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Abstract

In this paper we analyze the performance of supremum augmented Dickey-Fuller

(SADF), generalized SADF (GSADF), and backward SADF (BSADF) tests, as in-

troduced by Phillips et al. (International Economic Review 56:1043-1078, 2015) for

detecting and date-stamping financial bubbles. In Monte Carlo simulations, we show

that the SADF and GSADF tests may reveal substantial size distortions under typi-

cal financial-market characteristics (like the empirically well-documented leverage ef-

fect). We consider the rational bubble specification suggested by Rotermann and Wil-

fling (Applied Economics Letters 25:1091-1096, 2018) that is able to generate realistic

stock-price dynamics (in terms of level trajectories and volatility paths). Simulating

stock-price trajectories that contain these parametric bubbles, we demonstrate that

the SADF and GSADF tests can have extremely low power under a wide range of

bubble-parameter constellations. In an empirical analysis, we use NASDAQ data cov-

ering a time-span of 45 years and find that the outcomes of the bubble date-stamping

procedure (based on the BSADF test) are sensitive to the data-frequency chosen by

the econometrician.
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1 Introduction

Recently, Phillips et al. (2011) and Phillips et al. (2014, 2015a, 2015b) have established

a sound theoretical foundation of recursive right-tailed unit-root testing for explosive-

ness in time-series data. As a result, the most prominent of their testing procedures—

the sup augmented Dickey-Fuller (SADF) test and its generalized variant (the GSADF

test)—have been applied in a plethora of empirical articles, in which data explosive-

ness is interpreted as indicating an asset-price bubble. Along this line of argument, the

studies aim at detecting speculative bubbles in alternative types of financial markets,

for example in stock markets (Homm and Breitung 2012), commodity markets (Long

et al. 2016), as well as in housing (Pan 2017) and currency markets (Bettendorf and

Chen 2013; Hu and Oxley 2017). In the meantime, the popularity of the SADF and

GSADF tests has been enhanced further by the fact that both testing procedures have

become standard routines in econometric software packages like EViews (Caspi 2017).

In simulation experiments, Phillips, Shi, and Yu (2015a, PSY hereafter) demon-

strate that SADF and GSADF tests have high discriminatory power when artificial

stock-price data are generated under periodically collapsing Evans bubbles (Evans

1991). While the rational Evans bubble has become a benchmark specification in the

theoretical and empirical literature, Rotermann and Wilfling (2014, 2018) elaborate

two theoretical properties of the Evans bubble that appear irreconcilable with real-

world stock-price dynamics. (i) The Evans bubble always collapses completely within

one trading unit, implying that stock-price volatility also collapses abruptly within

one period. (ii) After a crash, the Evans bubble necessarily reverts to the same ex-

pected value, a phenomenon for which there is no theoretical justification. By contrast,

Rotermann and Wilfling (2018) propose an alternative rational bubble specification—

in the form of a lognormal-mixture process—which is able to generate more realistic,

stochastically deflating bubble trajectories.
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In this article, we extend and modify the PSY power analysis of the SADF and

GSADF tests in various ways. Our investigation has three major findings. (i) In their

article, PSY specify a unit-root model with standard (symmetric) GARCH(1,1) errors

as the data-generating process and find that this type of conditional heteroscedasticity

does not impact substantially on the size of both tests. However, a well-established

finding is that specific volatility asymmetries are crucial to modeling equity markets.

The most prominent example is the leverage effect, stating that negative shocks often

have a relatively larger impact on volatility than positive shocks. To capture such

asymmetry, we study the effects of a threshold GARCH (TGARCH) volatility struc-

ture on the empirical size of the SADF and GSADF tests and find that both reveal

considerable size distortions under TGARCH errors.

(ii) We generate artificial stock-price data under the abovementioned rational Roter-

mann-Wilfling bubble specification. Our simulations show that both tests often possess

low empirical power under this realistic bubble specification. And (iii), we address

the PSY date-stamping strategy designed for real-time bubble monitoring. We apply

the procedure to NASDAQ data and compare the data-stamping results when using

monthly versus daily observations. Our results indicate that the dating strategy is

sensitive to the practitioner’s choice of data frequency.

