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Abstract

Global solution methods for dynamic stochastic general equilibrium (DSGE) models are acurrate but compu-
tationally expensive. In particular computing conditional expectations for numerous points in the state-space
leads to significant complexity. In the present paper, I show how to remove the majority of calculations
required for the evaluation of conditional expectations. Therefore I replace the approximated conditional
expectation obtained by e.g. quadrature rules with an exact expectation. Further, similar to Judd et al.
(2011), the required integrals are evaluated at the initial stage of the algorithm. I adopt Chebyshev poly-
nomials as basis functions and provide a general framework. Subsequently, I adapt the technique to the
neoclassical model with recursive utility and labor choice.
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1. Introduction

Global solution methods for dynamic stochastic general equilibrium (DSGE) models are computationally
expensive and hard to implement. In contrast, local perturbation solutions are easily implemented and
require minor computational effort. Consequently, estimations and policy analysis, which require repeated
solutions of the model, favor local methods due to their superiority in computational time. But as Fernández-
Villaverde and Levintal (2016), Levintal (2016) and Branger et al. (2015) argue, the non-linearities in modern
models, induced by disasters, long-run-risks, adjustment costs, high-volatilities etc., lead to significant inac-
curacies for local perturbations. Whereas this carries over even to high-order perturbations, global solutions
are not prone to these errors. Consequently, as the accuracy of quantitative models is of highest importance,
accelerating global solution methods is a necessary field of research. Therefore note that a solution method
can be accelerated in two dimensions. On the one hand, technological acceleration, e.g. parallel computing
on GPU/CPU as in Aldrich et al. (2011), or using more machine-oriented programming languages accel-
erates computations. On the other hand, complexity reduction can significantly decrease computing time.
The present paper aims at the latter.
Complexity in the global solution of DSGE models arises in particular from the general equilibrium and the
occurring stochastics. Firstly, a general equilibrium requires the solution to satisfy a system of stochastic
difference equations globally over the state-space. As an exact solution is generally unknown, a collocation
type method solves the system of equations at a particular set of points of the state-space. Still, the required
size of this set grows rapidly with growing number of state variables. The resulting computational effort
can be reduced by using sparse grids, e.g. a Smolyak (1963) grid and corresponding approximations as in
Judd et al. (2014). Secondly, the stochastic components of the model require the calculation of (multiple)
conditional expectations at each point of the grid. Commonly these expected values are approximated using
Gauss-Hermite quadrature rules or a Tauchen (1986) approximation. Both of these techniques require the
evaluation of an integrand at several points in the state-space, constituting a bottleneck for the computa-
tion. In the present paper, I show how to remove this limitation by replacing the approximated expectation
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with an exact expectation over an approximated integrand, which is evaluated at the initial stage of the
algorithm. In this regard, the precomputation technique developed in Judd et al. (2011) is the point of
departure for the present paper. I adopt Chebyshev polynomials as basis functions and provide a general
framework. Subsequently, I adapt the technique to the neoclassical model with recursive utility and labor
choice.
The rest of the paper is as follows: Section 2 establishes the technique and provides a simple example. Sec-
tion 3 applies the developed method technique to the benchmark model. Subsequently to a short discussion
of the technique in Section 4, Section 5 concludes.

2. Technique

2.1. Notation

Let T (x) be a vector of functions, which stacks unidimensional Chebyshev basis functions of degree
j ∈ {2, ..., N} with

Tj(x) = 2xTj−1(x)− Tj−2(x),

T0(x) = 1 and T1(x) = x. Additionally, define the rescaling function

ϕ(x) = 2
x− x
x− x

− 1,

which maps values x from [x, x] into the domain of the Chebyshev polynomials, [−1, 1]. Note that for a
state variable si,t = si,t,A + si,t,B , we have

ϕi(si,A,t + si,B,t) = 2
(si,A,t + si,B,t)− si

si − si
− 1

= 2
si,A,t − si
si − si

− 1︸ ︷︷ ︸
=ϕi(si,A,t)=:Ai,t

+ 2
si,B,t
si − si︸ ︷︷ ︸
=:Bi,t

, (1)

for arbitrary si,t. Further, defining a coefficient vector b ∈ R|I|, the polynomial function

Ψ(st,b, I) =

(
d⊗
i=1

T (ϕi(si,t))

)
I

b

= ΦI(st)b

is the linear combination of products of basis functions in d state variables si,t. The indexing set I allows
choosing specific products of basis functions, depending on the choice of the constructed polynomial. For
example the tensor product of Chebyshev basis functions with maximal degree N in d dimensions requires
I = {1, 2, . . . , (N + 1)d}, whereas a complete polynomial or a Smolyak (1963) type approximation allows for
smaller sets.

