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Markov switching multifractal (MSM) processes. We assess the performance of

the copula-MSM model by computing the value at risk of a portfolio composed

of the NASDAQ composite index and the S&P 500. Using the likelihood ratio

(LR) test by Christoffersen (1998), the GMM duration-based test by Candelon

et al. (2011) and the superior predictive ability (SPA) test by Hansen (2005) we

evaluate the predictive ability of the copula-MSM model and compare it to other

common approaches such as historical simulation, variance-covariance, Risk-

Metrics, copula-GARCH and constant conditional correlation GARCH (CCC-

GARCH) models. We find that the copula-MSM model is more robust, provides

the best fit and outperforms the other models in terms of forecasting accuracy

and VaR prediction.
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Introduction Segnon/Trede

1. Introduction

Since the theoretical works of Jorion (1997) and Dowd (1998), value at risk

(VaR) has become a standard measure for quantifying market risk of a single

asset or an asset portfolio. It is widely used in practice by financial institutions,

portfolio managers and regulators. Sophisticated statistical tools and models

such as historical simulation or the Monte-Carlo and variance-covariance ap-

proaches have been developed in the literature to compute VaR of portfolios. All

these models are characterized by a linear dependence structure and normality.

On the one hand, these assumptions reduce the complexity associated with the

joint distribution of asset returns and facilitate the computations, on the other

hand they may lead to inaccurate VaR forecasts. Empirical observations provide

convincing evidence that asset returns exhibit volatility clustering, fat tails, tail

dependence, asymmetric correlation and multifractality, and it is obvious that

these stylized facts cannot be captured by the normality assumption. To obtain

accurate VaR estimates, parametric methods based on econometric models for

volatility dynamics as well as semi-parametric methods based on extreme value

theory (EVT) have been developed in the literature.1

In this paper we propose a new modeling approach that is based on a combi-

nation of copulas and multifractal processes. Copulas are a tool to describe non-

linear and tail dependent structures of asset returns (cf. Hürlimann, 2004). Al-

though the idea to use copulas2 for constructing flexible multivariate distributions

with different marginal distributions and different dependence structure is still

relatively recent, its application in pricing and risk management is widespread,3

examples include Cherubini and Luciano (2001); Wei et al. (2004); Jondeau and

Rockinger (2006); Wu et al. (2006); Palaro and Hotta (2006); Chiou and Tsay

(2008); Huang et al. (2009). These studies employ the empirical distribution

and/or simple GARCH-type models as margins and obtain reasonable results.

Here, we adopt a completely different modeling approach for the marginal dis-

tribution, namely the Markov switching multifractal (MSM). Recently proposed

1We refer the reader to Dowd (2002); Küster et al. (2006) for a detailed overview of the various
VaR approaches and their advantages and disadvantages.

2An introduction to unconditional copula theory can be found in Joe (1997) and Nelsen (1999);
extensions to conditional copulas are proposed by Patton (2006).

3We refer the reader to Embrechts et al. (2002, 2003) for more details on the applications of
copulas in finance.
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by Calvet and Fisher (2004), MSM processes have demonstrated their ability

to reproduce most stylized facts of financial asset returns and, thus, outperform

GARCH-type models in terms of modeling and forecasting volatility (Calvet and

Fisher, 2004; Lux, 2008; Lux and Morales-Arias, 2010). Our objective is to pro-

pose a model that fits the data better than conventional models and produces more

accurate estimates of a portfolio’s market risk. We compare the forecasting per-

formance of our new model in terms of predicting the market risk of portfolios

with different models in the literature via the likelihood ratio test of Christof-

fersen (1998), the GMM duration-based test of Candelon et al. (2011) and the

superior predictive ability test of Hansen (2005).

The rest of the paper is organized as follows. Section 2 reviews the Markov

switching multifractal (MSM) volatility model for marginal distributions. In sec-

tion 3 the univariate marginals are joined by copulas, resulting in the copula-

MSM model. Section 4 presents an empirical application. We evaluate the

value-at-risk estimates of the copula-MSM model and compare its performance

to other models. Finally, Section 5 concludes.

2. Markov switching multifractal (MSM) volatility

model

In this section we briefly review the Markov switching multifractal (MSM)

volatility model. In general, financial returns, rt, are modelled as

rt = µt + yt, (1)

where µt = Et−1[rt] is the conditional mean return, yt is the centered return. For

simplicity, we assume that the expected return is a constant, and we focus on

modeling the centered returns.

The continuous-time Poisson multifractal model of Calvet and Fisher (2001)

and its discretized version (Calvet and Fisher, 2004), the Markov switching mul-

tifractal (MSM), supply new tools for modeling and forecasting financial volatil-

ity. In the MSM, volatility dynamics are driven by a discrete-time Markov-

switching process with a large number of states. Centered returns, yt, are mod-
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eled as:

yt = σtεt, (2)

where the innovations εt follow a standard normal distribution (εt ∼ N(0, 1)) and

instantaneous volatility σ2
t is determined by the product of k volatility compo-

nents or multipliers Mt = (M(1)
t ,M(2)

t , . . . ,M(k)
t ) and a constant scale factor, σ2,

σ2
t = σ2

k∏
i=1

M(i)
t . (3)

The volatility components M(i)
t are persistent, non-negative and satisfy E[M(i)

t ] =

1. Furthermore, the volatility components M(1)
t , . . . ,M(k)

t at time t are assumed to

be stochastically independent. At time t, each volatility component M(i)
t changes

with probability γi depending on its rank within the hierarchy of multipliers and

remains unchanged with probability 1 − γi. The probabilities are modeled as

γi = 1 − (1 − γ1)(bi−1), (4)

with γ1 ∈ [0, 1] the component at the lowest frequency, and parameter b ∈ (1,∞).

