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Abstract

In case of herding, investors follow each other, prices move together more than they
normally do, and the cross-sectional dispersion of returns decreases. Chang, Cheng,
and Khorana (2000) suggest to test for herding by regressing the cross-sectional
absolute deviation on the absolute and squared excess market return. They argue
that there is evidence for herding in case of large market movements when the
coefficient of the squared excess market return is significantly smaller than zero. We
show that the true coefficient of the squared excess market return is positive under
the null hypothesis of no herding. The test of Chang, Cheng and Khorana is thus
biased against finding evidence for herding. We find that this bias matters. For the
S&P 500, the test of Chang, Cheng and Khorana signals that there is no herding
over the period from 2008 to 2013, while the modified test based on the correct null
hypothesis provides clear evidence for herding.
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1 Introduction

In case of herd behaviour individual investors suppress their own beliefs and base their

investment decision on the collective actions of the market. As a result, herd behaviour

leads a group of investors to move in the same direction, pushing stock prices further away

from their economic fundamentals, causing momentum and excess volatility (Bikhchan-

dani, Hirshleifer, and Welch (1992), Nofsinger and Sias (1999)).1 In their classical study

Christie and Huang (1995) put forward the cross-sectional standard deviation of stock

returns to measure the presence of herd behaviour among investors. Christie and Huang’s

empirical approach relies on conflicting predictions of rational asset pricing models and

herd behaviour during periods of market stress. While rational asset pricing models pre-

dict an increase in the level of dispersion, herd behaviour translates into a reduced level

of dispersion of individual stock returns around the market. To differentiate empirically

between the two hypotheses Christie and Huang isolate the level of dispersion into the

lower and upper tail of the returns distribution and test whether these differ from the

average level of dispersion.

In a follow up paper Chang, Cheng, and Khorana (2000) argue that under the assumption

of rational asset pricing the dispersion measure is linear and strictly monotonically in-

creasing in the expected value of the absolute market return. By contrast, herd behaviour

is captured by a function of the dispersion measure that is either non-linear decreasing or

reaches a maximum at a certain threshold value of the expected absolute market return

and declining thereafter. To test for herd behaviour the cross-sectional absolute deviation

of returns is regressed on a constant, the absolute market return and its squared value.

A negative parameter on the squared value of market return is an indication of herd be-

haviour, since it reflects that in periods of market stress the return dispersions decline.

The null hypothesis of no herding refers to a coefficient of zero.

While the two methods are similar in spirit, the empirical literature on herd behaviour

relies mostly on the regression approach suggested by Chang, Cheng, and Khorana (2000).

Their own empirical findings support an increased tendency to herd in South Korea and

Taiwan, partial evidence of herding in Japan, but reveal no evidence for herd behaviour in

the US and Hong Kong. Tan, Chiang, Mason, and Nelling (2008) find herding in Chinese A

and B stocks. Furthermore, herding occurs under both rising and falling market conditions

1This type of herding refers to intentional herding. In contrast, unintentional herding is mainly driven

by fundamentals. If investors receive correlated private information, share a similar educational back-

ground and have equivalent analytical skills, they make similar investment decisions (Hirshleifer, Subrah-

manyam, and Titman (1994)).
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and is especially present in A-share markets that are dominated by domestic individual

investors. Analysing the Polish stock market Bohl, Gebka, and Goodfellow (2009) highlight

differences in trading patterns between individual and institutional investors. While the

former engage in herding, particularly during markets downturns, the latter are unlikely

to be driven by herd behaviour.

The papers cited above deal with herd behaviour within a given stock market. Chiang

and Zheng (2010) take into account potential international linkages by investigating the

impact of the US market on herding in 17 other stock markets around the world. Their

evidence is in favour of the existence of herding in advanced stock markets except the

US and in Asian markets, but not in Latin American markets. Moreover, stock market

dispersions in the US play a significant role in explaining herd behaviour in non-US stock

markets. More recently, Chiang, Li, Tan, and Nelling (2013) examine herding activity

in ten Pacific-Basin markets and the US stock market. From the methodological point

of view they apply Chang, Chen and Khorana’s constant coefficient model as well as a

time-varying approach by using a Kalman filter based model to estimate dynamic herd

behaviour. The evidence for the constant regression model is in favour of herding behaviour

in each market including the US one. Dynamic herding activities can be observed in each

market except the US.

The available evidence allows us to draw at least three conclusions. First, herd behaviour

is often found in emerging markets and to a lesser extent in developed stock markets

although the evidence is mixed. Second, herding is more pronounced among individual

investors compared to institutions. Third and more important for our purpose, the ap-

proach by Chang, Cheng, and Khorana (2000) is mainly applied without questioning its

statistical properties. In this paper, we challenge their test approach and show that the

coefficient of the null hypothesis of no herding is positive, but not zero as assumed in the

literature. Consequently, the case of no herd behaviour is too often accepted in studies

using Chang, Chen and Khorana’s approach.

