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Abstract

This note derives closed-form expressions for unconditional moments, cumulants and

polyspectra of order higher than two for linear and nonlinear (pruned) DSGE models.

The procedures are demonstrated by means of the Smets and Wouters (2007) model

(first-order approximation), the An and Schorfheide (2007) model (second-order approx-

imation) and the canonical neoclassical growth model (third-order approximation). Both

the Gaussian as well as Student’s t-distribution are considered as the underlying stochas-

tic process. Useful Matrix tools and computational aspects are also discussed.
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1. Introduction

Since a Gaussian process is completely characterized by its first two moments, most

linear DSGE models focus on Gaussian innovations for simplicity.1 If, however, we relax

linearity or use non-Gaussian innovations, it is natural to analyze whether we are able to

exploit information from higher-order moments for the calibration, estimation and identi-

fication of parameters. Researchers in mathematics, statistics and signal processing have

developed tools, called higher-order statistics (HOS), to solve detection, estimation and

identification problems when the noise source is non-Gaussian or we are faced with non-

linearities; however, applications in the macroeconometric literature are rather sparse.2

The basic tools of HOS are cumulants, which are defined as the coefficients in the Taylor

expansion of the log moment generating function in the time-domain; and polyspectra,

which are defined as Fourier transformations of the cumulants in the frequency-domain.

In this note, we derive closed-form expressions for unconditional third- and fourth-

order moments, cumulants and corresponding polyspectra for non-Gaussian or nonlinear

DSGE models. We limit ourselves to fourth-order statistics, since third-order cumulants

and the bispectrum capture nonlinearities (or non-Gaussianity) for a skewed process,

whereas the fourth-order cumulants and the trispectrum can be used in the case of a

non-Gaussian symmetric probability distribution. Regarding the approximation of non-

linear DSGE models we focus on the pruning scheme proposed by Kim et al. (2008)

and operationalized by Andreasen et al. (2014), since the pruned state-space (PSS from

now on) is a linear, stationary and ergodic state-space system.3 In the PSS, however,

Gaussian innovations do not imply Gaussian likelihood, leaving scope for higher-order

statistics to capture information from nonlinearities and non-Gaussianity. In the follow-

ing exposition we limit ourselves to Taylor approximations and pruning up to third-order,

since an extension beyond third-order is - apart from tedious notation - straightforward.

1Two notable exceptions are Curdia et al. (2014) and Chib & Ramamurthy (2014).
2For introductory literature and tutorials on HOS, see the textbooks of Brillinger (2001), Nikias &

Petropulu (1993), Priestley (1983) and the references therein.
3Pruning may seem an ad-hoc procedure, however, it can also be theoretically founded as a Taylor

expansion in the perturbation parameter (Lombardo & Uhlig, 2014) or on an infinite moving average

representation (Lan & Meyer-Gohde, 2013). Schmitt-Grohé & Uribe (2004) also implicitly use pruning

in their code to compute moments for a second-order approximation.
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Accordingly, we demonstrate our procedures by means of the Smets & Wouters

(2007) model for a first-order approximation, the An & Schorfheide (2007) model for

a second-order approximation and the canonical neoclassical growth model for a third-

order approximation. For all models we consider both the Gaussian as well as Student’s

t distribution as the underlying shock process and compare our theoretical results with

simulated higher-order moments. We focus particularly on skewness and excess kurtosis

in our simulations, since these are typical measures an applied researcher would like to

match in a calibration exercise. On the other hand auto- and cross-skewness as well as

kurtosis may contain valuable information in an estimation exercise. Our DYNARE code

is model-independent and can be found on the homepage of the author.