The remainder of the paper is organized as follows. Section 2 briefly reviews the

essentials of present-value stock-price model and the rational Rotermann-Wilfling bub-

ble specification. Section 3 recapitulates the SADF and GSDAF tests, which we use

in Section 4 in our Monte Carlo simulations and the analysis of the date-stamping

procedure. Section 5 concludes.
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2 Present-value model, rational bubbles, and ex-

plosiveness

PSY motivate their SADF and GSADF testing procedures on the basis of the well-

known present-value stock-price model with constant expected returns (Campbell et

al. 1997). Within this framework, the date-t stock-price Pt is given by the Euler

equation

Pt =
1

1 + r
[Et(Pt+1) + Et(Dt+1)] , (1)

where Et(·) denotes the conditional expectation operator and Dt+1 the dividend pay-

ment between t and t+1. r > 0 is the constant discount factor, often referred to as the

required rate of return, which is just sufficient to compensate investors for the riskiness

of the stock.1

The first-order expectational difference Eq. (1) can be solved routinely by repeatedly

substituting future prices forward. The entire class of solutions to Eq. (1) is given by

Pt = P f
t +Bt =

∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i) +Bt, (2)

where Bt is any stochastic process satisfying the (discounted) martingale property

Et(Bt+1) = (1 + r) ·Bt. (3)

The quantities P f
t = Pt − Bt and Bt in Eqs. (2) and (3) are called ’fundamental

stock-price’ and ’rational bubble’, respectively.

Besides the constituting martingale property (3), any rational (stock-price) bubble

should satisfy two additional theoretical properties, as pointed out by Diba and Gross-

man (1988a, b). (i) Rational bubbles cannot start from zero, and (ii) negative bubbles

are ruled out as t→∞. The most frequently applied rational, parametric specification

1PSY enrich the model with the process {Ut}, representing unobservable fundamentals. Since the
authors assume {Ut} to be either I(0) or an I(1) process, we ignore {Ut} without loss of generality.
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satifying all these properties is the Evans (1991) bubble. However, the Evans bub-

ble reveals a major empirical shortcoming in that it always bursts entirely from one

trading unit to the next. These abrupt bursts not only entail unrealistic stock-price

trajectories, but also incompatible volatility dynamics (Rotermann and Wilfling 2014).

In Section 4, we therefore consider the bubble specification suggested by Rotermann

and Wilfling (2018). This bubble model—a mixture of two lognormal processes—(i)

generates realistic trajectories and stock-price volatility-paths, and (ii) satisfies the

rationality condition (3) plus the two Diba-Grossman conditions mentioned above.

Specifically, the rational bubble has the form

Bt =

{
α
ψπ
Bt−1ut , with probability π

1−α
ψ(1−π)Bt−1ut , with probability 1− π

, (4)

where ψ ≡ (1 + r)−1, α ∈ (0, 1) and π ∈ (0, 1] such that α
π
> 1 and 1−α

ψ(1−π) < 1. {ut}∞t=1

is assumed to be an i.i.d. lognormal process with ut ∼ LN(−ι
2

2
, ι2).2 The constraint

α ∈ (0, 1) ensures that the bubble never collapses to zero and can thus re-inflate. The

constraints α
π
> 1 and 1−α

1−π < ψ allow us to interpret the two states of the bubble

as follows. In State 1 (occurring with probability π) the bubble grows at the (mean)

growth rate α
ψπ
− 1 = α

π
− 1 + α

π
· r > r, i.e. at a faster rate than the required rate

of return. In State 2 (occurring with probability 1 − π,) the bubble deflates at the

negative (mean) growth rate 1−α
ψ(1−π) − 1 < 0.

Figure 1 about here

Depending on the specific parameter constellation, the bubble specification (4) dis-

plays a periodically recurring behavior with (stochastically evolving) deflation periods

that can range between a ”small/moderate correction” and a ”big crash” within one

2The lognormal distribution is parameterized in terms of the single parameter ι, so that ut > 0
and Et−1(ut) = 1 for all t.
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or arbitrarily many periods. As an illustrative example, Figure 1 displays 4 simulated

bubble trajectories, with each trajectory (of length T = 250) having the common val-

ues B0 = 0.5, ψ = 0.9840, and the trajectory-specific parameters ι2, π, α as shown in

Figure 1.

For our stock-price simulations in Section 4, we need to specify the fundamental

stock-price process {P f
t }. To this end, we adopt the frequently encountered assumption

that dividends follow a random walk with drift,

Dt = µ+Dt−1 + et, (5)

where {et}∞t=1 is an i.i.d. Gaussian white-noise process with mean 0 and variance σ2
e

(see, inter alia, Homm and Breitung 2012). Taking conditional expectations and adding

them as in Eq. (2), we obtain the fundamental stock price as

P f
t =

1 + r

r2
· µ+

1

r
·Dt, (6)

which, after inserting Eq. (5) into (6) and rearranging the terms, yields

P f
t =

µ

r
+ P f

t−1 +
et
r

= µ′ + P f
t−1 + e′t, (7)

showing that the fundamental stock price P f
t also follows a random walk with drift.