The paper proceeds as follows. Section 2 investigates the statistical properties of the

dispersion measures used in the literature (i.e. the cross-sectional absolute deviation and

the cross-sectional standard deviation), and then outlines the test approach. Section 3

presents an empirical example to demonstrate that the conventional testing approach is

prone to overlook herding. Section 4 concludes.
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2 Herding and Cross-Sectional Deviation of Returns

2.1 Tests for Herding Based on the Cross-Sectional Deviation

When there is herding, investors move together more than during normal times. As a

consequence, prices move more in line with each other and the market than they normally

do, and the cross-sectional deviation of returns drops below the level it would have without

herding. Analogously, anti-herding describes a situation in which returns move less in line

with the market than they normally do. The cross-sectional deviation of returns is then

above its normal level.

Based on this argument, Christie and Huang (1995) and Chang, Cheng, and Khorana

(2000) suggest to test for herding by comparing the cross-sectional dispersion of returns

in situations in which herding is supposed to occur to the level it should have in a rational

asset pricing model without herding. Too small a deviation of returns is interpreted as

herding, while too large a dispersion is seen as evidence for anti-herding.

Both papers focus on periods of large market movements, which are particulary prone for

herding. They test whether the cross-sectional deviation of returns is lower than predicted

by a rational asset pricing model if there are large upward or downward movements of

the market. Extensions of this basic approach also test for herding conditional on, e.g.,

high or low volatility of the market, high or low trading volume, or for herding triggered

by US returns.

The cross-sectional deviation of returns can be measured by the cross-sectional standard

deviation or by the cross-sectional absolute deviation. The cross-sectional standard devi-

ation of returns at time t is

CSSDt =

(
1

N

N∑
i=1

(Rit −Rmt)
2

)0.5

,

where Rit is the return on asset i and Rmt is the return on the market. The cross-sectional

absolute deviation of returns at time t is

CSADt =
1

N

N∑
i=1

|Rit −Rmt| .

It is less sensitive to outliers than CSSD, which is one reason why Chang, Cheng, and

Khorana (2000) advocate the use of CSAD over CSSD.

Christie and Huang (1995) test whether the cross-sectional deviation is larger for ex-

treme market movements than during normal times. They regress CSSD (or CSAD) on
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dummies for extreme returns, i.e. they estimate

CSADt = β0 + βLD
L
t + βUD

U
t + vt

or

CSSDt = β0 + βLD
L
t + βUD

U
t + vt,

where DL (DU) equals one if the return is in the lower (upper) α-quantile of the distri-

bution, with typical values of α = 0.01, 0.02, 0.05. They argue that there is evidence for

herding conditional on large downward (upward) movements of the market if βL (βU) is

significantly negative.

As Chang, Cheng, and Khorana (2000) point out, this test is overly restrictive. Stocks

differ in their sensitivities with respect to the market. They thus react differently to a given

market return, and the cross-sectional deviation of betas translates into a cross-sectional

deviation of returns. The larger the return on the market, the larger this induced cross-

sectional deviation. Hence, the true value of βL and βU under the null hypothesis of no

herding is not zero, but equal to some positive number. A test that is based on a true

value of zero is biased against finding evidence for herding.

To take the impact of the market return on the cross-sectional deviation into account,

Chang, Cheng, and Khorana (2000) suggest to regress CSAD (or CSSD) on the absolute

and squared excess market return

CSADt = γ0 + γ1|Rmt −Rft|+ γ2(Rmt −Rft)
2 + vt (1)

or

CSSDt = γ0 + γ1|Rmt −Rft|+ γ2(Rmt −Rft)
2 + vt. (2)

As argued above, the cross-sectional deviation of returns is increasing ing the absolute

excess market return. The linear part of this dependence is picked up by the (positive)

coefficient γ1, while the coefficient γ2 picks up the non-linear part. Chang, Cheng, and

Khorana (2000) analyze γ2 for CSAD and argue that its true value under the null hy-

pothesis of no herding is equal to zero.

Following this argument, the resulting test for herding is based on the coefficient γ2

in Equation (1). If γ2 is negative, the cross-sectional deviation of returns increases less

than linearly (or even decreases) in the market return when the latter becomes large

in absolute terms. This is interpreted as evidence for herding in case of large market

movements. Analogously, a positive value of γ2 is interpreted as anti-herding for large

market movements.
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As we show in the following, this test is again biased against finding evidence for herding.

Under the null hypotheses of no herding, the true value of γ2 is not given by zero, but

equal to some positive number γ02 > 0. If the estimated γ̂2 is significantly smaller than

γ02 , but not significantly smaller than zero, the test wrongly concludes that there is no

evidence for herding. Analogously, if the estimated γ̂2 is significantly larger than zero,

but not significantly larger than γ02 , the test wrongly signals that there is anti-herding.

Put together, the test is biased against finding evidence for herding and towards finding

evidence for anti-herding.