2. Higher-order statistics for linear time-invariant state-space systems

Consider the linear time-invariant state-space system

z̃t+1 = Az̃t +Bξt+1 (1)

ỹt+1 = Cz̃t +Dξt+1 (2)

with states zt, controls yt and stochastic innovations ξt. A tilde denotes deviations from

the unconditional mean, e.g. ỹt := yt −E(yt). For the sake of notation, we assume that

all control variables are observable. The vector of innovations ξt has E(ξt) = 0 and finite

covariance matrix E(ξtξ
′
t) =: Σξ. Furthermore, ξt is kth-order white noise with finite

higher-order moments, which implies yt is a kth-order stationary process.4

Formally, the kth-order (k=2,3,4) cumulants of the kth-order stationary, mean zero

vector process z̃t (t1, t2, t3 ≥ 0) are given by the nkz vectors Ck,z as

C2,z(t1) := E[z̃0 ⊗ z̃t1 ],

C3,z(t1, t2) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ],

C4,z(t1, t2, t3) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ⊗ z̃t3 ]− C2,z(t1)⊗ C2,z(t2 − t3)

− P ′nz (C2,z(t2)⊗ C2,z(t3 − t1))− Pnz (C2,z(t3)⊗ C2,z(t1 − t2)) ,

4This is basically an extension of the usual covariance stationarity assumption. See also Priestley

(1983, p. 105) for a formal definition of stationary up to order k.
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where Pnz = Inz ⊗ Un2
z×nz and Un2

z×nz is a (n3z × n3z) permutation matrix with unity

entries in elements [(i − 1)nz + j, (j − 1)n2z], i = 1, . . . , n2
z and j = 1, . . . , nz, and ze-

ros else. Here, we adopt the compact notation of Swami & Mendel (1990) and store

all product-moments of a mean zero vector-valued process in a vector using Kronecker

products. For example, the second moments of z̃t can either be stored in a nz×nz matrix

E(z̃t · z̃′t) =: Σz or in the n2z×1 vector E(z̃t⊗ z̃t) = vec(Σz); this notion naturally carries

over to higher orders. There is an intimate relationship between moments and cumu-

lants: If two probability distributions have identical moments, they will have identical

cumulants as well. In particular, the second cumulant is equal to the autocovariance ma-

trix and the third cumulant to the autocoskewness matrix. The fourth-order cumulant,

however, is the fourth-order product-moment (autocokurtosis matrix) less permutations

of second-order moments. In general, for cumulants higher than three, we need to know

the lower-order moments or cumulants. Nevertheless, using cumulants is preferable for

several reasons. For instance, all cumulants of a Gaussian process of order three and

above are zero, whereas the same applies only to odd product-moments. Furthermore,

the cumulant of two statistically independent random processes equals the sum of the

cumulants of the individual processes (which is not true for higher-order moments). And

lastly, cumulants of a white noise sequence, such as ξt, are Kronecker delta functions, so

that their polyspectra are flat (Mendel, 1991).5

Assuming that Ck,z(t1, . . . , tk−1) is absolutely summable, the kth-order polyspectrum

Sk,z is defined as the (k-1)-dimensional Fourier transform of the kth-order cumulant

Sk,z(ω1, . . . , ωk−1) :=
1

(2π)k−1

∞∑
t1=−∞

· · ·
∞∑

tk−1=−∞
Ck,z(t1, . . . , tk−1) · exp{−i

k−1∑
j=1

ωjtj},

with ωj ∈ [−π;π] and imaginary i (see Swami et al. (1994) for further details). The

second-, third- and fourth-order spectra are called the power spectrum, bispectrum and

trispectrum, respectively. The power spectrum corresponds to the well-studied spectral

density, which is a decomposition of the autocorrelation structure of the underlying pro-

cess (Wiener-Khinchin theorem). The bispectrum can be viewed as a decomposition of

5For a mathematical discussion of using cumulants instead of moments in terms of ergodicity and

proper functions, see Brillinger (1965).
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the third moments (auto- and cross-skewness) over frequency and is useful for consider-

ing systems with asymmetric nonlinearities. In studying symmetric nonlinearities, the

trispectrum is a more powerful tool, as it represents a decomposition of (auto- and cross-)

kurtosis over frequency. Furthermore, both the bi- and trispectrum will be equal to zero

for a Gaussian process, such that departures from Gaussianity will be reflected in these

higher-order spectra.