At this stage, some comments are in order on the interrelation between the concepts

’explosiveness in asset prices’ and ’existence of a bubble’. In our framework—consisting

of Eqs. (1) – (7)—the fundamental stock price P f
t constitutes a (nonexplosive) I(1)

process. Therefore, in view of Eqs. (2) and (3), if we find empirical evidence of explo-

sive behavior in the stock-price process (2), we can attribute this explosiveness to the

rational bubble. This profound conclusion, however, hinges crucially on the specific

assumptions of our framework and is far from being generally valid. To illustrate, let us

consider two alternative model setups. (i) A situation, in which the fundamental stock
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price (for whatever economic reason) follows an explosive process. (ii) An extended

rational valuation framework with stochastic discount factors (instead of our constant

required rate of return r).3 It is straightforward to verify that, under both scenar-

ios, explosiveness in stock prices (or in the price-dividend ratio) neither constitutes a

necessary nor a sufficient condition to deduce the existence of a bubble.

3 Sup-ADF-style tests and bubble date-stamping

The SADF and GSADF tests for explosiveness (applied to the time-series {yt}Tt=0) rest

on well-defined sequences of t-statistics (ADF-statistics) of the parameter θ, estimated

from the empirical specification

yt = c+ θyt−1 +
k∑
i=1

λi∆yt−i + εt, (8)

where k is the transient lag-order, ∆ denotes the first-difference operator, and εt
i.i.d.∼

(0, σ2). The objective is to test the unit-root null hypothesis H0 : θ = 1 versus the

right-tailed alternative of explosiveness, H1 : θ > 1. For characterizing the respective

sequences of ADF-statistics, which are needed to formally represent the ultimate SADF

and GSADF test statistics, we consider subsamples over the time domain {0, 1, . . . , T}

as fractions of the original sample. For this purpose, let the fractions (i) r0, (ii) r1, and

(iii) r2 respectively denote (i) the (fractional) width of the smallest subsample (used

to initialize the computation of the test statistic), (ii) the (fractional) starting point of

a subsample, and (iii) the (fractional) endpoint of a subsample.

Using this notation, Phillips et al. (2011) define the SADF test statistic as the sup

ADF-statistic from repeated estimation of the empirical regression (8) on a forward

expanding sample sequence. Concretely, the authors consider as given, the minimal

sample window width r0, set the subsample starting point r1 = 0, and let the subsample

3Cochrane (2011) presents overwhelming empirical evidence of time-varying discount rates.
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endpoint r2 range between r0 and 1. Denoting the ADF-statistic for a subsample

running from r1 to r2 by ADFr2r1 , they define the SADF test statistic as

SADF(r0) ≡ sup
r2∈[r0,1]

{
ADFr2r1=0

}
. (9)

The GSADF test—suggested by Phillips et al. (2015a, b) with the goal of improving

the detection capacity under multiple stock-price bubbles—essentially pursues the same

idea as the SADF test, but processes more subsamples to estimate the ADF-regression

(8). In contrast to the SADF variant, the GSADF test allows the fractional starting

point r1 to range between 0 and r2−r0, implying a double recursive subsample structure.

The corresponding test statistic is defined as

GSADF(r0) ≡ sup
r2∈[r0,1]

r1∈[0,r2−r0]

{
ADFr2r1

}
. (10)

Phillips et al. (2014, 2015a) derive the asymptotic null distributions of the SADF

and GSADF test statistics on the basis of the prototypical model with weak (local to

zero) intercept form,

yt = a · T−η + θyt−1 + εt, εt
i.i.d.∼ (0, σ2), (11)

with constants a and η > 1/2. Under the null hypothesis of a unit root (θ = 1), the

limiting distributions of the test statistics are given by

SADF(r0)
d→ sup

r2∈[r0,1]


1
2
r2 [W (r2)

2 − r2]−
∫ r2
0
W (s)ds W (r2)

r2
1
2

{
r2
∫ r2
0
W (s)2ds−

[∫ r2
0
W (s)ds

]2} 1
2

 , (12)

and

GSADF(r0)
d→
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sup
r2∈[r0,1]

r1∈[0,r2−r0]


1
2
(r2 − r1) [W (r2)

2 −W (r1)
2 − (r2 − r1)]−

∫ r2
r1
W (s)ds [W (r2)−W (r1)]

(r2 − r1)
1
2

[
(r2 − r1)

∫ r2
r1
W (s)2ds−

(∫ r2
r1
W (s)ds

)2] 1
2

 ,

(13)

where W denotes a standard Wiener process.