2.2 Cross-Sectional Absolute Deviation if There is No Herding

To implement an unbiased test of herding, we need to know the true values of γ1 and

γ2 under the null hypothesis of no herding. To get an idea about these true values, in

particular about the sign of the “herding parameter” γ2, we now make some assumptions

on the true data-generating process under H0. Following Chang, Cheng, and Khorana

(2000) we assume that the return Rit on stock i is described by the standard capital asset

pricing model (CAPM)

Rit = Rft + βi(Rmt −Rft) + uit, (3)

where Rft is the risk-free rate, and Rmt is the return on the market. The idiosyncratic

component uit has mean zero and is independent of the excess market return Rmt −Rft.

The deviation of the return on asset i from the market return is

Rit −Rmt = (βi − 1)(Rmt −Rft) + uit, (4)

and the cross-sectional absolute deviation is

CSADt =
1

N

N∑
i=1

∣∣(βi − 1)(Rmt −Rft) + uit
∣∣. (5)

To analyze the dependence of CSAD on the absolute excess market return |Rmt −Rft|,
we ignore the idiosyncratic components uit for a moment. If uit ≡ 0 for i = 1, . . . , N , the

individual absolute deviation |Rit −Rmt| is a linear function of |Rmt −Rft|. The cross-

sectional absolute deviation becomes

CSADt|{uit=0,i=1,...,N} =

(
1

N

N∑
i=1

|βi − 1|

)
· |Rmt −Rft| . (6)

In this case, CSAD is indeed a linear function of the absolute excess market return. The

true value of γ1 in regression (1) is equal to the cross-sectional absolute deviation of beta

from one, and the true value of γ2 is equal to zero.
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The simple linear relation in Equation (6) breaks down if the idiosyncratic components

are no longer identically equal to zero. For a non-vanishing idiosyncratic component uit,

the absolute deviation from the market return

|Rit −Rmt| = |(βi − 1)(Rmt −Rft) + uit| (7)

is no longer a linear function of the absolute excess market return, which implies that

CSAD is neither. To analyze the dependence of CSAD on the absolute excess market

return in this general case, we look at the conditional expectation E (CSADt|Rmt −Rft)

given the excess market return. For the conditional expectation of the individual absolute

deviation |Rit −Rmt|, the fact that taking the absolute value is a convex function implies

by Jensen’s inequality that

E (|Rit −Rmt| |Rmt −Rft) ≥ |(βi − 1)(Rmt −Rft)| ,

where the equality sign holds for uit ≡ 0. A non-vanishing uit shifts the expectation up-

wards, and this upward shift is the larger the smaller the absolute excess market return,

i.e. the more the idiosyncratic component matters in relative terms. A large upward shift

for small values of |Rmt −Rft| and a small upward shift for large values of |Rmt −Rft|
in turn implies that the conditional mean E (|Rit −Rmt| |Rmt −Rft) is a convex func-

tion of |Rmt −Rft|. The conditional expectation of CSADt is thus a convex function of

|Rmt −Rft|, too. Hence, the true value of γ2 is positive.

Chang, Cheng, and Khorana (2000) do not look at the cross-sectional absolute deviation

of realized returns, but at the cross-sectional absolute deviation of expected returns. For

expected returns, the relation between individual and aggregate excess returns is

E (Rit −Rmt) = (βi − 1)E (Rmt −Rft) .

The cross-sectional absolute deviation of expected excess returns is

ECSADt =
1

N

N∑
i=1

|E (Rit −Rmt)|

=

(
1

N

N∑
i=1

|βi − 1|

)
|E (Rmt −Rft)| .

ECSAD is indeed a linear function of the absolute expected excess market return.

Since expected returns are unobservable, Chang, Cheng, and Khorana (2000) replace

them by realized returns, i.e. they consider Ri − Rf as a proxy for E(Ri − Rf ) and thus

CSAD as a proxy for ECSAD. This approximation results in Equation (6) for CSAD
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and implies a herding coefficient γ2 which is equal to zero under the null hypothesis of no

herding. However, the use of realized returns as a proxy for expected returns implies that

the idiosyncratic component is ignored. This turns the true convex dependence of CSAD

on the absolute excess market return into a linear relation, and it eliminates the positive

sign of γ2.

The analysis so far has shown that the true value of γ2 in Equation (1) is positive under

the null hypothesis of no herding. If we make some further assumptions on the distribution

of the idiosyncratic components, we can also determine the exact form of the functional

dependence of CSAD on the excess market return. In particular, we assume that the

idiosyncratic components ui are t distributed with ν > 2 degrees of freedom, location

parameter 0 and scale parameter σu. This assumption embeds the normal distribution as

a limiting case for ν →∞.

Equation (5) for CSAD implies that

E
(
CSADt

∣∣Rmt −Rft

)
=

1

N

N∑
i=1

E
(
|(βi − 1)(Rmt −Rft) + uit|

∣∣Rmt −Rft

)
.

The βi are constants, and the expectation is taken over the idiosyncratic components only.

