCS MAE pMCS MAE pMCS

GARCH 32.447 0.003 33.703 0.002 32.899 0.001 35.509 0.002 38.088 0.000

GJR 32.040 0.003 32.735 0.002 31.881 0.001 34.196 0.002 36.305 0.000

EGARCH 33.483 0.001 34.519 0.002 34.412 0.001 37.628 0.001 40.699 0.000

APARCH 32.384 0.003 33.542 0.002 33.340 0.001 36.192 0.002 39.134 0.000

FIGARCH 27.286 1.000∗ 26.624 1.000∗ 25.544 1.000∗ 26.214 1.000∗ 26.488 1.000∗

MSGARCH 33.503 0.001 53.353 0.000 53.160 0.001 63.160 0.000 64.160 0.000

MSMNP 36.975 0.000 38.455 0.000 37.541 0.000 38.991 0.001 40.1561 0.000

MSMP 33.896 0.001 33.005 0.002 31.315 0.001 32.141 0.002 32.454 0.000

Note: The entries are RMSE and MAE values and proportion of times each model is in the superior set using square
and absolute loss function. The MCS test is performed based on the Tsq at a 95% confidence level. MSMNP and
MSMP denote the non-parametric and parametric MSM model, respectively. The forecasts in M∗95% are identified by
one asterisk.
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Table 6: RMSEs and MCS results for the combined forecasts

Models Forecast horizons

h=1 h=5 h=10 h=15 h=20

RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS RMSE pMCS

Individual forecasts

GARCH 55.541 0.502 56.216 0.502 52.269 0.444 54.724 0.543 56.403 0.314

GJR 55.650 0.502 55.556 0.737 51.890 0.444 53.947 0.609 55.200 0.425

EGARCH 55.902 0.417 55.775 0.404 52.148 0.407 54.131 0.503 56.087 0.268

APARCH 55.699 0.502 56.033 0.617 52.930 0.323 55.734 0.368 57.050 0.353

FIGARCH 56.043 0.502 56.588 0.557 54.975 0.323 56.002 0.418 57.028 0.389

MSGARCH 56.255 0.502 75.310 0.118 78.910 0.115 80.310 0.157 81.310 0.116

MSMNP 57.900 0.395 57.352 0.211 53.407 0.260 54.734 0.435 56.095 0.237

MSMP 55.270 0.502 54.423 0.948 51.781 0.444 53.203 0.618 54.368 0.431

Combined forecasts

MSMP + GARCH 55.134 0.502 54.419 0.948 51.146 0.766 52.702 0.618 53.800 0.431

MSMP + GJR 55.164 0.502 54.380 0.951 51.109 1.000 52.580 1.000 53.560 1.000

MSMP + EGARCH 55.270 0.502 54.408 0.951 51.450 0.444 52.914 0.618 54.159 0.425

MSMP + APARCH 55.186 0.502 54.399 0.951 51.302 0.444 52.817 0.618 53.675 0.431

MSMP + FIGARCH 54.400 1.000 54.256 1.000 51.777 0.444 53.201 0.618 54.368 0.431

MSMP + MS-GARCH 55.268 0.502 54.372 0.951 51.636 0.444 53.068 0.609 54.096 0.425

Note: The entries are RMSE and MAE values and proportion of times each model is in the superior set using square
and absolute loss function. The MCS test is performed based on the Tsq at a 95% confidence level. MSMP denote the
parametric MSM model. All the forecasts are inM∗95%.

Table 7: Density forecast evaluation results

Models LR statistics PLR JB statistics PJB

GARCH 518.117 0.000 7.464 0.024

GJR 513.918 0.000 7.806 0.020

EGARCH 525.800 0.000 6.685 0.035

APARCH 517.648 0.000 7.538 0.023

FIGARCH 463.755 0.000 11.643 0.003

MS-GARCH 463.370 0.000 18.188 0.000

MSM 473.796 0.000 16.461 0.000

Note: We test the null hypothesis of i.i.d. normal with mean zero and variance unity against an AR(1) process. The
Jarque-Bera test is used to complement the LR test of Berkowitz (2001) as suggested by Dowd (2004).
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Table 8: Results of encompassing test for non-nested models at different forecasting horizons

Forecast horizons

1 5 10 15 20

Model 1 vs. Model 2

MSM vs. GARCH

ENC-T 0.823 0.131 1.529 1.067 1.269
(0.206) (0.448) (0.064) (0.144) (0.103)

λ̂ 0.366 0.043 0.429 0.331 0.316
[0.335] [0.237] [0.174] [0.154] [0.140]

MSM vs. GJR

ENC-T 0.844 0.499 1.819 1.215 1.421
(0.200) (0.309) (0.035) (0.113) (0.078)

λ̂ 0.319 0.159 0.481 0.402 0.412
[0.329] [0.258] [0.190] [0.167] [0.152]

MSM vs. EGARCH

ENC-T -0.033 -0.279 1.181 0.706 0.582
(0.513) (0.610) (0.119) (0.240) (0.281)

λ̂ -0.018 -0.115 0.407 0.327 0.246
[0.432] [0.318] [0.231] [0.201] [0.180]

MSM vs. APARCH

ENC-T 0.750 0.343 1.373 1.053 1.121
(0.227) (0.366) (0.086) (0.147) (0.132)

λ̂ 0.288 0.106 0.350 0.265 0.309
[0.335] [0.233] [0.165] [0.140] [0.123]

MSM vs. FIGARCH

ENC-T 1.998 0.918 0.108 0.073 -0.022
(0.023) (0.180) (0.457) (0.471) (0.509)

λ̂ 0.420 0.209 0.032 0.027 -0.010
[0.151] [0.172] [0.175] [0.190] [0.205]

MSM vs. MS-GARCH

ENC-T 0.093 -0.450 0.729 0.527 0.748
(0.463) (0.674) (0.233) (0.299) (0.228)

λ̂ 0.041 -0.047 0.024 0.009 0.005
[0.325] [0.070] [0.021] [0.008] [0.003]

Note: we test the null hypothesis that forecasts from model 1 encompass those of model 2 and ENC-T denotes the
associated test statistics at different forecasting horizons. The values in parentheses are the p-values of the tests. λ̂s are
the estimates of the slope parameter λ in the forecast encompassing regression eq. 14. The values in square brackets are
the standard errors of the estimation.
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Figure 1: Plot of bitcoin USD exchange rates, the returns and squared returns
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Figure 2: Plot of bitcoin absolute returns and standard deviation for the regimes defined
by the structural breaks identified by the modified ICSS algorithm.

34



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Returns

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Absolute returns

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Squared returns

Figure 3: Plot of autocorrelation functions
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Figure 4: Plot of bitcoin returns distributions
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Figure 5: The panel at the top depicts the multifractal spectrum of bitcoin returns, the
panel in the middle the scaling functions (Fq) and the panel at the bottom the
q-order Hurst exponents (Hq) for bitcoin returns.
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