Standard results from VAR(1) systems and insights from HOS can be used, regarding

the computation of unconditional cumulants and polyspectra. The kth-order cumulants

of ξt are

Ck,ξ(t1, . . . , tk−1) =

Γk,ξ if t1 = · · · = tk−1 = 0,

0 otherwise,

and corresponding polyspectra Sk,ξ(ω1, . . . , ωk−1) = (2π)1−kΓk,ξ are flat. Letting [⊗kj=1X(j)] =

X(1) ⊗X(2) ⊗ · · · ⊗X(k) for objects X(j), Swami & Mendel (1990) show that the cu-

mulants of the state vector z̃t

Ck,z(t1, . . . , tk−1) = [⊗k−1j=0A
tj ] · Ck,z(0, . . . , 0)

are given in terms of their zero-lag cumulants

Ck,z(0, . . . , 0) = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ

which can be computed efficiently using iterative algorithms for generalized Sylvester

equations (see Appendix A). Furthermore, there is considerable symmetry (by using ap-

propriate permutation matrices); in particular, all second-order cumulants can be com-

puted from t1 > 0, all third-order cumulants from t1 ≥ t2 > 0 and all fourth-order

cumulants from t1 ≥ t2 ≥ t3 > 0. Since there is a linear relationship between ỹt and

z̃t−1 in (2), we obtain closed-form expressions for the kth-order cumulants of observables.

That is, for tj > 0

Ck,y(0, . . . , 0) = [⊗kj=1C]Ck,z(0, . . . , 0) + [⊗kj=1D]Γk,ξ, (3)

Ck,y(t1, . . . , tk−1) = [⊗kj=1C]Ck,z(t1, . . . , tk−1). (4)

Regarding the computation of polyspectra, consider the vector moving average represen-

tation (VMA) of z̃t =
∑∞
j=0A

jBξt−j . Using equation (2) and lag operator L, we obtain
4



the VMA for our controls

ỹt =

∞∑
j=0

CAjBξt−j−1 +Dξt = Hξ(L
−1)ξt

with transfer function Hξ(z) = D+C (zInz −A)
−1
B for z ∈ C. Setting zj = e−iωj , with

imaginary i and ωj ∈ [−π;π], we obtain the Fourier transformations of the cumulants of

ỹt, i.e. the power spectrum S2,y, bispectrum S3,y and trispectrum S4,y:

S2,y(ω1) = (2π)−1
[
H(z−11 )⊗H(z1)

]
Γ2,ξ, (5)

S3,y(ω1, ω2) = (2π)−2
[
H(z−11 · z

−1
2 )⊗H(z1)⊗H(z2)

]
Γ3,ξ, (6)

S4,y(ω1, ω2, ω3) = (2π)−3
[
H(z−11 · z

−1
2 · z

−1
3 )⊗H(z1)⊗H(z2)⊗H(z3)

]
Γ4,ξ. (7)

3. State-space representation of linear and nonlinear DSGE models

Let Et be the expectation operator conditional on information available at time t, then

Etf (ut+1, xt+1, yt+1, ut, xt, yt, σ) = 0 is called the general DSGE model with states xt,

controls yt, stochastic innovations ut, and perturbation parameter σ, which can be cast

into a nonlinear first-order system of expectational difference equations f . The solution

of such rational expectation models is characterized by so-called policy-functions, g and

h, that solve (at least approximately) the system of equations f .

xt+1 = h(xt, ut+1, σ) (8)

yt+1 = g(xt, ut+1, σ) (9)

For the vector of innovations ut we assume E(ut) = 0 and finite covariance matrix

E(utu
′
t) =: Σu. Furthermore, ut is nth-order white noise with finite higher-order mo-

ments, where n depends on the order of approximation.6 Apart from the existence of

moments and white noise property, we do not need to impose any distributional assump-

tions on ut.
7

6Because we focus on first four cumulants of observables in the PSS, we require at least finite eighth

moments for a second-order approximation and finite twelfth moments for a third-order approximation.