For asset i, we get

E
(
|(βi − 1)(Rmt −Rft) + uit|

∣∣Rmt −Rft

)
=

2σuν

ν − 1

(
1 +

µ2
i

σ2
uν

)
fν

(
µi
σu

)
+ µi

[
1− 2Fν

(
−µi
σu

)]
where

µi = (βi − 1)(Rmt −Rft).

fν and Fν are the density and the cumulative distribution function of the t distribution

with ν degrees of freedom. Hence, the expected cross-sectional absolute deviation is

E (CSADt|Rmt −Rft)

= (Rmt −Rft)
1

N

N∑
i=1

(βi − 1)

[
1− 2Fν

(
−(βi − 1) (Rmt −Rft)

σu

)]

+
2σuν

ν − 1

1

N

N∑
i=1

(
1 +

((βi − 1)(Rmt −Rft))
2

σ2
uν

)
fν

(
(βi − 1)(Rmt −Rft)

σu

)
. (8)

It is a nonlinear (and non-quadratic) function of the excess market return. Appendix A

gives the corresponding expression for the limiting case of a normal distribution, i.e. for

ν →∞.
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The expected cross sectional absolute deviation can be approximated by a linear or

quadratic function when the terms (βi − 1) (Rmt −Rft) /σu are very large in absolute

value or close to zero, respectively. If (βi − 1) (Rmt −Rft) /σu is close to zero, first order

Taylor expansions around zero yield

Fν

(
−µi
σu

)
≈ 0.5− fν(0)

µi
σu(

1 +
µ2
i

νσ2
u

)
fν

(
µi
σu

)
≈ fν(0)− fν(0)

ν − 1

2ν

(
µi
σu

)2

.

Therefore

E (CSADt|Rmt −Rft) ≈
2σuνfν(0)

ν − 1
+
fν(0)

σu

(
1

N

N∑
i=1

(βi − 1)2

)
(Rmt −Rft)

2, (9)

and the expected CSAD is approximately quadratic in the excess market return. The

term involving the βi can be rewritten as

1

N

N∑
i=1

(βi − 1)2 =

(
1

N

N∑
i=1

(βi − µ̂β)2

)
+ (µ̂β − 1)2

= S2
β + (µ̂β − 1)2 (10)

where µ̂β = N−1
∑N

i=1 βi. If (βi−1)(Rmt−Rft)/σu is large in absolute value, the nonlinear

terms can be approximated as

Fν

(
−µi
σu

)
≈

{
0 if µi > 0

1 if µi < 0(
1 +

µ2
i

νσ2
u

)
fν

(
µi
σu

)
≈ 0.

The approximation of the conditional expectation is then given by

E(CSADt|Rmt −Rft) ≈ (Rmt −Rft)
1

N

N∑
i=1

(βi − 1)
(
1− 2 · 1{µi<0}

)
= |Rmt −Rft| ·

1

N

N∑
i=1

|βi − 1| . (11)

It is linear in the absolute excess market return and coincides with the value of CSAD for

vanishing idiosyncratic components given in Equation (6). Again, Appendix A gives the

formulas for the limiting case of a normal distribution, i.e. ν →∞.

Taken together, the conditional expectation (8) of CSAD can be approximated by a

quadratic function of the excess return when the terms (βi − 1)(Rmt −Rft)/σu are small
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in absolute value, and by a linear function when they are large in absolute value. The size

of (βi−1)(Rmt−Rft)/σu depends on the time interval ∆t. Since the expected return is pro-

portional to ∆t while the volatility is proportional to
√

∆t, the term (βi−1)(Rmt−Rft)/σu

scales with
√

∆t. The smaller the time interval, the better the quadratic approximation.

In the following, we numerically analyze the conditional expectation of CSAD given the

excess market return Rmt−Rft. The calculations are performed using the base line scenario

parameters µβ, Sβ and σu for the individual excess returns given in the top half of Table 1.

The parameters have been calibrated to the cross section of stocks in the S&P 500 using

daily prices from 07/25/2008 to 07/26/2013 provided by Thomson Reuters Datastream.

Eliminating holidays, the observation period consists of T = 1259 trading days. Some

S&P 500 stocks are not observed over the entire period. All stocks with less than 250

daily observations are deleted from the sample. The total number of remaining stocks is

N = 495. The risk free rate Rft is set to the 3-month treasury bill rate.2 For each stock,

βi is estimated by an OLS regression of its excess return on the market excess return.

Although the estimate of the cross-sectional mean beta, µβ, is larger than unity, we set

the base line parameter to the common choice of µβ = 1. The standard deviation Sβ is

estimated from the cross section of estimated βi’s, which results in Sβ ≈ 0.4.