Denoting predetermined/purely endogenous state variables sent and (partly) exogenous state variables
sext , the complete state vector can be partitioned to st = (sent , s

ex
t ), where sent = (s1,t, ..., sden,t) and sext =

(sden+1,t, ..., sd,t). Here predetermination of a variable xt+1 is understood as t measurability. By construction
the product of Chebyshev basis functions of degrees j = (j1, ..., jd) is the k-th element in vector ΦI(st),

Φk(st) =

den∏
i=1

Tji(ϕi(si,t))
d∏

i=1+den

Tji(ϕi(si,t)),

such that

k = 1 +

d∑
i=1

(N + 1)d−iji.
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2.2. Precomputation

Given the notation, the conditional expectation

EtΨ(st+1,b, I), (2)

is the weighted sum of conditional expectations of Φk(st) with k ∈ I. Thus calculating (2) can be partitioned
into calculating

EtΦk(st+1) =

den∏
i=1

Tji(ϕi(si,t+1))Et

d∏
i=1+den

Tji(ϕi(si,t+1)) (3)

for all k ∈ I and subsequently taking the b weighted sum. For the proceeding steps, I make the following
assumptions, which are close to the assumptions in Judd et al. (2011):

Assumption 1. Exogenous state variables sext are sums of a predetermined components sexA,t and a stochastic
components sexB,t.

Assumption 2. All stochastic components sexB,t are mutually independent and iid over time.

Assumption 3. Moments of sexB,t up to order N exist and are finite.

Section 4 further discusses the implications and the applicability of the assumptions.
Under Assumptions 1 and 2, using Ai,t+1 and Bi,t+1 as defined in (1), the second term in equation (3) can
be rewritten as

Et

d∏
i=1+den

Tji(ϕi(si,t+1)) = Et

d∏
i=1+den

Tji(Ai,t+1 + Bi,t+1)

= Et

d∏
i=1+den

(
Tji(Ai,t+1) +

ji∑
n=1

anfn(Ai,t+1,Bi,t+1)

)

=

d∏
i=1+den

(
Tji(Ai,t+1) +

ji∑
n=1

anEtfn(Ai,t+1,Bi,t+1)

)
(4)

where

fn(Ai,t+1,Bi,t+1) :=

n−1∑
k=0

(
n

k

)
Aki,t+1Bn−ki,t+1

and an are the coefficients in front of power n terms in Tji . Assumptions 2 and 3 allow to rewrite
Etfn(Ai,t+1,Bi,t+1) as f∗n(Ai,t+1) and yield

Et

d∏
i=1+den

Tji(ϕi(si,t+1)) =

d∏
i=1+den

(
Tji(Ai,t+1) +

ji∑
n=1

anf
∗
n(Ai,t+1)

)

=

d∏
i=1+den

Tji(ϕi(si,A,t+1)) + C∗ji(ϕi(si,A,t+1)),

where C∗ji contains all cross products and sA,t := (sent , sden+1,A,t, ..., sd,A,t). Consequently, the conditional
expectation (3) can be rewritten as

EtΦk(st+1) = Φk(si,A,t+1) + Θk(si,A,t+1), (5)
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where

Θk(si,A,t+1) =

den∏
i=1

Tji(ϕi(si,t+1))C∗ji(ϕi(si,A,t+1)).

Finally the conditional expectation in equation (2) is

EtΨ(st+1,b, I) = Ψ(sA,t+1,b, I)︸ ︷︷ ︸
:=ΦI(sA,t+1)b

+ Υ(sA,t+1,b, I)︸ ︷︷ ︸
:=ΘI(sA,t+1)b

where Υ captures all uncertainty.

2.3. Example

For illustration, I consider the stylized example of one endogenous and one exogenous state variable.
Given this setting,

Φk(st) = Tj1(ϕ1(s1,t))Tj2(ϕ(s2,t))

and

EtΦk(st+1) = Tj1(ϕ1(s1,t+1))EtTj2(ϕ2(s2,t+1)). (6)

Now, in order to follow up (4), consider the Chebyshev basis function of degree 2 and the corresponding
conditional expectation

T2(x) = 2x2 − 1,

EtT2(At+1 + Bt+1) = 2Et[(At+1 + Bt+1)2]− 1,

with

Et
[
(At+1 + Bt+1)2

]
= Et[(A2

t+1 + 2At+1Bt+1 + B2
t+1)]

= A2
t+1 + 2At+1EtBt+1 + EtB2

t+1.