If component M(i)
t changes, we follow Calvet and Fisher (2004) and assume a

two-point distribution for the new value with support m0 and 2 − m0 where 0 <

m0 < 1 is a parameter (thus, guaranteeing an expectation of unity for all M(i)
t ).

Of course, with probability 1/2 the new draw happens to be identical to the old

value.

For the MSM model, it is not obvious how to derive the conditional marginal

distribution of asset returns. The conditional cdf of yt is

F(yt|=t−1) =

∫ yt

−∞

f (ut|=t−1)dut, (5)

where f (yt|=t−1) is the conditional density given past information =t−1. It has the

following form

f (yt|=t−1) =

n∑
j=1

f (yt|Mt = m j)P(Mt = m j | =t−1), (6)

where m1, . . . ,mn are the n = 2k variations of the volatility components, i.e. from
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m1 = (m0, . . . ,m0) to mn = (2 − m0, . . . , 2 − m0). Under the assumption that

the innovations in (2) are i.i.d. N(0, 1), the density of return yt conditional on

volatility state Mt is Gaussian,

f (yt|Mt = m j) =
1

σh(m j)
φ

(
yt

σh(m j)

)
, (7)

where φ(.) is the standard normal density and h(m j) =

√∏k
i=1 m(i)

j with m(i)
j being

the i-th element of vector m j.

Inserting (6) into (5) we obtain

F(yt|=t−1) =

∫ yt

−∞

f (ut|=t−1)dut

=

∫ yt

−∞

n∑
j=1

f (ut|Mt−1 = m j)P(Mt−1 = m j|=t−1)dut. (8)

The density f (ut|Mt−1 = m j) is Lebesgue integrable. Due to linearity, F(yt|=t−1)

becomes

F(yt|=t−1) =

n∑
j=1

P(Mt−1 = m j|=t−1)
∫ yt

−∞

[
σh(m j)

]−1
φ
[
ut/σh(m j)

]
dut

=

n∑
j=1

P(Mt−1 = m j|=t−1)Φ
(

yt

σh(m j)

)
, (9)

where Φ(.) is the standard normal cumulative distribution function.

3. Copula-MSM model

The univariate MSM or GARCH models are now linked by copulas. Copulas

provide a general and flexible way to describe (conditional) multivariate distri-

butions and, hence, they allow to compute the value at risk of asset portfolios.

We first describe how copulas can be utilized to link conditional asset return

distributions.
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3.1. Joint distributions of asset returns

Let y1,t and y2,t denote the centered returns of two assets and let r1,t = µ1 +y1,t and

r2,t = µ2 +y2,t denote their uncentered returns. Their conditional joint distribution

function of the centered returns is

F(y1,t, y2,t|=t−1) = C(F1(y1,t|=t−1), F2(y2,t|=t−1)),

and the conditional joint density is

f (y1,t, y2,t|=t−1) = c(F1(y1,t|=t−1), F2(y2,t|=t−1)) × f1(y1,t|=t−1) f2(y2,t|=t−1),

where c is the copula density and f1 and f2 are the marginal densities.

The intertemporal dependence only appears in the marginal distributions while

the contemporary dependence structure, i.e. the copula, is independent of the

information set. Detailed information on common copula functions is provided

in the Appendix.

3.2. Calculation of Value-at-Risk

We now calculate the value-at-risk for the copula-MSM model. Define the port-

folio return rp,t as

rp,t = πr1,t + (1 − π)r2,t,

where π and (1 − π) are the portfolio weights. The value at risk of the portfolio,

VaRt(α), is implicitly defined by

Pr(rp,t ≤ VaRt(α)|=t−1) = α. (10)

Rewriting the VaR definition (10), we obtain

Pr
(
rp,t ≤ VaRt(α)|=t−1

)
= Pr

(
πr1,t + (1 − π)r2,t ≤ VaRt(α)|=t−1

)
= Pr

(
r1,t ≤

VaRt(α)
π

−
1 − π
π

r2,t|=t−1

)
= α.
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Applying Sklar’s theorem, it is obvious that

Pr
(
rp,t ≤ VaRt(α)|=t−1

)
=

∫ +∞

−∞

∫ zt

−∞

f (u1,t, u2,t|=t−1)du1,tdu2,t

=

∫ +∞

−∞

∫ zt

−∞

c(F(u1,t|=t−1), F(u2,t|=t−1)) f (u1,t|=t−1) f (u2,t|=t−1)du1,tdu2,t = α,

(11)

where

zt =
VaRt(α)

π
−

1 − π
π

u2,t,

and the conditional cdfs and density functions are given by (9) and its derivative.

The value-at-risk is calculated by solving (11) numerically.

3.3. Model contestants

The estimation of value-at-risk of portfolios is a standard task in financial econo-

metrics and there is a large number of models at hand. In the empirical illus-

tration we will compare the copula-MSM model to the following conventional

models that are used in research and practice.

Copula-GARCH model: The standard GARCH proposed by Bollerslev (1986)

is perhaps the most popular and most widely used univariate volatility model.

This is due to its simplicity and its capability to capture volatility clusters ob-

served in financial data (Bollerslev et al., 1994). In GARCH(p,q), centered re-

turns are modeled as

yt =σtεt, (12)

σ2
t =ω +

p∑
i=1

αiy2
t−i +

q∑
j=1

β jσ
2
t− j, (13)

where σ2
t is the conditional variance. The parameters have to satisfy the follow-

ing restrictions to ensure positive conditional variances and stationary: ω > 0,

αi > 0 for i = 1, . . . , p, βi > 0 for i = 1, . . . , q, and
∑

i αi +
∑

i βi < 1. We as-

sume that the innovations, εt, follow a standard normal distribution (GARCH-n).