We assume that the idiosyncratic components (u1t, . . . , uNt) are uncorrelated and jointly

t distributed.3 We fit a central t distribution with scale parameter σu and ν = 3 degrees of

freedom to the residuals pooled over time and stocks. The choice ν = 3 reflects the heavy

tailed nature of the residuals, yet ensures that the variance remains finite. Figure 1 depicts

the distribution of the residuals and the density of the fitted t distribution (solid line). The

estimate for the scale parameter σu is 0.01033 for daily returns, implying an annualized

standard deviation for the idiosyncratic component of about 28%. For comparison, we also

fitted a normal distribution (dotted line). Its goodness of fit is manifestly so much worse

than the fit of the t distribution that a formal statistical comparison is not necessary.

Figure 2 depicts the conditional expectation of CSADt as a function of the excess market

return Rmt−Rft. Even though the relation (8) is not exactly quadratic, it can evidently be

approximated closely by the quadratic function (9), whereas the linear approximation (11)

is only reasonable for extremely large excess returns. Regressing CSADt on the absolute

excess returns |Rmt − Rft| and its squares (as in (1)) is therefore likely to result in an

2The series has been provided by Thomson Reuters Datastream: US T-Bill Secondary Market 3 Month

Middle Rate FRTBS3M.
3Note that zero correlation does not imply independence if the random variables are jointly t dis-

tributed. The univariate variance of a t distributed random variable with ν degrees of freedom and scale

parameter σ equals σ2 · ν/(ν − 2).

9



Individual excess returns

Estimate Base line

scenario

Distribution of β’s

cross sectional mean µβ 1.1192 1

cross sectional std.dev. Sβ 0.4043 0.4

Idiosyncratic components uit ∼ t3(0, σu)

scale σu 0.01033 0.01

implied annualized std.dev. 28.3% 27.4%

Number of assets 100

Excess market return Rmt −Rft ∼ t3(µm, σm)

location µm 0.00091 0.0003

implied annualized mean 22.9% 7.5%

scale σm 0.00901 0.009

implied annualized std.dev. 24.7% 24.6%

Table 1: Estimated parameters and base line scenario parameters for daily excess returns

on the individual stocks and the excess market return. The estimation is based on the

S&P 500 and the stocks in the S&P 500 over the sample period from 07/25/2008 to

07/26/2013.

estimate γ̂2 significantly larger than zero.

Figure 3 shows the impact of the parameters σu, µβ and Sβ on the cross-sectional absolute

deviation. The first row shows the effect of the idiosyncratic volatility σu, keeping constant

µβ = 1 and Sβ = 0.4. As σu approaches zero, the quadratic component vanishes and the

curve develops a kink. In the limiting case, CSAD will be given by Equation (6). An

increase of σu leads to a higher level of the cross-sectional deviation and simultaneously

to a flatter curve. In the second row we find that an increase of µβ increases the curvature.

The same effect happens if the level µβ falls (not shown, the plot for µβ = 0.7 is the same

as for µβ = 1.3). The bottom row shows the effect of the cross-sectional variation of the

βi’s. The larger Sβ, the more sensitive E(CSADt|Rmt − Rft) reacts to changes in the

excess market return. For a very small variation, there is hardly any effect, and the curve

is virtually flat.
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Figure 1: Distribution of the residuals, a fitted central t distribution with ν = 3 degrees

of freedom (solid line), and a fitted normal distribution (dotted line)

2.3 Cross-Sectional Standard Deviation if There is No Herding

The nonlinear dependence of the cross-sectional deviation on the excess market return is

not specific to CSAD, but also holds for CSSD. The cross-sectional standard deviation

of returns can be written as

CSSDt =

√√√√ 1

N

N∑
i=1

[(βi − 1)(Rmt −Rft) + uit]
2. (12)

If all idiosyncratic components are identically equal to zero (σ2
u = 0), the cross-sectional

standard deviation is a linear function of the absolute excess market return:

CSSDt|{uit=0,i=1,...,N} =
√
S2
β + (µβ − 1)2 |Rmt −Rft| . (13)

As for CSAD, the presence of the idiosyncratic components uit shifts this function up-

wards. The upward shift is largest for Rmt − Rft = 0. This turns the linear relation in

Equation (13) into a nonlinear, convex function.

If the idiosyncratic components (u1t, . . . , uNt) are uncorrelated and jointly t distributed,

we can again give a closed-form solution for the conditional expectation of CSSD. If

µi = 0 for all i then the quadratic form

1

N

N∑
i=1

[(βi − 1)(Rmt −Rft) + uit]
2

σ2
u
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Figure 2: Conditional expectation E(CSADt|Rmt − Rft) for the base line scenario σu =

0.01, ν = 3, µβ = 1, Sβ = 0.4 and N = 100

follows a central FN,ν distribution with N and ν degrees of freedom. If µi 6= 0 for some i,

the location of the distribution is shifted, and the quadratic form does no longer follow

a central, or noncentral, F distribution. Proposition 6.1 of Cacoullos and Koutras (1984)

for the generalized χ2 distribution gives

E(CSSDt|Rmt −Rft) =
2σuπ

(N−1)/2
√
NΓ((N − 1)/2)

∫ ∞
0

M(ρ)ρN−1g(ρ2)dρ (14)

where

M(ρ) =

∫ π

0

√
ρ2 + 2ρδ cos θ + δ2 (sin(θ))N−2 dθ

g(z) =
Γ((N + ν)/2)

Γ(ν/2)(νπ)N/2

(
1 +

z

ν

)−N+ν
2

with δ2 =
∑N

i=1 µ
2
i /σ

2
u. These expressions can easily be integrated numerically. The lim-

iting case of a normal distribution (ν → ∞) leads to a noncentral F distribution (see

Appendix A).