In addition to the SADF and GSADF testing for bubbles, PSY propose a date-

stamping procedure for estimating the (fractional) origination and termination dates

(denoted by re and rf ) of a bubble. The underlying idea rests on a recursive test

procedure called the backward SADF (BSADF) test. The BSADF test follows the

same principle as the SADF test, but processes the sample in the reverse direction.

The test proceeds in two steps. (i) It computes a sequence of ADF statistics using

a series of samples, in which each individual sample has the same fixed endpoint r2,

while the starting point ranges between 0 and r2 − r0. (ii) The BSADF test statistics

is then defined as the sup-value of the ADF statistics computed in Step (i):

BSADFr2(r0) ≡ sup
r1∈[0,r2−r0]

{
ADFr2r1

}
. (14)

In order to test for explosiveness in the time-series process at date t = bTr2c (b·c is

the floor function), the BSADFr2(r0) statistic is compared to a critical value obtained

from Monte Carlo simulation. Letting r2 range between r0 and 1, PSY (i) define the

origination date bTrec of a bubble as that point in time with the first chronological

observation, at which the BSADF statistic exceeds the critical value, and (ii) suggest

estimating the origination date bTrec via

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2(r0) > scvβTr2

}
, (15)

where βT denotes the significance level and scvβTr2 is the 100(1− βT )% critical value of
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the SADF test statistic based on bTr2c observations.4

In a similar vein, the termination date bTrfc of the bubble is defined as the point in

time with the first chronological observation, at which the BSADF statistic falls below

the critical value. Additionally, assuming a minimal time lag of δ log(T ) observations

to exist between the origination and the termination date of the bubble, PSY propose

estimating the termination date bTrfc via

r̂f = inf
r2∈[r̂e+δ log(T )/T,1]

{r2 : BSADFr2(r0) < scvβTr2 }. (16)

We end this section by noting that (i) the parameter δ in Eq. (16) controls for the

minimal duration of the bubble, and (ii) the GSADF and the BSADF test statistics

are interrelated by

GSADF(r0) = sup
r2∈[r0,1]

{BSADFr2(r0)} .

4 Monte Carlo study and empirical analysis

In this section, we first approximate asymptotic critical values of the SADF and GSADF

tests, and analyze the empirical size and power of both tests. Second, we report the

results of a date-stamping analysis with daily and monthly NASDAQ observations.

4.1 Simulation results

Given Eqs. (9), (10), (12) and (13), the SADF and GSDF statistics, as well as their

asymptotic distributions depend on the minimal window size r0. To be in line with the

PSY article, we adopt the rule r0 = 0.01 + 1.8/
√
T , and—whenever considering finite

samples—focus on the specific sample sizes T ∈ {100, 200, 400, 800, 1600}.

In a first step, we approximate the asymptotic critical values of the SADF and

4PSY point out that the significance level βT may depend on the sample size T and shrink to zero
as T →∞.
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GSADF statistics via Monte Carlo simulation. In contrast to PSY, we do not make use

of the asymptotic null distributions from Eqs. (12) and (13), the simulation of which

requires an approximation of the Wiener process. Instead, we simulate the critical

values by restricting the data-generating process to the prototypical specification in

Eq. (11) with parameters θ = 1 and a = η = 1 and use the sample size T = 5000. (The

parameter values for a and η are taken from PSY.) With these settings, we approximate

the asymptotic critical values by simulating 100,000 and 12,500 replications of the

SADF and GSADF statistics, respectively.

Table 1 about here

Table 1 reports our asymptotic critical values, which share two features with their

analogs from the PSY simulations via the asymptotic null distributions from Eqs. (12)

and (13). (i) The critical values of both test statistics increase with a decreasing

minimal window size r0. (ii) The GSDAF critical values always exceed their SADF

counterparts. In most cases, our asymptotic critical values are slightly larger than

those reported by PSY, yielding more conservative rejections of the null hypothesis. In

our analysis below, we rely on our critical values from Table 1.

Table 2 about here

In order to check the validity of our asymptotic critical values, when applied to

finite samples, we simulate sizes for both tests. For this purpose, we generate data

from the prototypical process in Eq. (11) under the null hypothesis (with parameters

a = η = θ = 1) for the finite sample sizes T ∈ {100, 200, 400, 800, 1600}. On the basis

of 10,000 replications, we compute simulated sizes as the fractions of replications, for

which the tests erroneously reject the null of a unit root in favor of the alternative,

thus indicating explosiveness. We report the results in Table 2 for a nominal size of
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5% (i.e. using the 95% critical values from Table 1) and do not find substantial size

distortions.