Hence, the conditional marginal distribution is Gaussian and straightforward to

compute.
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Historical simulation: The historical simulation is the simplest and most often

used VaR model in the literature. This is due to its simplicity to use and calculate.

The historical simulation method is free from any assumption and consists in

estimating the distribution of the returns via the empirical distribution of the

data.

Variance-covariance method: Under the normality assumption, the value-at-

risk is

VaRp,t(α) = µp,t + σp,tZα,

where µp,t andσp,t denote the mean and standard deviation of the portfolio return,

and Zα denotes the α-quantile of the standard normal distribution. The variance

σ2
p,t is obtained as

σ2
p,t = [π1 π2]

 σ2
1,t σ12,t

σ21,t σ2
2,t


 π1

π2

 .
where π1 and π2 are the portfolio weights. Typically, the variances and covari-

ances are estimated from historical data.

RiskMetrics method: The RiskMetrics methodology is popular in practice.

Under normality the portfolio return distribution is expressed as

σ2
p,t|t−1 = (1 − λ)r2

p,t−1 + λσ2
p,t−1|t−2,

whereσ2
p,t|t−1 is the estimated variance using data up to a time t−1. The parameter

λ is constant and known to be λ = 0.94.

CCC-GARCH method: In the bivariate CCC-GARCH the centered return vec-

tor can be modeled as

yt = Ω
1/2
t εt (14)

where yt is 2 × 1 vector of centered returns, Ωt is the 2 × 2 variance-covariance

matrix, and εt is the 2 × 1 vector of innovations in the model. The innovations

are assumed to be N(0, 1) distributed and independent. The variance-covariance

matrix Ωt can be decomposed as

Ωt = DtΓDt
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where Dt is a diagonal matrix and Γ is the correlation matrix. In the bivariate

CCC-GARCH(1,1) case

Ωt =

 σ2
1,t σ12,t

σ21,t σ2
2,t

 =

 σ1,t 0

0 σ2,t


 1 ρ12

ρ21 1


 σ1,t 0

0 σ2,t

 .
The advantage of the CCC-GARCH model consists in its simplicity. It allows to

disentangle the estimation and prediction of Dt+1 to obtain D̂t+1 and the estima-

tion of Γ resulting in Γ̂.

We first forecast volatility for each return series in our portfolio, and then use

the forecasted volatilities and the estimated correlation to compute the condi-

tional variance of portfolio returns, σ2
p,t. The VaR forecasts are obtained as

VaRp,t(α) = µp,t + σp,tZα, (15)

where Zα is α-quantile of the standard normal distribution.

4. Empirical Study

4.1. Data

To analyze the performance of the copula-MSM model we consider a portfolio

composed of the NASDAQ composite index and the S&P 500 index. The data

sets consist of daily closing prices observed between April 15, 2009 and October

12, 2015.4

Returns are computed as

rt = 100 × ln
(

Pt

Pt−1

)
, (16)

where Pt is the closing value of the index at day t.

Figures 1 and 2 illustrate the time evolution of both stock indices and their

returns and squared returns. Volatility clusters are clearly visible in the return

and squared return plots. Descriptive statistics of our data sets are reported in

4The data for the NASDAQ composite index and the S&P 500 index have been collected from
http://research.stlouisfed.org/fred2/series.

9

http://research.stlouisfed.org/fred2/series
http://research.stlouisfed.org/fred2/series


4.2 Estimation results Segnon/Trede

2009 2010 2011 2012 2013 2014 2015

P
ric

e 
(U

S
D

)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

NASDAQ
S&P 500

Figure 1: Time evolution of NASDAQ Composite index and S&P 500

Table 1. We observe a moderate unconditional volatility (a daily volatility of

1.1% translates into an annual volatility of about 17%), negative skewness and

excess kurtosis in both indices. This is in line with the stylized facts established

in many empirical studies. We also compute the Hurst exponents and tail indices

for both indices. The values for the Hurst exponent are around 0.5 indicating the

absence of long range dependence in returns. The values for the tail index are in

the vicinity of 3-4. To gain more insights into the dynamic structure of squared

returns, we apply Engle’s test for heteroscedasticity. The null hypotheses that the

series do not contain ARCH effects are rejected at any usual significance level.

The results of the augmented Dickey-Fuller (ADF) unit-root test of Dickey and

Fuller (1979) confirm the absence of unit roots in asset returns, and the Jarque-

Bera test rejects the null hypothesis of normality.

4.2. Estimation results

We first fit univariate models to the return series. Results for MSM are reported

in Table 2, and for GARCH in Table 3. The optimal number of volatility com-

ponents in the MSM model has been determined by estimating the MSM for all

10
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Figure 2: Daily returns and squared returns of NASDAQ Composite index and
S&P 500

k = 1, . . . , 10 and comparing their log(L) values. Results are shown in Table 2.

It turns out that 3 or 4 components are appropriate.

The GARCH orders (p, q) have been selected by the Bayesian Information

Criterion (BIC) as p = q = 1. The GARCH parameters shown in Table 3 are

estimated very accurately. The diagnostic tests show that the GARCH models

picks up conditional heteroskedasticity and autocorrelation of the NASDAQ in-

dex returns, but fail to account for part of the conditional heteroskedasticity of

the S&P index.