Figure 4 displays E(CSSDt|Rmt−Rft) as a function of the excess market return Rmt−Rft

for the base line scenario given in Table 1. Comparing Figure 4 to Figure 2 we find that,

apart from a vertical shift, the functional forms are virtually identical. The same is true for

the effect of varying the parameters σu, µβ and Sβ (not shown). Estimating the regression

equation (2) will therefore also result in an estimate γ̂2 significantly different from zero.
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Figure 3: Conditional expectation E(CSADt|Rmt − Rft) for the base line scenario σu =

0.01, ν = 3, µβ = 1, Sβ = 0.4, N = 100 (grey lines) and variations of each parameter
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Figure 4: Conditional expectation E(CSSDt|Rmt − Rft) for the base line scenario σu =

0.01, ν = 3, µβ = 1, Sβ = 0.4 and N = 100

2.4 The impact of the parameters

Under the null hypothesis of no herding, the expected cross-sectional deviation is a non-

linear and convex function of the excess market return. In fact, our examples have shown

that it can be approximated rather well by a quadratic function for small excess mar-

ket returns. The OLS estimate for the coefficient γ2 in regression equation (1) or (2) is

therefore likely to be significantly positive.

We now investigate the dependence of the coefficients γ1 and γ2 on the average µβ, the

cross-sectional deviation Sβ of the betas, the scale parameter σu of the idiosyncratic

component, and the number N of assets in more detail. The coefficients γ1 and γ2 (and

γ0) can be calculated by minimizing∫ ∞
−∞

(
E(CSADt|x)− γ0 − γ1|x| − γ2x2

)2
fRmt−Rft(x)dx

with respect to the coefficients γ0, γ1, γ2. E(CSADt|Rmt − Rft) is the conditional ex-

pectation of CSAD given the excess market return. The density function of the daily

excess market return Rmt − Rft is fRmt−Rft(x) which we model as a t distribution with

location parameter µm, scale parameter σm, and νm = 3 degrees of freedom. We ap-

proximate the solution to the minimization problem by running an OLS regression of
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E(CSADt|Rmt −Rft) on the excess market returns

(Rmt −Rft)j = F−1Rmt−Rft

(
j

J + 1

)
for j = 1, . . . , J where F−1Rmt−Rft is the quantile function of the excess market return. The

approximation is very accurate even for moderate values of J , e.g., J = 25.

The parameters for the excess market return in the base line scenario are given in the

bottom half of Table 1. The estimate of the location parameter µm is very large and implies

an annualized excess return of almost 23%. We attribute this to the short sample period

of only five years and thus set the location parameter equal to µm = 0.0003 implying an

expected annualized excess return of 7.5%, which is well in line with the stylized facts

about the equity risk premium.4 We assume that there are N = 100 stocks, the betas

are normally distributed, and the idiosyncratic components follow a joint t distribution.

Equation (8) then gives the conditional expectation E(CSADt|Rmt − Rft) as a function

of the excess market return.

Figure 5 depicts γ1 and γ2 as functions of µβ, Sβ, σu, and N (solid lines). In line with

intuition, both γ1 and γ2 are always positive. In addition, the dashed lines show the

functional dependence of γ1 and γ2 if the idiosyncratic components and the excess market

return follow a normal distribution.

The upper two rows show that both γ1 and γ2 are increasing in the absolute deviation of

the average beta µβ from the market beta of 1 and in the standard deviation Sβ. Taken

together, they are increasing in the cross-sectional deviation of the beta’s from the market

beta. The parameters γ1 and γ2 are thus the larger, the less representative the stocks are.

The dependence of γ1 on the cross-sectional deviation of the betas can intuitively be

explained by Equation (6) which gives CSAD for vanishing idiosyncratic components.

In this special case, CSAD is a linear function of the absolute excess market return,

and the proportionality factor is equal to the cross-sectional absolute deviation of the

beta’s from one. This overall picture carries over to the general case with non-vanishing

idiosyncratic components. Hence, γ1 is increasing in the absolute difference |µβ−1| and in

Sβ. To explain the impact on γ2, note that the presence of the idiosyncratic components

turns the linear relation (6) between CSAD and the absolute excess market return into a

convex function. The quadratic approximation of this function is given by Equation (9),

and the sensitivity with respect to the squared excess market return is proportional to

the cross-sectional squared deviation of the beta’s from one. Again, this overall picture

carries over to the general case in which the quadratic approximation is not perfect, and

γ2 is increasing in the cross-sectional deviation of the betas, too.