The process specification in Eq. (11) ignores (conditional) heteroscedasticity, a well-

documented phenomenon in all types of financial markets. To assess the impact of het-

eroscedasticity on the SADF and GSADF procedures, PSY address the sizes of both

tests under unit-root processes with GARCH errors. Under standard GARCH(1, 1)

errors—as originally defined in Bollerslev (1986)—they do not find critical size distor-

tions.

However, the standard GARCH(1, 1) specification does not account for volatility

asymmetries, such as the highly relevant leverage effect, according to which negative

stock-market shocks tend to exert a larger impact on volatility than positive shocks

(e.g. Black 1976; Christie 1982; Schwert 1989). Therefore, we modify the PSY size

analysis and consider (as the data-generating process) the unit-root specification from

Eq. (11) with a = η = θ = 1 under (threshold) TGARCH(1, 1) errors,

εt = st
√
ht, st

i.i.d.∼ N(0, 1), (17)

ht = ω + γ · ε2t−1 + β · ht−1 + φ · ε2t−1 · I(εt−1 < 0), (18)

where I(·) denotes the indicator function, which takes on the value 1 if the market is

shocked by bad news (εt−1 < 0), and is 0 in the case of good news (Zaköıan 1994).

Table 3 about here

Table 3 displays the simulated sizes of both tests under TGARCH(1, 1) errors for

the nominal size of 5% and the sample sizes T ∈ {100, 200, 400, 800, 1600} on the basis

of 10,000 replications. We set the TGARCH(1, 1) parameters from Eq. (18) to ω =

0.4387, γ = 0, β = 0.9319, φ = 0.1306, so as to coincide with the maximum likelihood

estimates obtained from monthly observations of the NASDAQ price-dividend ratio
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covering the (relatively) tranquil period between January 1988 and December 1994.5

Apparently, both tests exhibit substantial size distortions under volatility asymmetry

in the form of TGARCH(1, 1) errors.

Next, we address the empirical power properties of the SADF and GSADF tests.6

In preparation, we simulate 10,000 stock-price series from the present-value equation

Pt = P f
t +Bt, with the fundamental stock price P f

t evolving according to Eqs. (5) and

(6), and the rational bubble Bt following the log-normal mixture from Eq. (4). The

involved parameters are set equal to the estimates obtained in Rotermann and Wilfling

(2018), who fit the bubble specification (4) to monthly NASDAQ observations between

January 1990 and October 2013, applying a particle-filter technique. Explicitly, we use

the parameter values µ = 0, σ2
e = 0.4476, D0 = 1.6942, B0 = 10.1925, ψ = 0.9840, ι2 =

0.0061, π = 0.9595 and α = 0.9675.

Table 4 about here

Table 4 reports the results of our power analysis for the sample sizes T ∈ {100, 200,

400, 800, 1600}. Again, we use the 95% critical values from Table 1, and 10, 000 Monte

Carlo replications. Our analysis has 4 major findings. (i) The power of the GSADF

test exceeds the power of the SADF test—except for T = 1600, where both tests have

power equal to 1. (ii) The power of both tests increases with increasing sample size.

(iii) The power of both tests is extremely low for T = 100, 200. It improves only slightly

for T = 400. (iv) Both tests perform acceptably for T = 800. For T = 1600, both tests

identify the bubble in each of the 10,000 simulated stock-price series.

Table 5 about here

5We describe the data set in Section 4.2.
6We note that adjusting both tests for the size distortions under TGARCH errors would entail a

decrease in the empirical power.
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Table 5 reports the power of both tests, when some model parameters are singly (or,

as π and α, jointly) varied (see Table 5), while all other parameters are held constant

at their levels presented in Table 4 (ceteris-paribus analysis). Explicitly, we let (i) the

dividend drift µ range between 0 and 0.003, (ii) the discount factor ψ range between

0.975 and 0.990, and (iii) the probability π range between 0.35 and 0.95. In the case

of the π-variation, we simultaneously adjust the parameter α, so that the mean bubble

growth factor from Eq. (4), α/(ψπ), remains constant at 1.05.

Table 5 displays the results of our analysis, conducted with 10,000 Monte-Carlo

replications (for each parameter setting), and the sample size T = 400 (which covers a

time span of more than 33 years under monthly observations). We obtain the following

3 findings. (i) A variation in the dividend drift µ (ceteris paribus) does not substantially

affect the power of either test. This result is not surprising, since both tests are based on

Eq. (8), capturing the effects of the dividend drift. (ii) The power of both tests decreases

dramatically with an increasing discount factor ψ. For instance, for ψ = 0.99, both

tests only detect 9.73% and 12.35% of the simulated bubbles. An explanation may be

that—with an increasing discount factor ψ—the bubble’s positive (mean) growth factor

from Eq. (4), α/(ψπ), decreases, rendering the detection of explosiveness more difficult.