Having estimated the parameters of the marginal volatility models, we pro-

ceed with the estimation of the copula parameters by the inference function for

margins (IFM) method. The IFM method consists of two straightforward steps.

In the first step, the parameters of the univariate marginal distributions are esti-

mated. Given these estimates, the copula parameters are estimated in the second

step. In both steps we use maximum likelihood, hence it is guaranteed that the

IFM estimators are asymptotically normal (Joe and Xu, 1996). The estimation

results and the model selection criteria are reported in Table 4. The results show

11
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Table 1: Descriptive statistics of stock index returns

Stocks T mean std skewness kurtosis Hurst tail index Arch(1) Arch(5) Arch(10) JB ADF

NASDAQ 1635 0.067 1.139 -0.393 6.009 0.436 3.925 62.257 243.331 292.440 658.200 15.423
(<0.001) (0.000) (0.000) (0.000) (0.000)

S&P 500 1635 0.053 1.036 -0.428 6.723 0.435 3.765 69.789 305.699 345.055 993.726 19.948
(<0.001) (0.000) (0.000) (0.000) (0.000)

Note: The p-values are reported in parentheses. The values for the tail index are computed by Hill’s estimator.

Table 2: Estimation results of MSM model

k 1 2 3 4 5 6 7 8 9 10

NASDAQ

m̂0 0.375 0.451 0.488 0.576 0.634 0.668 0.694 0.714 0.730 0.743

σ̂ 1.313 1.344 1.335 1.429 1.190 1.213 1.187 1.176 1.172 1.170

b̂ - 16.478 20.936 3.045 1.003 1.938 1.748 1.604 1.514 1.444

γ̂k 0.038 0.135 0.913 0.132 0.043 0.195 0.211 0.208 0.210 0.208

log(L) -2385.203 -2352.973 -2348.761 -2352.018 -2353.449 -2351.511 -2351.511 -2351.485 -2351.491 -2351.476

S&P

m̂0 0.300 0.406 0.407 0.450 0.451 0.630 0.409 0.451 0.450 0.411

σ̂ 1.099 1.228 0.974 0.981 2.710 1.092 1.490 1.406 0.609 1.453

b̂ - 14.602 14.991 24.803 24.567 1.804 14.919 24.735 24.808 13.184

γ̂k 0.071 0.119 0.118 0.932 0.931 0.149 0.118 0.932 0.932 0.115

log(L) -2182.605 -2135.300 -2136.402 -2134.693 -2135.307 -2136.571 -2136.783 -2135.134 -2136.358 -2137.219

Note: k represents the number of volatility components used in the estimation procedures. log L is the logarithm of the
maximum of the likelihood function. As some estimates γ̂1 are very small, we instead report γ̂k . Equation (4) can be
used for a re-transformation.

that both the Student-t copula-MSM and -GARCH provide the best fit among the

copula-MSM models and copula-GARCH models, respectively.

4.3. Evaluating value-at-risk estimates

We analyze the predictive ability of the models using a rolling scheme. Both in-

dex price series are divided into two subsets. The first 1135 observations are used

as in-sample data for model estimation. The second subset contains the remain-

ing 500 observations and serves as out-of-sample data that we use for forecast

evaluation. Note that in the rolling scheme the estimation period is rolled forward

by adding one new observation and removing the oldest one each day. Hence,

the size of the estimation sample remains fixed over the out-of-sample period.

We forecast the one-day ahead 1% and 5% VaR using the copula-MSM model

and compare it to: copula-GARCH model, historical simulation, the variance-

covariance method, RiskMetrics and the CCC-GARCH model. Figures 3 and 4

12
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Table 3: Estimation results for GARCH(1,1) model

Parameters NASDAQ S&P 500

ω 0.043[0.012] 0.034[0.008]

α 0.101[0.020] 0.123[0.023]

β 0.863[0.023] 0.844[0.023]

Diagnostics

Arch(1) 1.772(0.183) 4.173(0.041)

Arch(5) 8.933(0.112) 17.003(0.005)

Arch(10) 11.078(0.352) 19.553(0.034)

Q(2) 0.035(0.983) 1.046(0.593)

Q(4) 3.817(0.431) 2.660(0.616)

Q(8) 4.990(0.759) 7.485(0.485)

Note: The numbers in square brackets are standard errors. The values reported in parentheses are the p-values of the
statistics. Arch and Q denote Engle’s test for residual heteroscedasticity and the Ljung-Box test for residual autocorrela-
tion, respectively.

depict the VaR forecasts for all models at the 5% and 1% confidence level.

To evaluate the performance of the copula-MSM model we first apply the like-

lihood ratio test proposed by Christoffersen (1998) that is based on the violations

process5, and the GMM duration-based test by Candelon et al. (2011) that makes

use of the distributional properties of the duration between two consecutive VaR

violations to construct moment conditions that can easily be tested. In fact, under

valid VaR forecasts the duration between two consecutive VaR violations follows

a geometric distribution with a success of probability equal to the coverage rate

(α) (cf. Kupiec, 1995). Recently introduced in the literature, the GMM duration-

based test has good power properties for realistic sample sizes compared to LR

based tests, cf. Candelon et al. (2011). This is one of the merits of the GMM

duration-based test. We conduct both tests for one-period-ahead VaR forecasts.

The p-values are reported in Tables 5, 6, 7, and 8. Further, we also apply the

superior predictive ability (SPA) test proposed by Hansen (2005) using a VaR-

based loss function (see Appendix). The SPA test provides the opportunity to

5A violation occurs when ex post portfolio returns are lower than the predicted VaRs.
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Figure 3: Plot of VaR forecasts at the 5% confidence level

compare the relative forecasting performance of a basis model with its competi-

tors. The p-values of the SPA test are computed based on 5000 bootstrap samples

under a VaR-based loss function (see Table 9).