4Robustness checks have shown that the impact of µm is negligible.
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calculated from daily returns over five years. In the base line scenario, σu = 0.01, µβ = 1,

Sβ = 0.4, and N = 100. The solid lines show the case of t3 distributed uit, the dashed

lines show the case of normally distributed uit
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The impact of the variance of the idiosyncratic components uit, shown in the third row, is

more involved. The linear coefficient γ1 monotonically decreases in σu, whereas the herding

measure γ2 is a hump-shaped function of σu. To get the intuition, we rely on the linear and

quadratic approximations of the conditional CSAD. For very small σu, the terms (βi −
1)(Rmt − Rft)/σu are large, and the conditional expectation of CSAD is approximately

equal to the linear function given in Equation (11). For this linear approximation, the

parameter γ1 equals the cross-sectional absolute deviation of the beta’s from one, and

γ2 is equal to zero. If σu increases, the terms (βi − 1)(Rmt − Rft)/σu decrease, and the

approximation shifts from the linear relation (11) towards the quadratic function (9).

Hence, γ1 decreases and γ2 increases. Finally, note that the coefficient of the squared

excess market return in the quadratic approximation (9) is decreasing in σu. Therefore,

γ2 will ultimately start to decrease when σu becomes very large.

The last row depicts the impact of the number of stocks N . Both γ1 and γ2 are more

or less independent of the number of stocks, with the exception of a small increase if N

doubles from 5 to 10.

Comparing the curves for the t distribution (solid lines) and the normal distribution

(dashed lines), we find that γ1 is smaller if the idiosyncratic component follows a normal

distribution rather than a t distribution. In constrast, γ2 is larger in the case of the normal

distribution, and the impact of changing the parameters is generally more pronounced.

This can be attributed to the lighter tails of the normal distribution. With a smaller

probability for extreme realizations, the linear part of CSAD becomes less important,

which implies a smaller γ1 and a larger γ2.

3 Empirical Evidence and Implications for Existing

Studies

The cross-sectional deviation of returns is an increasing function of the absolute excess

market return. Non-vanishing idiosyncratic return components imply that this relation is

convex, so that the quadratic coefficient γ2 is positive under the hypothesis of no herding.

Tests for herding that are incorrectly based on γ2 = 0 under the null of no herding are thus

biased against finding evidence for herding and towards finding evidence for anti-herding.

Evidence in favour of herding when γ̂2 is significantly negative is still valid, since γ̂2 is

then obviously also significantly smaller than the true positive value of γ2. However, if γ̂2

is not significantly smaller than zero (or even positive), it is incorrect to conclude that

there is no herding. Even a positive γ̂2 may still be significantly smaller than the true
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positive value of γ2 and hence be evidence in favour of herding.

To take into account that γ2 > 0 under the null hypothesis of no herding, the correct

hypotheses are

H0 : γ2 = γ02

H1 : γ2 6= γ02

where γ02 denotes the value of γ2 in case of no herding. In contrast to standard t test

problems, not only γ2 but also γ02 needs to be estimated since it depends on the unknown

parameters µβ, Sβ and σu. We estimate γ2 by OLS of (1) and γ02 by γ̂02 as a function of

the estimates µ̂β, Ŝβ and σ̂u as described in section 2.4.

The natural test statistic is

T = γ̂2 − γ̂02

and the null hypothesis is rejected if the absolute value of the realized test statistic, |T |,
is “too large”. In order to find the critical value, the distribution of T is simulated by

bootstrap methods since γ̂2 and γ̂02 have a non-trivial joint distribution under the null

hypothesis of no herding.

The bootstrap pseudo-samples are generated under the null hypothesis as follows. Firstly,

draw β̃1, . . . , β̃N from N(µ̂β, Ŝ
2
β). Secondly, for i = 1, . . . , N and t = 1, . . . , T generate new

(pseudo) return observations R̃it by

R̃it = Rft + β̃i(Rmt −Rft) + ũit

where (ũ1t, . . . , ũNt) are drawn from a central multivariate t distribution with zero corre-

lations, common scale parameter σ̂u and ν = 3 degrees of freedom. Obviously, the pseudo

returns R̃it are generated under the null hypothesis of no herding. Thirdly, the pseudo

sample is used to compute γ̃2 and γ̃02 . In the same way as for the original sample, γ̃2 is

determined from the pseudo sample by the OLS regression (1). For γ̃02 , we use the pseudo

sample to estimate the betas and σu, and then determine γ̃02 as a function of the estimated

mean beta µ̃β, the estimated standard deviation of the betas S̃β, and the estimated scale

parameter of the idiosyncratic components σ̃u. In this way, we take into account that

these parameters have to be estimated and are thus subject to sampling errors that affect

the estimate of γ02 as well. Finally, T̃ = γ̃2 − γ̃02 .