In other words, ut is at least an eighth- or twelfth-order white noise process, which implies yt being

stationary of order four.
7Our DYNARE toolbox can handle both the Gaussian as well as Student’s t-distribution as the

underlying shock process, provided the moments exist.
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The approximations of the policy functions are a straightforward application of Tay-

lor series expansions in the state variables. We use perturbation techniques to solve the

model around the nonstochastic steady state given by x̄ = h(x̄, 0, 0) and ȳ = g(x̄, 0, 0).

Various simulation studies show, however, that Taylor approximations of an order higher

than one may generate explosive time paths, even though the first-order approximation

is stable. This is due to artificial fixed points of the approximation, see Kim et al. (2008,

p. 3408) for a univariate example. Thus, the model may be neither stationary nor imply

an ergodic probability distribution, both of which assumptions are essential for calibra-

tion, estimation and identification. Thus, we use the pruning scheme, in which one omits

terms from the policy functions that have higher-order effects than the approximation

order. That is, we decompose the state vector into first-order (x̂ft ), second-order (x̂st )

and third-order (x̂rdt ) effects, (x̂t = x̂ft + x̂st + x̂rdt ), and set up the law of motions for

these variables, preserving only effects up to first-, second, and third-order respectively

(see the technical appendix of Andreasen et al. (2014) for details.):

x̂ft+1 = hxx̂
f
t + huut+1 (10)

x̂st+1 = hxx̂
s
t +

1

2

[
Hxx

(
x̂ft ⊗ x̂

f
t

)
+ 2Hxu

(
x̂ft ⊗ ut+1

)
+Huu (ut+1 ⊗ ut+1) + hσσσ

2
]

(11)

x̂rdt+1 = hxx̂
rd
t +Hxx

(
x̂ft ⊗ x̂st

)
+Hxu (x̂st ⊗ ut+1) +

3

6
Hxσσx̂

f
t +

3

6
Huσσut+1

+
1

6
Hxxx

(
x̂ft ⊗ x̂

f
t ⊗ x̂

f
t

)
+

1

6
Huuu (ut+1 ⊗ ut+1 ⊗ ut+1)

+
3

6
Hxxu

(
x̂ft ⊗ x̂

f
t ⊗ ut+1

)
+

3

6
Hxuu

(
x̂ft ⊗ ut+1 ⊗ ut+1

) (12)

A hat denotes deviations from steady-state, e.g. ŷt = yt − ȳ. Note, that there are

no higher-order effects in ut+1. The law of motions for the controls can be derived

analogously.

Proposition 1 (Pruned state-space). Given an extended state vector zt and an extended

vector of innovations ξt, the pruned solution of a DSGE model can be rewritten as a linear

time-invariant state-space system:

zt+1 = c+Azt +Bξt+1 (13)

yt+1 = ȳ + d+ Czt +Dξt+1 (14)
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Proof. See Andreasen et al. (2014) and the online appendix for the exact expressions

depending on the order of approximation.

It can be shown that ξt is zero mean white noise with finite moments. However, for

higher-order approximations ξt is non-Gaussian, even if the underlying process ut is nor-

mally distributed, therefore leaving scope for higher-order moments to contain additional

information.8 Moreover, if the first-order approximation is stable, i.e. all Eigenvalues

of hx have modulus less than one, the pruned state-space is then also stable. In other

words, all higher-order terms are unique and all Eigenvalues of A have modulus less than

one. The mean of the extended state vector is equal to E(zt) = (Inz−A)−1c. Since there

is a linear relationship between yt and zt−1 in (14), we obtain E(yt) = ȳ + CE(zt) + d.

After subtracting the mean, we are therefore able to use the expressions of section 2 to

compute higher-order cumulants and polyspectra.