(iii) The power of both tests decreases substantially with an increasing probability π.

Recall that π represents the likelihood of ongoing bubble growth at the constant rate

of 5% (what we achieve by an appropriate adjustment of α). For π = 0.95, α = 0.0972,

both tests only detect 8.04 % and 9.72 % of the bubbles. Prima facie, this finding

appears counter-intuitive, since we would expect the tests to exhibit higher power

when the probability of bubble inflation (bubble growth) increases. One explanation

of this phenomenon rests on the fact that the joint variation of the parameters π and α

keeps the inflation rate, given by α/(ψπ)− 1, stable at the 5 % level. However, at the

same time this variation increases the mean bubble deflation rate in Eq. (4), given by
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(1−α)/[ψ(1− π)]− 1, in absolute value, namely from −0.0111 to −0.9492. Evidently,

neither test is capable of coping with these opposing effects on bubble dynamics.

Figure 2 about here

Figure 2 illustrates the overall results of our power analysis. For this empirical-

quantile graph, we multiplied the 24 power values from Table 5 (12 SADF, 12 GSADF

power values) by 10,000, so that the values now represent the number of bubbles

correctly detected by both tests in each parameter setting.7 Two findings are striking.

(i) The bubble-detection capacity of the GSADF test only slightly outperforms that of

the SADF test. (ii) In 10 out of 12 parameter settings, both tests detect less than 6,000

(out of 10,000) bubbles per setting. In other words, for these 10 (out of 12) settings,

more than 40% of the existing bubbles remain undetected.8 Only in 2 of 12 settings,

do both tests identify more than 8,000 (out of 10,000) bubbles.

4.2 Date-stamping analysis

In this section, we apply the PSY date-stamping methodology [Eqs. (14)-(16)] to the

NASDAQ stock market. We use Thomson Reuters Datastream, which provides daily

and monthly observations of (i) the NASDAQ composite price index, (ii) the NASDAQ

composite dividend yields, and (iii) the US Consumer Price Index (CPI) for all urban

consumers. The data cover the time-span 2 January 1973 – 29 December 2017 (T = 540

monthly, T = 11739 daily observations).

We use the NASDAQ price index and the dividend yields to compute our dividend

time series, and the CPI to deflate the nominal series. We obtain daily observations

7Recall that we use 10,000 replications in each parameter setting, where each replication contains
a bubble.

8In 4 settings, more than 5,000 (out of 10,000), and in 2 settings even more than 8,000 (out of
10,000) bubbles remain undetected.
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on the CPI by the linear interpolation

CPIM,D = CPIM,15 +

(
D − 15

30

)
(CPIM+1,15 − CPIM,15) ,

where CPIM,D is the consumer price index for day D in month M (which is assumed

to have 30 days). We use the NASDAQ price index and the dividend time series to

obtain the price-dividend ratio. In order to estimate the termination date, according to

Eq. (16), the date-stamping procedure requires an assumption regarding the minimal

(fractional) bubble duration δ log(T )/T . We impose a minimal duration of 6 months

(180 days), implying the (approximate) values δ = 2.2 (monthly observations) and

δ = 44.2 (daily observations).

Figure 3 about here

Our date-stamping analysis starts with the monthly NASDAQ sample (upper panel

in Figure 3). As the training period, we use the first 47 (out of 540) observations. As

described in Section 3, we investigate explosive behaviour in the price-dividend ratio

via the intersections of the BSADF test statistics with its corresponding 95% critical

values (obtained from 2,000 Monte Carlo replications). The upper panel in Figure 3

indicates 4 bubbly periods (grey shaded areas) lasting, respectively, from (i) May 1983

– June 1984 (14 months), (ii) December 1985 – November 1987 (24 months), (iii) July

1995 – April 2001 (68 months), and (iv) October 2008 and May 2009 (8 months).

The final 3 of these bubbly periods can obviously be ascribed to (i) the bull market

prior to Black Monday in October 1987, (ii) the dotcom bubble with its crash starting

at the beginning of 2000, and (iii) the short-term stock-market recovery after the

Lehman Brothers insolvency in September 2008. Especially the latest bubble during the

subprime mortgage crisis raises crucial doubts about the correct bubble date-stamping.

The stamped bubble starts during the NASDAQ downturn after the Lehman collapse,
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and ends in the middle of the recovery period.

In the lower panel of Figure 3, we analyze the date-stamping performance for the

daily NASDAQ observations, where our training period consists of the first 312 (out of

11739) observations. Obviously, the sequence of the BSADF statistics appears far more

volatile under daily observations. The date-stamping procedure identifies a number of

short-lived periods of explosiveness that do not show up under monthly data. In the

lower panel of Figure 3, we mark the centers of these periods by vertical, dashed lines.