From the results in Tables 5 to 9 we have the following observations:

VaR forecasts with 5% coverage rate:

According to the LR backtests, the null hypothesis that the (unconditional) ex-

pected frequency of violations is equal to the coverage rate (5%), is rejected for

the variance-covariance method, and all copula-GARCH models. These mod-

els exhibit too many VaR violations (the frequency of violations observed over

the out-of-sample period is significantly greater than the coverage rate) indicat-

ing an underestimation of the true risk level. All the copula-GARCH models

can provide VaR forecasts that are independent leading to the non-rejection of

the independence hypothesis. This indicates that the violation sequence does

not contain clustering structure. As result, it seems that the above mentioned

copula-GARCH models can properly model the higher-order dynamics of port-

folio returns. The conditional coverage hypothesis is rejected for the covariance

method, and all copula-GARCH models at the 5% level. Striking is the fore-
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Figure 4: Plot of VaR forecasts at the 1% confidence level

casting performance of the copula-MSM models. All the copula-MSM models

used in this paper provide valid VaR forecasts at the 5% level, i.e., the estimated

number of violations are not statistically significant different from the coverage

rate and the violations are independently distributed. The copula-MSM models

outperform the copula-GARCH and the variance-covariance method. However,

the historical simulation approach, RiskMetrics and the CCC-GARCH model

perform well, too. The GMM duration-based backtesting results match those

obtained by the LR backtests. The results of the SPA test using the non-smooth

and smooth VaR-based loss functions are almost the same, indicating that a non-

differentiable loss function does not impair the implementation of the SPA6 test

procedures. The null hypothesis that a particular model cannot be outperformed

by any of the other competitors, is rejected for all copula-GARCH and covari-

ance method at the 5% level.

VaR forecasts with 1% coverage rate:

6The SPA test is designed based on the framework of reality check test in White (2000) that
requires a differentiable loss function, cf. Theorem 2.3 in White (2000).
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According to the LR test results the unconditional coverage hypothesis is re-

jected at the 1% level for the RiskMetrics, CCC-GARCH, all copula-GARCH

and all copula-MSM models. For all these models, the estimated frequency of

VaR violations significantly exceeds the coverage rate, indicating an underes-

timation of the portfolio’s actual level of risk. While historical simulation and

covariance method cannot produce independent VaR forecasts, the independence

hypothesis cannot be rejected for RiskMetrics, CCC-GARCH and for all copula-

MSM and copula-GARCH models at the 1% level. These results are confirmed

by the GMM duration-based test that properly highlights the capacity and ro-

bustness of the copula-MSM models to produce independent and accurate VaR

forecasts. While the conditional coverage hypothesis is rejected for all copula-

MSM and copula-GARCH models based on the LR results, we observe a non-

rejection of the conditional coverage hypothesis as we increase the number of

moment conditions for the copula-MSM according to GMM duration-based test

results. The independence properties of VaR violations based copula-MSM mod-

els and the acceptance of the conditional coverage hypothesis show the capacity

of our new model to capture the dynamic structures in higher portfolio return mo-

ments. The GMM duration-based test results also reveal the deficiencies of the

copula-GARCH models to provide VaR forecasts that fulfill the independence

and the unconditional hypotheses, and thus, their incapacity to properly model

the higher-order dynamics of portfolio returns. The SPA test results show that

all the copula-GARCH models are outperformed by other competitive models at

the 1% level.

5. Conclusion

This paper has introduced a new asset portfolio return model that is constructed

via a combination of copula functions and Markov-switching multifractal pro-

cesses (copula-MSM model). We have compared its VaR forecasting ability with

those of copula-GARCH models, historical simulation, RiskMetrics, variance-

covariance method and CCC-GARCH models. The new model fits the data

well and produces accurate and robust VaR forecasts. Its superiority over the

copula-GARCH, historical simulation, RiskMetrics, covariance method and the

CCC-GARCH model has been documented via LR tests, GMM duration-based

16
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tests, and SPA tests. The copula-MSM models is a new tool for value-at-risk

calculations that can provide accurate and valid value-at-risk forecasts.
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A. Copula Functions

This paper concentrates on two copula families, namely elliptical copulas (that

encompass the Gaussian copula and the Student-t copula), and Archimedean

copulas (that include the Clayton copula, rotated Clayton copula, Gumbel cop-

ula, rotated Gumbel copula, Frank copula and Plackett copula). In the following

we briefly present these copulas. For simplicity, we write ut ≡ Ft(xt).

• Gaussian copula: The Gaussian copula cumulative distribution function is

given by

Cg (u1, u2; ρ) = Φρ

(
Φ−1(u1),Φ−1(u2)

)
, (17)

where 0 ≤ u1, u2 ≤ 1, Φρ denotes the joint cumulative distribution function

of a bivariate normal distribution with correlation ρ ∈ (−1, 1) and Φ−1 is

the quantile function of the standard normal distribution.

• Student-t copula: In contrast to the Gaussian copula the Student-t copula

permits modeling tail dependence, i.e. an increased probability of joint

extreme movements. A small value of the degrees-of-freedom parameter

ν implies strong tail dependence. This feature makes the Student-t copula

attractive for empirical applications. The copula function is

Cst (u1, u2; ρ, ν) = tν,ρ
(
t−1
ν (u1), t−1

ν (u2)
)
, (18)

where tν,ρ denotes the bivariate Student-t distribution with ν degrees of

freedom and a correlation coefficient ρ, and t−1
ν is the inverse standard uni-

variate Student-t distribution with ν degrees of freedom.