4. Monte-Carlo analysis

In this section we demonstrate our formulas by a Monte-Carlo analysis using three

well-known DSGE models: Smets & Wouters (2007) for a first-order approximation (see

Table 1), An & Schorfheide (2007) for a second-order approximation (see Table 2) and

the neoclassical growth model as in Schmitt-Grohé & Uribe (2004) for a third-order

approximation (see Table 3). It is well known that simulating higher-order moments

one requires a large sample size as well as many simulation runs, since one deals with

outliers taken to the powers of three and above.9 Therefore, for each model, we sim-

ulate 1000 trajectories of the PSS with 10000 data points each (after discarding 1000

8Regarding the computation of Γk,ξ, see the online appendix. The idea is, that Γk,ξ can be partitioned

into several submatrices which can be computed symbolically element-by-element, and contain many

duplicate entries. For instance, note that E[ξt ⊗ ξt ⊗ ξt] is of dimension n3
ξ , but the number of distinct

elements is nξ(nξ + 1)(nξ + 2)/6, because ξi,tξj,tξk,t = ξj,tξi,tξk,t = ξi,tξk,tξj,t and so forth. We can

use special matrix algebra analogous to the duplication matrix, called triplication and quadruplication

matrix (Meijer, 2005), to ease the computations for higher-order product-moments of ξt.
9Bai & Ng (2005) derive sampling distributions for the coefficients of skewness and kurtosis for serially

correlated data. They also assume stationarity up to eighth order and show in a simulation exercise of

an AR(1) process that test statistics for skewness have acceptable finite sample size and power, whereas

for kurtosis the size distortions are tremendous. See also Bao (2013) on finite sample biases.

7



points) and using antithetic shocks.10 We use the original parametrization of the mod-

els, however, we impose both the Gaussian as well as Student’s t distribution as the

underlying shock process. We then compute the sample variance, skewness and excess

kurtosis of the stochastic innovations and observables of each trajectory and average over

all Monte-Carlo runs. Lastly, we compare these to their theoretical counterparts using

the formulas derived in this paper.11 Tables 1 to 3 summarize the results. For a first-

order approximation the empirical variance, skewness and excess kurtosis are very close

to their theoretical values no matter which distribution is imposed on the shocks. In

higher-order approximations the discrepancies in the skewness and in particular excess

kurtosis are evident: matching higher-order moments in simulation studies is hard. This

is already evident in the statistics of the underlying stochastic innovations which are

directly drawn from a random number generator. Increasing the number of Monte Carlo

runs as well as sample size would on the one hand increase the precision but on the other

hand also the computational time. For an applied researcher who uses a try-and-error

approach to match third-order or fourth-order characteristics of an observable variable

in a calibration exercise this is unfeasible. Hence, we conclude that our expressions are

a convenient and fast way to compute higher-order statistics for linear and nonlinear

(pruned) DSGE models.

5. Conclusion

Whenever we are confronted with nonlinearities or non-Gaussian stochastic innova-

tions, it is natural to focus on higher-order moments for the calibration and estimation

of parameters. The contribution of this note is twofold. First, we derive expressions for

unconditional moments, cumulants and polyspectra for linear and nonlinear (pruned)

DSGE models. Second, we provide a DYNARE toolbox which computes higher-order

10In the code one can change all settings regarding the Monte-Carlo framework in a graphical user-

interface, i.e. number of trajectories, sample size, burn-in phase and use of antithetic shocks or not.
11Note that the second-order zero-lag cumulant of yt is equal to the covariance matrix. Skewness can

either be computed via standardized product moments or via the ratio of the third zero-lag cumulant

and the 1.5th power of the second zero-lag cumulant. Furthermore, excess kurtosis is the fourth zero-lag

cumulant normalized by the square of the second-order cumulant.
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statistics for linear and nonlinear (pruned) DSGE models. Since higher-order cumulants

and polyspectra measure the departure from Gaussianity, these expressions and the code

can be used to gain additional information from higher-order statistics. For instance,

Mutschler (2015) shows that this approach imposes additional restrictions, which can be

used to identify parameters that are unidentified in a Gaussian first-order approximation.