Let B be the (large) number of bootstrap replications. Generating B pseudo samples

results in an approximation of the distribution of the test statistic. The critical value is

the (1− α) quantile of |T̃1|, . . . , |T̃B|.
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The test suggested by Chang, Cheng, and Khorana (2000) is erroneously based on testing

H0 : γ2 = 0. In this case, the test statistic is T̃ = γ̃2 − 0, and the null hypothesis of no

herding is rejected if |γ̃2| exceeds the (1− α) quantile from the bootstrap.

Using the S&P-500 sample described above, we show that the specification of the null

hypothesis matters. Table 1 reports the point estimates µ̂β = 1.1192, Ŝβ = 0.4043, and

σ̂u = 0.01033. From these estimates we calculate γ̂02 = 1.5491. The linear regression (1)

yields γ̂2 = 0.3474, and the value of the test statistic is |T | = |0.3474− 1.5491| = 1.2017.

For B = 25 000, the bootstrapped p-value of the null hypothesis of no herding is 0.016.

Hence, there is clear evidence in the data against the null hypothesis of no herding.

Since γ̂2 < γ̂02 , we conclude that the data indicate herding rather than anti-herding.

Under the assumption of normally distributed returns, we get γ̂2 = 1.6411.5 The test

statistic is |T | = |0.3474−1.6411| = 1.2937, and its p-value is 0 (for B = 25 000 bootstrap

replications). So the test again indicates herding. In contrast, the test suggested by Chang,

Cheng, and Khorana (2000) yields a p-value of 0.3237 and cannot reject the (incorrect)

null hypothesis H0 : γ2 = 0. It leads to the conclusion that there is no herding in the

market.

Put together, erroneously testing H0 : γ2 = 0 results in non-rejection of the null hypothesis

and in the conclusion that there is no herding. In contrast, the correct test of H0 : γ2 = γ02

clearly leads to a rejection of the null hypothesis and provides evidence in favour of

herding. The test of Chang, Cheng, and Khorana (2000) will thus not detect herding even

though it exists.

4 Conclusion

In case of herding, investors follow the collective actions of the market, and prices move

more in line with each other than they normally do. The negative impact of herding

on the cross-sectional dispersion of returns is used by Christie and Huang (1995) and

Chang, Cheng, and Khorana (2000) to construct tests for herding. Chang, Cheng, and

Khorana (2000) regress the cross-sectional absolute deviation of returns on the absolute

and squared excess market return. They argue that the coefficient γ2 of the squared excess

market return is zero under the null hypothesis of no herding. A significantly negative

coefficient γ2 thus signals herding for large market movements.

We show that the coefficient γ2 is positive under the null hypothesis of no herding. The

5If uit are assumed to follow a normal distribution, the scale parameter σu equals the standard devi-

ation, and its estimate is σ̂u = 0.0199.
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test of Chang, Cheng and Khorana thus suffers from a wrong specification of the null

hypothesis. It is biased against finding evidence for herding and in favour of finding

evidence for anti-herding.

The misspecification of the null hypothesis matters. For the S&P 500, the test of Chang,

Cheng and Khorana finds no evidence for herding in a five-year sample from 2008 to 2013.

In contrast, the test based on the correct null-hypothesis signals that there is herding.

The case for herding is thus stronger than previous studies based on Chang, Cheng and

Khorana suggest.
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A Normally distributed idiosyncratic terms

If the degrees of freedom parameter ν of the idiosyncratic component goes to infinity, the

t distribution converges to the normal distribution, and Equations (8) and (14) can be

simplified. Under normality, the expected cross-sectional absolute deviation as a function

of the excess market return becomes

E(CSADt|Rmt −Rft) =
1

N

N∑
i=1

µi

(
1− 2Φ

(
−µi
σu

))
+ σu

√
2

π

1

N

N∑
i=1

exp

(
− µ2

i

2σ2
u

)
.

where µi = (βi−1)(Rmt−Rft). For small values of µi/σu this function can be approximated

by

E(CSADt|Rmt −Rft) = σu

√
2

π
+

1

σu
√

2π
·

(
1

N

N∑
i=1

(βi − 1)2

)
· (Rmt −Rft)

2

which is quadratic in the excess market return. If µi/σu is large in absolute value, the

approximation is

E(CSADt|Rmt −Rft) = |Rmt −Rft| ·
1

N

N∑
i=1

|βi − 1|

which is linear in the absolute excess market return.

For the cross sectional standard deviation, we get that

σ−1u

√√√√ N∑
i=1

((βi − 1)(Rmt −Rft) + uit)
2

follows a noncentral χ distribution with N degrees of freedom and noncentrality parameter

δ2 =
1

σ2
u

N∑
i=1

(βi − 1)2(Rmt −Rft)
2.
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Hence, the conditional expectation of CSSDt is

E(CSSDt|Rmt −Rft) =

√
πσ2

u

2N
L
(N/2−1)
1/2

(
−δ2

2

)
where L

(N/2−1)
1/2 is the generalized Laguerre polynomial (Olver, Lozier, Boisvert, and Clark,

2010, 18.11.2, p. 448).
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