However, since we impose a minimal bubble duration of 180 days (δ = 44.2), the

procedure only identifies the first 3 bubbly periods (i.e. one less than under monthly

data). The period during the subprime mortgage crisis, identified as bubbly under

monthly observations, now remains unstamped.

Apart from that, 2 out of the 3 stamped bubbles under daily observations (the first

and third) differ substantially in their origination and termination dates from their

analogs under monthly data. The first bubble under daily data (lower panel) already

starts on 23 December 1983, i.e. 5 months earlier than its analog in the upper panel.

Since both termination dates basically coincide (June 1984 and 14 May 1984), this is

tantamount to a 5-month-longer-lasting bubble under daily observations. Similarly, the

dotcom bubble basically has the same origination date under both data-frequencies,

but ends 5 months later under monthly observations (April 2001 vs [23] November

2000).

We end by noting that the econometrician’s imposition of a minimal bubble duration

(6 months / 180 days in our analysis) at the outset of the date-stamping procedure

turns out to be crucial. In the lower panel of Figure 3, we observe 4 short-lived periods

of explosiveness, that are not recognized as bubbles, due to our arbitrary setting of

δ = 44.2 for daily observations. The practitioner will frequently be confronted with

the judgmental and subjective question of whether a (rather) short-lived sequence of
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BSADF statistics exceeding the critical values either (i) is to be interpreted as a bubbly

period, or (ii) is to be viewed as a statistical artefact.9

5 Conclusion

This paper investigates the performance of SADF and GSADF tests, as suggested by

Phillips et al. (2015a, b), in detecting stock-market bubbles. In a first step, we address

(i) the empirical size of both tests under typical financial-market volatility asymmetries

(like the leverage effect), and (ii) the empirical power of the tests in detecting a class of

rational bubbles, as proposed by Rotermann-Wilfling (2018). Our Monte Carlo simula-

tions find that both tests exhibit substantial size distortions when the data-generating

process is subject to (threshold) TGARCH errors, which are often used to capture lever-

age effects.10 Moreover, the SADF and GSADF tests often have low empirical power

in identifying the (flexible) Rotermann-Wilfling bubble. As shown in Figure 2, in 10 of

our 12 scenarios (=83%), more than 40% of the existing bubbles remain undetected by

the two tests. In a second step, we investigate the bubble date-stamping performance

(based on the BSADF test) using monthly and daily NASDAQ data over a period of 45

years. We find that the date-stamping results may be sensitive to the data-frequency in

two respects. (i) Some periods are stamped as bubbly under monthly data, but remain

unstamped under daily observations. (ii) A bubbly period that is stamped under both

data-frequencies, may have different origination and termination dates under the two

frequencies (implying substantially differing durations).

We emphasize that it is by no means our intention to discredit any of the sup

ADF-style testing procedures discussed in the previous sections. The probabilistic

9Fulop and Yu (2017) suggest estimating the termination date within a Bayesian framework by
setting δ = 0 in Eq. (16).

10Fulop and Yu (2017) propose a 2-regime Markov-switching bubble framework, which appears to
exhibit some robustness in bubble detection, when the leverage effect is present in the data-generating
process.
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background of the methodologies, designed to test for (statistical) explosiveness, is

mathematically rigorous and, from a purely econometric perspective, worth investigat-

ing further. However, when it comes to financial bubble detection, our advice is to

apply the routines with caution. At the end of Section 2, we ascertain that in many

realistic financial-market settings, (statistical) explosiveness neither constitutes a nec-

essary nor a sufficient condition to deduce the existence of a bubble. Therefore, we

cannot expect statistical tests for explosiveness to constitute a generally valid tool for

bubble detection.

A further aspect concerns the theoretical setting (the present-value model), in which

bubbles are often discussed. Within this framework, rational bubbles cannot start from

zero (Diba and Grossman 1988a, b), implying that, at the present date t, either (i)

a rational bubble exists (i.e. Bt > 0, although Bt may take on very small positive

values), or (ii) there is currently no (rational) bubble (i.e. Bt = 0), but then there will

never be one. Viewed from this angle, an appealing alternative to detecting bubbles via

statistical tests for explosiveness could be to assume a parametric bubble specification

(such as the one we use in this paper), and to estimate the parameters via appropriate

techniques.
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Table 1
Asymptotic critical values of SADF and GSADF tests

SADF GSADF
90% 95% 99% 90% 95% 99%

r0 = 0.190 1.1136 1.4107 1.9754 1.7329 1.9920 2.4838
r0 = 0.137 1.1848 1.4738 2.0339 1.8734 2.1017 2.5771
r0 = 0.100 1.2222 1.5195 2.0936 1.9945 2.2046 2.6551
r0 = 0.074 1.2887 1.5613 2.1081 2.0993 2.3121 2.7254
r0 = 0.055 1.3272 1.5963 2.1330 2.2009 2.3995 2.8002

Note: Large-sample critical values are approximated by simulating the data-generating process from

Eq. (11) with θ = 1 and a = η = 1. The chosen sample size is T = 5000. The numbers of replications

are 100,000 and 12,500 for the SADF and GSADF tests, respectively.