• Plackett copula: The Plackett copula is defined as

Cpl (u1, u2; ς) =
1

2(ς − 1)
(1 + (ς − 1)(u1 + u2)

−
√

(1 + (ς − 1)(u1 + u2))2 − 4ς(ς − 1)u1u2),
(19)

where ς ∈ [0,∞).

• Clayton copula and rotated Clayton copula: The Clayton (1978) copula

has an asymmetric dependence structures. The copula functions of the
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Clayton copula and the rotated Clayton copula are

Ccl (u1, u2;ω) =
(
u−ω1 + u−ω2 − 1

)− 1
ω

Cr−cl (u1, u2;ω) =u1 + u2 − 1 + Ccl (1 − u1, 1 − u2;ω) ,
(20)

where ω ∈ (0,∞).

• Symmetrized Joe-Clayton (SJC) copula: The SJC copula is a modification

of the so-called Joe-Clayton copula developed by Joe (1997). It is defined

as

Cs jc (u1, u2; τU , τL) =
1
2
−

1
2

[(
[1 − (1 − u1)k]−γ + [1 − (1 − u2)k]−γ − 1

)− 1
2
] 1

k

1
2
−

1
2

[(
[1 − uk

1]−γ + [1 − uk
2]−γ − 1

)− 1
2
] 1

k

+ u1 + u2 − 1,

(21)

with k = 1/ log 2(2 − τU) and γ = −1/ log 2(τL) where τU ∈ (0, 1) and

τL ∈ (0, 1).

• Frank copula: The Frank copula is given by

C f r (u1, u2; %) = −
1
%

ln
(
1 −

(1 − exp(−%u1))(1 − exp(−%u2))
1 − exp(−%)

)
, (22)

where % ∈ (−∞, 0) ∪ (0,+∞).

• Gumbel copula and rotated Gumbel copula: Like the Clayton copula, the

Gumbel copula is asymmetric (Gumbel, 1960), with a higher dependence

in the right tails. The Gumbel and rotated Gumbel copula functions are

Cgu (u1, u2; δ) = exp
[
−

(
(− ln u1)δ + (− ln u2)δ

) 1
δ

]
Cr−gu (u1, u2; δ) =u1 + u2 − 1 + Cgu (1 − u1, 1 − u2; δ) ,

(23)

where δ ∈ (0,∞)
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B. Superior Predictive Ability Test

To compare our new model with the traditional VaR models we consider in this

study we employ the superior predictive ability test proposed by Hansen (2005).

The SPA test is designed based on the framework of White (2000) and allows to

compare the relative performance of a baseline model with its competitors via

a predefined loss function. Our predefined loss function is the VaR-based loss

function introduced in González-Rivera et al. (2004) that is given by

VaRl(α) = T−1
T∑

i=1

(
α − Iαt+1

) (
rt+1 − VaRα

t+1
)
, (24)

where T denotes the number of out-of-sample observations, Iαt+1 = 1(rt+1 <

VaRα
t+1), VaRα

t+1 is the conditional value-at-risk forecast.

To avoid the problems that may occur in the implementation of the superior

predictive ability (SPA) test due to the non-differentiability of the VaR-based loss

function defined in eq. (24) we use a smooth approximation7 that is given by

SVaRl(α) = T−1
T∑

i=1

[
α − hν

(
rt+1,VaRα

t+1
)] (

rt+1 − VaRα
t+1

)
, (25)

hν(a, b) = [1 + exp(ν(a − b))]−1. The parameter, ν > 0, controls the smoothness

and for a higher value of ν SVaRl(α) gets closer to VaRl(α) (cf. González-Rivera

et al., 2004).

The null hypothesis that the benchmark (or basis) model is not outperformed

by any of the other competitive models can be formalized as follows

H0 : max
i=1,...,K

E [RPt] ≤ 0, (26)

where RPt =
(
RPi,t, . . . ,RPK,t

)′ is a vector of relative performances, RPi,t, that

are computed as RPi,t = VaRL(0)
t,h − VaRL(i)

t,h. K is the number of the competitive

models, h denotes the forecasting horizon and VaRL(0)
t,h and VaRL(i)

t,h are the loss

functions at time t for a benchmark model M0 and for its competitor models,

Mi(i=1,...,K) , respectively.

7Granger (1999) pointed out that it should always be possible to find a smooth function which is
arbitrarily close to the non-smooth one, so that the problem related with the non-differentiability
may be just a technical issue.
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The associated test statistic is given by

TS PA = max
i=1,...,K

√
TR̄Pi√

lim
T→∞

Var(
√

TR̄Pi)
, (27)

where R̄P = T−1
∑

RPt. The p-values of the SPA8 are obtained via a stationary

bootstrap procedure using the VaR-based loss function defined above.

8More details on technical issues can be found in Hansen (2005).
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Table 4: Estimated parameters for different copula functions and model selection
criteria.