Substitution and rearranging yields

EtT2(At+1 + Bt+1) = 2A2
t+1 − 1 + 2(2At+1EtBt+1 + EtB2

t+1)

= T2(At+1) + 2f∗2 (At+1),

where f∗2 (At+1) is determined by the exponents in T2. The binomial theorem yields the general form of
functions f∗n as

f∗n(At+1) =

n−1∑
k=0

(
n

k

)
Akt+1EtBn−kt+1 ,

which allows to calculate the conditional expectation over Chebyshev polynomials of degree n as

EtTj(At+1 + Bt+1) = Tj(At+1) +

j∑
n=1

anf
∗
n(At+1),

given the existence of all occuring moments of Bt+1. Using this result in (6) yields

EtΦk(st+1) = Φk(sA,t+1) + Θk(sA,t+1), (7)

with sA,t+1 = (sent+1, s
ex
A,t+1).
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3. Application

3.1. Model

The present section applies the developed method to the stochastic neoclassical model with recursive
preferences and labor choice. The representative agent maximizes her utility over the consumption bundle
c̃t, consisting of consumption ct and leisure 1 − lt. Production is of the Cobb-Douglas type with capital
stock kt, labor lt and an AR(1) specification of log-productivity zt. Prior to applying the precomputation
technique, the well-known system of equations has to be transformed as follows. The value function is

Vt =

(
(1− β)c̃

1−1/ψ
t + β

(
EtV

1−γ
t+1

) 1−1/ψ
1−γ

) 1
1−1/ψ

,

where defining

Pt := V 1−γ
t

yields the transformed value function as

Pt =
(

(1− β)c̃
1−1/ψ
t + β(EtPt+1)

1−1/ψ
1−γ

) 1−γ
1−1/ψ

. (8)

The corresponding Euler equation

c−1
t c̃

1−1/ψ
t (EtV

1−γ
t+1 )

1−1/θ
= βEt

[
c−1
t+1c̃

1−1/ψ
t+1 (V 1−γ

t+1 )
1−1/θ

rkt+1

]
is transformed by defining

Qt := c−1
t c̃

1−1/ψ
t (V 1−γ

t )
1−1/θ

rkt ,

and thus

Qt(EtPt+1)1−1/θ

P1−1/θ
t rkt

= βEtQt+1. (9)

Augmenting the transformed value function and Euler equation by the consumption-labor equilibrium

ct =
ν

1− ν
(1− α) exp(zt)k

α
t l

1−α
t (1− lt), (10)

the definitions of the consumption bundle and return on capital

c̃t = cνt (1− lt)1−ν , (11)

rkt = α exp(zt)k
α−1
t l1−α + (1− δ), (12)

the law of motions for the capital stock and log-productivity

kt+1 = (1− δ)kt + ztk
α
t l

1−α − ct, (13)

zt+1 = ρzt + εt+1 (14)

closes the model. Having parameterized the policy for labor lt = Ψ(st,bl, I), the transformed value function
Pt = Ψ(st,bp, I) and the integrand Qt = Ψ(st,bq, I), the coefficients bq are uniquely determined by

bq = ΦI(St)
−1(c−1

t c̃
1− 1

ψ

t Pt1−1/θrkt ),

Here St = (s1
t , ..., s

g
t )
′ is a matrix which stacks state vectors st, evaluated at a set of grid points and remaining

bold variables are vectors of variables evaluated at states St. Section 4 discusses this approach further.
At last, note that Assumptions 1 to 3 are met with sent = kt and sexA,t = ρat−1 with sexB,t = εt and εt ∼ N (0, σ).
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3.2. Solution

The solution to the model is determined by a policy function for leisure and the value function, which
jointly satisfy equations (8) and(9). For the transformed model, this requires determination of the coefficient
vectors bp and bl. Therefore I adopt a collocation point criterion and construct a rectangular grid using the
zeros of the N+1 degree Chebyshev polynomials or respectively the Smolyak (1963) zeros. The latter yields
a sparse grid and thus by using the respective Smolyak (1963) polynomial a possible curse of dimensionality
is taken account for.
As the global solution requires solving the system of equations on each node of the grid, the starting values
of bp and bl are of particular importance. I adopt the algorithm developed in Klein (2000), which yields
a solution to the linearized model by applying the generalized Schur decomposition. Using the obtained
starting values, the follow-up Newton-solver converges to the global solution in few iteration steps. In the
following example, the model is parameterized by choosing β = 0.99, δ = 0.025, γ = 5, ψ = 1.5, α = 0.33,
ν = 0.357, ρ = 0.95, σ =, while θ = (1− γ)/(1− (1/ψ)).
Having solved for the coefficient vectors bp and bl, the corresponding policies for Vt and lt are recovered
and used to simulate the model. Further they allow for the computation of Euler equation errors (EEE) as
introduced by Judd (1992). I apply a 10-node Gauss-Hermite quadrature rule and calculate the absolute
errors in log10 units. Consequently, a value of −2 is to be interpreted as a 1% error in consumption, a value
of −3 as a 0.1% error and so on. Table 1 shows the maximal and mean EEE over the grid for different
approximation schemes. Corresponding figures are provided in the Appendix.