Appendix A. Using generalized Sylvester equations for cumulants

The zero-lag cumulants (k=2,3,4)

Ck,z = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ

require the inversion of the big matrix
(
Inkz − [⊗kj=1A]

)
. Since Ck,z and Γk,ξ are vectors,

we can use properties of the Kronecker-product and rewrite the equations to

[ C2,z
nz×nz

] = A[ C2,z
nz×nz

]A′ +B[ Γ2,ξ
nξ×nξ

]B′,

[ C3,z
n2
z×nz

] = (A⊗A)[ C3,z
n2
z×nz

]A′ + (B ⊗B)[ Γ3,ξ
n2
ξ×nξ

]B′,

[ C4,z
n2
z×n2

z

] = (A⊗A)[ C4,z
n2
z×n2

z

](A⊗A)′ + (B ⊗B)[ Γ4,ξ
n2
ξ×n

2
ξ

](B ⊗B)′,

where [
n×m

] reshapes a n ·m vector into a n×m matrix. In other words, we reduce the

inversion problem to a generalized Sylvester equation, which can be efficiently solved.
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Table A.1: Smets and Wouters (2007): First-Order State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student-t Gaussian Student-t Gaussian Student-t

shocks (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T)

ea 0.21 0.21 0.27 0.27 -0.00 0 0.00 0 -0.00 0 0.99 1

eb 3.43 3.43 4.28 4.28 -0.00 0 -0.00 0 -0.00 0 1.02 1

eg 0.37 0.37 0.46 0.46 -0.00 0 -0.00 0 -0.00 0 0.98 1

eqs 0.36 0.36 0.45 0.45 -0.00 0 0.00 0 -0.00 0 0.99 1

em 0.06 0.06 0.07 0.07 -0.00 0 0.00 0 0.00 0 0.98 1

epinf 0.02 0.02 0.03 0.03 -0.00 0 0.00 0 0.00 0 0.99 1

ew 0.04 0.04 0.05 0.05 -0.00 0 0.00 0 0.00 0 1.00 1

observables (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T)

labobs 159.47 159.36 199.67 199.20 0.00 0 0.00 0 -0.01 0 0.11 0.13

robs 17.42 17.41 21.77 21.76 0.00 0 -0.00 0 -0.01 0 0.14 0.15

pinfobs 3.03 3.03 3.79 3.79 0.00 0 -0.00 0 0.00 0 0.09 0.11

dy 47.90 47.88 59.85 59.85 0.00 0 -0.00 0 0.00 0 0.68 0.67

dc 55.95 55.93 69.91 69.91 0.00 0 -0.00 0 0.00 0 0.69 0.68

dinve 50.95 50.93 63.66 63.66 0.00 0 -0.00 0 0.00 0 0.61 0.60

dw 0.59 0.59 0.73 0.73 0.00 0 -0.00 0 0.00 0 0.51 0.52

Simulated (S) and theoretical (T) statistics for stochastic innovations and observables.

Table A.2: An and Schorfheide (2007): Second-Order Pruned State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student-t Gaussian Student-t Gaussian Student-t

shocks (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T)

eR 0.00 0.00 0.00 0.00 0.00 0 0.00 0 -0.00 0 0.54 0.55

eg 0.00 0.00 0.00 0.00 -0.00 0 0.00 0 -0.00 0 0.55 0.55

ez 0.00 0.00 0.00 0.00 0.00 0 0.00 0 0.00 0 0.54 0.55

observables (S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T)

YGR 1.24 1.24 1.44 1.44 0.29 0.15 0.36 0.22 0.18 0.14 0.66 0.59

INFL 8.00 8.01 9.24 9.24 0.10 0.03 0.12 0.04 0.01 0.01 0.17 0.16

INT 10.88 10.89 12.56 12.57 0.08 0.01 0.09 0.01 -0.00 0.00 0.04 0.04

Simulated (S) and theoretical (T) statistics for observable variables.

Table A.3: Neoclassical Growth Model: Third-Order Pruned State Space System

VARIANCE SKEWNESS EXCESS KURTOSIS

Gaussian Student-t Gaussian Student-t Gaussian Student-t

(S) (T) (S) (T) (S) (T) (S) (T) (S) (T) (S) (T)

ea 1.00 1 1.15 1.15 -0.00 0 0.00 0 0.00 0 0.54 0.55

c 0.70 0.71 0.81 0.82 -0.12 -0.17 -0.17 -0.23 0.02 0.06 0.43 0.55

Simulated (S) and theoretical (T) statistics for stochastic innovation ea and observable variable c.
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