Table 2
Sizes of SADF and GSADF tests in finite samples when using asymptotic critical

values

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.0393 0.0404 0.0410 0.0435 0.0478
GSADF 0.0483 0.0520 0.0489 0.0501 0.0499

Note: Sizes are obtained by simulating data (under the null hypothesis) from the specification in

Eq. (11) with parameters a = η = θ = 1. Using 10,000 replications, the sizes are computed via the

(asymptotic) 95% critical values from Table 1.

Table 3
Sizes of the SADF and GSADF tests in finite samples under TGARCH(1, 1) errors

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.2221 0.1999 0.1488 0.1020 0.0620
GSADF 0.1528 0.1537 0.1613 0.2018 0.2936

Note: Sizes are obtained by simulating data (under the null hypothesis) from the specification in

Eq. (11) with parameters a = η = θ = 1 under TGARCH errors, as described in Eqs. (17) and (18).

The TGARCH parameters are ω = 0.4387, γ = 0, β = 0.9319, φ = 0.1306. Using 10,000 replications,

the sizes are computed via the (asymptotic) 95% critical values from Table 1.
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Table 4
Empirical power of SADF and GSADF tests under a rational bubble

T = 100 T = 200 T = 400 T = 800 T = 1, 600
r0 = 0.190 r0 = 0.137 r0 = 0.100 r0 = 0.074 r0 = 0.055

SADF 0.0373 0.0857 0.5579 0.9758 1.0000
GSADF 0.0448 0.1075 0.5806 0.9782 1.0000

Note: The stock-price series are generated as Pt = P f
t +Bt with P f

t from Eqs. (5) and (6), and Bt as

in Eq. (4). The parameters are set to µ = 0, σ2
e = 0.4476, D0 = 1.6942, B0 = 10.1925, ψ = 0.9840, ι2 =

0.0061, π = 0.9595 and α = 0.9675. For the power calculations, we use the 95% critical values from

Table 1, and 10, 000 replications.

Table 5
Power of SADF and GSADF tests under varying bubble parameters

µ = 0.000 µ = 0.001 µ = 0.002 µ = 0.003
SADF 0.5579 0.5603 0.5543 0.5527
GSADF 0.5806 0.5814 0.5774 0.5751

ψ = 0.975 ψ = 0.98 ψ = 0.985 ψ = 0.990
SADF 0.9891 0.8646 0.4531 0.0973
GSADF 0.9890 0.8755 0.4852 0.1235

π = 0.35 π = 0.55 π = 0.75 π = 0.95

α = 0.3675 α = 0.5775 α = 0.7875 α = 0.9975
SADF 0.5626 0.5108 0.4250 0.0804
GSADF 0.5813 0.5355 0.4555 0.0972

Note: The stock-price series are generated as Pt = P f
t + Bt, with P f

t as in Eqs. (5), (6), and Bt

as in Eq. (4). As in Table 4, the basic set of parameters is µ = 0, σ2
e = 0.4476, D0 = 1.6942, B0 =

10.1925, ψ = 0.9840, ι2 = 0.0061, π = 0.9595, α = 0.9675. The parameters µ, ψ, π, α are then singly (or,

as π and α, jointly) varied as indicated. The remaining parameters are held constant at their basic

values. For the power calculations, we set T = 400, r0 = 0.1 and use the 95% critical values from Table

1, with 10, 000 replications for each parameter setting.
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Figure 1. Bubble trajectories of length T = 250 simulated according to Eq. (4) with common 
parameters B0 = 0.5, ψ = 0.9840 

ι2 = 0.02, π = 0.87, α = 0.91 ι2 = 0.02, π = 0.985, α = 0.998 

ι2 = 0.005, π = 0.85, α = 0.88 ι2 = 0.005, π = 0.96, α = 0.99 
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Figure 2. Number of bubbles detected by SADF and GSADF tests (empirical quantiles) 
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Figure 3. Date-stamping explosive behavior in monthly (upper panel) and daily (lower panel) 
NASDAQ price-dividend ratios 
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