Type max. Degree max(|EEE|) mean(|EEE|)
Tensor 3 -1.98 -2.50
Tensor 5 -2.80 -3.70
Tensor 12 -6.88 -7.58
Smolyak 5 -2.69 -3.47
Smolyak 9 -4.02 -5.05

Table 1: Euler equation Errors (EEE) for a 10-node Gauss-Hermite Quadrature rule on a rectangular grid for different Ten-
sor/Smolyak Polynomials

4. Discussion

The present section shortly discusses the implementation and application of the method. The method
is adaptable for additional state variables and thus generally applicable. For example adding predeter-
mined labor choice and a long run factor as in Croce (2014), gives sent = (kt, lt−1) and sext = (at, xt) with
sexA,t+1 = (µ + xt, ρxt) and sexB,t+1 = (εa,t+1, εx,t+1). Equivalently any model meeting the assumptions is
easily adopted for suiting definitions of the integrands. Parameterizing the integrand Qt is nothing new to
the literature and similar to Judd et al. (2011) or the parameterized expectations approach (PEA), see den
Haan and Marcet (1990) and Marcet and Lorenzoni (1998). Instead of using a regression step to determine
bq, I adopt Lagrange interpolation as in Judd et al. (2014). These authors also show that by adopting
Chebyshev basis functions, the matrix inverse of Φ(St)I is well behaved. Apart from parameterizing com-
plete integrands in the Euler equation, conditional expectation over the Value function are readily available,
providing a valuable advantage for recursive utilities of the Epstein and Zin (1989) type.
Precomputation constructs the conditional expectation prior to starting any iteration and thus adds a fixed
cost in time. Fortunately, the required functions for Θ are by-products of the construction of Φ and straight-
forward to implement e.g. using MATLAB’s symbolic toolbox. In order to assess the complexity reduction,
let d be the number of exogenous state variables, e the number of conditional expectations required, p the
number of iteration steps and m the number of Gauss-Hermite integration nodes. Assuming that the evalu-
ation of Ψ and Υ are comparable, pemd evaluations of integrands are required for the quadrature rule and
2pe for precomputation method at each grid point.
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Whereas Assumptions 1-3 vastly simplify necessary calculations, nevertheless they nest the majority of pro-
duction based asset pricing models. Assumption 1 represents the frequently used AR(1) specification for
e.g. log-productivity, where sexB,t is the stochastic innovation. This allows for a straightforward calculation
of the moments. Assumption 2 ensures that the moments of the stochastic components sexB,t are independent
of the specific grid point sexA,t. Still, if Assumption 2 does not hold, the precomputation technique can be
applied with minor modifications. Consider e.g. an extended model with stochastic volatility for the log
productivity with

zt = ρzt−1 + exp (σt)εt,

σt = σ̄(1− ρ) + ρσt−1 + ωt

and standard normally distributed error terms εt and ωt. The vector of exogenous state variables is the sum
of sexA,t = (ρat−1, σ̄(1− ρ) + ρσt−1) and sexB,t = (exp(σt)εt, ωt). In this case computing

Et

3∏
i=1+den

(
Tji(Ai,t+1) +

ji∑
n=1

anfn(Ai,t+1,Bi,t+1)

)

yields

Et

[(
Tj2(A2,t+1) +

j2∑
n=1

anfn(A2,t+1,B2,t+1)

)(
Tj3(A3,t+1) +

j3∑
n=1

anfn(A3,t+1,B3,t+1)

)]
= Tj2(A2,t+1)Tj3(A3,t+1) + EtC(A2,t+1,A3,t+1,B2,t+1,B3,t+1),

where the second term contains (cross) product terms and can be calculated numerically ex ante for a
sub-grid of dependent variables.

5. Conclusion

I propose a precompuation technique, allowing to compute conditional expectations in DSGE models
ex ante. The method is closely connected to Judd et al. (2011), but enhances their approach in several
dimension. First, I state closed form and easy implementable solutions for the expectations over Chebyshev
polynomials for any dimensions d. Second, I combine the precomputation technique with flexible polynomial
functions as the Smolyak (1963) polynomial, tensor products polynomials or complete polynomials. Third
and last, I show how the precomputation technique can be adopted to a framework with recursive prefer-
ences. The technique is adaptable for the vast majority of asset pricing models without imposing restrictive
assumptions and yields an advantage that is likely to increase in the complexity of the models of interest.
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Appendix

Figure 1: EEE for different solution types, complementary to Table 1
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