Copula Parameter MSM GARCH

NASDAQ-S&P 500 NASDAQ-S&P 500

Gaussian

ρ 0.941 0.946

Log(L) 1772.538 1836.264

AIC -3543.076 -3670.528

BIC -3537.677 -3665.129

Student

ρ 0.942 0.946

ν 7.345 18.606

Log(L) 1794.140 1840.753

AIC -3584.279 -3677.507

BIC -3573.482 -3666.709

Plackett

ς 73.702 80.519

Log(L) 1689.020 1754.584

AIC -3376.041 -3507.169

BIC -3370.642 -3501.770

Clayton

ω 4.329 4.232

Log(L) 1415.112 1369.590

AIC -2828.224 -2737.181

BIC -2822.826 -2731.782

Rotated Clayton

ω 4.682 4.890

Log(L) 1442.869 1440.392

AIC -2883.739 -2878.785

BIC -2878.340 -2873.386

SJC

τL 0.835 0.843

τU 0.799 0.720

Log(L) 1724.688 1675.129

AIC -3445.375 -3346.258

BIC -3434.578 -3335.460

Frank

κ 26.232 25.285

Log(L) 1336.299 1535.463

AIC -2670.599 -3068.925

BIC -2665.200 -3063.527

Gumbel

δ 4.341 4.476

Log(L) 1726.944 1772.624

AIC -3451.887 -3543.248

BIC -3446.489 -3537.850

Rotated Gumbel

δ 4.219 4.213

Log(L) 1693.595 1692.211

AIC -3385.189 -3382.422

BIC -3379.791 -3377.023

Log(L) is the logarithm of the maximum likelihood function. AIC and BIC are the Akaike and Bayesian information
criterion, respectively. The volatility components in the MSM is set to 5 (k = 5) and the orders in the GARCH p = q = 1
that are determined by the Bayesian criterion. The numbers in bold face indicate the maximal Log(L) and minimal AIC
and BIC values.
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Table 5: The results of LR test using VaR(5%) forecasts

Historical RiskMetrics Var-Covar CCC-GARCH

EFV 0.036 0.066 0.028 0.066

uc 0.134 0.114 0.015 0.114

ind 0.155 0.572 0.055 0.894

cc 0.118 0.245 0.008 0.285

Copula-GARCH

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

EFV 0.104 0.110 0.094 0.092 0.100 0.088 0.090 0.094 0.092

uc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 0.464 0.394 0.820 0.897 0.996 0.612 0.548 0.820 0.897

cc 0.000 0.000 0.000 0.001 0.000 0.002 0.001 0.000 0.001

Copula-MSM

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

EFV 0.070 0.070 0.068 0.070 0.070 0.070 0.066 0.070 0.070

uc 0.051 0.051 0.077 0.051 0.051 0.051 0.114 0.051 0.051

ind 0.716 0.716 0.275 0.325 0.325 0.325 0.572 0.325 0.325

cc 0.140 0.140 0.116 0.092 0.092 0.092 0.245 0.092 0.092

Note: EFV denotes the ratio of VaR violations to the sample size (T = 500) observed for the portfolio returns. uc, ind
and cc denote the p-values related to the unconditional coverage, independence and conditional coverage test statistics,
respectively.

Table 6: The results of LR test using VaR(1%) forecasts

Historical RiskMetrics Var-Covar CCC-GARCH

EFV 0.006 0.030 0.012 0.028

uc 0.334 0.000 0.660 0.001

ind 0.009 0.073 0.001 0.055

cc 0.021 0.000 0.004 0.001

Copula-GARCH

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

EFV 0.076 0.080 0.060 0.058 0.074 0.074 0.064 0.060 0.058

uc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ind 0.946 0.899 0.878 0.802 0.869 0.613 0.969 0.878 0.802

cc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Copula-MSM

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

EFV 0.040 0.040 0.028 0.024 0.036 0.024 0.028 0.028 0.024

uc 0.000 0.000 0.001 0.008 0.000 0.008 0.001 0.001 0.008

ind 0.234 0.234 0.055 0.028 0.155 0.028 0.055 0.055 0.028

cc 0.000 0.000 0.001 0.003 0.000 0.003 0.001 0.001 0.003

Note: EFV denotes the ratio of VaR violations to the sample size (T = 500) observed for the portfolio returns. uc, ind
and cc denote the p-values related to the unconditional coverage, independence and conditional coverage test statistics,
respectively.
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Table 7: The results of GMM duration-based backtesting using VaR(5%)
forecasts

p-values Historical RiskMetrics Var-Covar CCC-GARCH

Juc(1) 0.173 0.107 0.008 0.111

Jcc(2) 0.279 0.183 0.016 0.195

Jcc(3) 0.164 0.233 0.012 0.278

Jcc(4) 0.101 0.244 0.017 0.342

Jind(2) 0.748 0.899 0.802 0.761

Jind(3) 0.790 0.474 0.491 0.874

Jind(4) 0.487 0.329 0.229 0.893

Copula-GARCH

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

Juc(1) 0.001 0.001 0.002 0.002 0.001 0.003 0.002 0.002 0.002

Jcc(2) 0.007 0.003 0.012 0.012 0.010 0.017 0.017 0.012 0.012

Jcc(3) 0.009 0.005 0.017 0.017 0.013 0.023 0.024 0.017 0.016

Jcc(4) 0.012 0.006 0.021 0.023 0.015 0.033 0.031 0.021 0.022

Jind(2) 0.657 0.751 0.271 0.210 0.437 0.620 0.154 0.259 0.210

Jind(3) 0.730 0.751 0.396 0.318 0.584 0.773 0.235 0.376 0.310

Jind(4) 0.609 0.638 0.496 0.415 0.687 0.890 0.318 0.484 0.406

Copula-MSM

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

Juc(1) 0.068 0.062 0.075 0.065 0.064 0.057 0.105 0.059 0.060

Jcc(2) 0.112 0.108 0.131 0.098 0.100 0.094 0.181 0.102 0.097

Jcc(3) 0.157 0.151 0.175 0.122 0.136 0.121 0.246 0.138 0.126

Jcc(4) 0.204 0.199 0.216 0.154 0.172 0.149 0.303 0.177 0.154

Jind(2) 0.981 0.978 0.843 0.722 0.843 0.729 0.980 0.842 0.724

Jind(3) 0.996 0.995 0.674 0.578 0.808 0.582 0.879 0.816 0.581

Jind(4) 0.973 0.973 0.699 0.655 0.886 0.646 0.874 0.890 0.653

Juc represents the unconditional coverage test statistic obtained for p = 1. Jcc(p) and Jind(p) denote the independence
and conditional coverage test statistics based on p moment conditions. The number of moments is fixed to 2,3,4. The
Table entries are p-values associated with the GMM duration based test. We note that the GMM duration based test is
constructed via moment conditions that are derived from the distribution of durations between consecutive value-at-risk
(VaR) violations. Under valid VaR forecasts the duration between two consecutive violations is geometric distributed
and the associated orthogonal polynomials are well-known in the literature as a special case of Meixner polynomials. We
have used the first 1135 portfolio return observations as in-sample and the remaining 500 observations as out-of-sample.
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Table 8: The results of GMM duration-based backtesting using VaR(1%)
forecasts

p-values Historical RiskMetrics Var-Covar CCC-GARCH

Juc(1) 0.510 0.001 0.402 0.000

Jcc(2) 0.016 0.003 0.137 0.005

Jcc(3) 0.007 0.007 0.033 0.011

Jcc(4) 0.006 0.006 0.012 0.012

Jind(2) 0.017 0.162 0.002 0.199

Jind(3) 0.010 0.378 0.001 0.424

Jind(4) 0.005 0.491 0.001 0.519

Copula-GARCH

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

Juc(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jcc(2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jcc(3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jcc(4) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Jind(2) 0.020 0.062 0.151 0.910 0.013 0.161 0.011 0.149 0.909

Jind(3) 0.094 0.305 0.297 0.920 0.049 0.359 0.023 0.295 0.922

Jind(4) 0.219 0.416 0.411 0.955 0.138 0.494 0.055 0.406 0.952

Copula-MSM

Normal Student Plackett Clayton rotClayton SJC Frank Gumbel rotGumbel

Juc(1) 0.000 0.000 0.001 0.003 0.000 0.003 0.000 0.001 0.002

Jcc(2) 0.000 0.000 0.004 0.011 0.000 0.010 0.004 0.004 0.009

Jcc(3) 0.000 0.000 0.007 0.018 0.001 0.016 0.008 0.008 0.017

Jcc(4) 0.000 0.000 0.007 0.018 0.000 0.015 0.007 0.008 0.015

Jind(2) 0.719 0.713 0.982 0.857 0.844 0.850 0.980 0.980 0.852

Jind(3) 0.836 0.834 0.847 0.186 0.876 0.177 0.851 0.848 0.179

Jind(4) 0.661 0.661 0.314 0.069 0.504 0.067 0.319 0.314 0.064

Juc represents the unconditional coverage test statistic obtained for p = 1. Jcc(p) and Jind(p) denote the independence
and conditional coverage test statistics based on p moment conditions. The number of moments is fixed to 2,3,4. The
Table entries are p-values associated with the GMM duration based test. We note that the GMM duration based test is
constructed via moment conditions that are derived from the distribution of durations between consecutive value-at-risk
(VaR) violations. Under valid VaR forecasts the duration between two consecutive violations is geometric distributed
and the associated orthogonal polynomials are well-known in the literature as a special case of Meixner polynomials. We
have used the first 1135 portfolio return observations as in-sample and the remaining 500 observations as out-of-sample.
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Table 9: SPA test results of models’ comparison

Basis Model VaRl(5%) S VaRl(5%) VaRl(1%) S VaRl(1%)

Hist 0.298 0.294 0.381 0.372

RiskMetrics 0.299 0.302 0.077 0.078

Covariance 0.000 0.000 0.552 0.549

CCC-GARCH 0.799 0.796 0.821 0.822

Normal-GARCH 0.001 0.001 0.000 0.000

Student-GARCH 0.001 0.001 0.000 0.000

Plackett-GARCH 0.000 0.000 0.002 0.001

Clayton-GARCH 0.000 0.000 0.001 0.001

rotClayton-GARCH 0.001 0.001 0.001 0.001

SJC-GARCH 0.000 0.000 0.000 0.000

Frank-GARCH 0.000 0.000 0.001 0.002

Gumbel-GARCH 0.000 0.000 0.001 0.001

rotGumbel-GARCH 0.000 0.000 0.002 0.002

Normal-MSM 0.349 0.333 0.018 0.019

Student-MSM 0.310 0.300 0.017 0.019

Plackett-MSM 0.641 0.581 0.079 0.084

Clayton-MSM 0.655 0.629 0.591 0.592

rotClayton-MSM 0.277 0.270 0.046 0.050

SJC-MSM 0.195 0.200 0.086 0.090

Frank-MSM 0.987 0.979 0.096 0.102

Gumbel-MSM 0.401 0.347 0.073 0.079

rotGumbel-MSM 0.129 0.125 0.077 0.080

Note: The numbers reported in the Table are the p-values of the SPA test of Hansen (2005) under the null that a basis
model cannot be outperformed by other competing models. The values in bold face represent the p-values that are smaller
than or equal to the 5% and 1% confidence level under a VaR-based loss function (cf. appendix). Our VaR-based loss
function is not differentiable and this may affect the SPA test results. To solve the problem we follow Granger (1999)
and use a smooth VaR-based loss function SVaRl(α) which is arbitrarily close to the non-smooth one. We have used the
first 1135 portfolio return observations as in-sample and the remaining 500 observations as out-of-sample.
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