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Abstract

Motivated by repeated spikes and crashes during previous decades we investigate

whether the heavily financialized market for crude oil has been driven by speculative

bubbles. In our theoretical modeling we draw on the convenience yield approach in

order to approximate the fundamental value of the oil price. We separate the oil price

fundamental from the bubble component by expressing a standard present-value oil

price model in state-space form. We then introduce two Markov-regimes into the state-

space representation in order to distinguish between two distinct phases in the bubble

process, namely one in which the oil price bubble is a stable process and one in which

the bubble explodes. We estimate the entire Markov-switching state-space specifica-

tion using an econometrically robust Bayesian Markov-Chain-Monte-Carlo (MCMC)

methodology. Based on inferential techniques designed for statistically separating both

Markov-regimes in the bubble process from each other, we find robust evidence for the

existence of speculative bubbles in recent oil price dynamics.

JEL classification: G10, G12, Q40

Keywords: Speculative bubbles; oil price; Markov-switching model; state-space model;

Bayesian econometrics

* Corresponding author. Tel.: +49 251 83 25040, fax: +49 251 83 25042. E-mail ad-

dresses: marc.lammerding@wiwi.uni-muenster.de (M. Lammerding), patrick.stephan@

wiwi.uni-muenster.de (P. Stephan), mark.trede@wiwi.uni-muenster.de (M. Trede), and

bernd.wilfling@wiwi.uni-muenster.de (B. Wilfling).



1

1 Introduction

Between 2001 and mid-2008 the nominal spot price of West Texas Intermediate (WTI)

crude oil skyrocketed from a level of 20 US-$/bbl to an all-time high of 147 US-$/bbl,

then collapsed to a low of 30 US-$/bbl in late 2008, and finally rebounded to a level of

100 US-$/bbl in late 2011.1 The economic literature divides the fundamentally justified

explanations of these erratic price movements into three groups: (1) oil supply shocks,

(2) oil demand shocks driven by global economic activity, and (3) oil-specific demand

shocks. An oil supply shock typically results from production disruptions caused by a

lack of investments and geopolitical tensions in oil-exporting regions such as the Middle

East. By contrast, a general oil demand shock may occur due to unexpectedly strong

economic growth in emerging economies, such as China and India, or the surprisingly

rapid economic recovery in some countries after the recent global financial crisis. Fi-

nally, an oil-specific demand shock may be triggered by the time-varying importance

of oil among alternative energy sources and changing expectations of oil fundamentals.

Overall, there is now consensus in the literature that oil demand shocks caused by

global economic activity were the main drivers of the oil price boom until mid-2008

(e.g. Hamilton, 2009a,b; Kilian, 2009; Kilian and Hicks, 2009; Kilian and Murphy,

2010).

In contrast to these stabilizing fundamentally justified shocks, oil price changes due

to financial shocks may lead to speculative bubbles, and are thus considered as destabi-

lizing (Lombardi and Van Robays, 2011). The oil bubble hypothesis is primarily based

on the increasing financialization of oil futures markets reflected by the sharp rise in

speculative open interest and speculative market shares.2 In addition, speculators held

1WTI, also known as Texas Sweet Light, is the reference type of oil in the United States. Similar
price dynamics also hold for other oil types like North Sea Brent.

2A partial explanation of this phenomenon is that commodities, and oil in particular, have become
a new asset class (besides stocks, bonds, and real estate). Turmoil in housing markets worldwide in
conjunction with the recent global financial crisis has driven even more investors into commodities.
Apart from that, commodity traders and hedge funds were more and more joined by pension funds
and commodity index funds during the oil price surge until mid-2008 (Kesicki, 2010).
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net long positions during almost the entire oil price surge until mid-2008 betting on

further rising prices (CFTC, 2011a). Other anecdotal indicators of a possible oil price

bubble until mid-2008 are (1) the combination of low US interest rates and futures

prices in contango up to mid-2007 (Garcia, 2006; Tokic, 2010), (2) the large deviation

of indexed oil prices from the indexed market valuation of major oil companies (Khan,

2009), and (3) the disappearance of a solid long-run relationship between the oil price

and international stock markets during recent years (Miller and Ratti, 2009).

In contrast to this anecdotal evidence, empirical investigations are far less conclusive.

On the one hand, there is evidence that the positive shape of the oil futures curve

decisively contributed to the rise of the real oil price until late 2006 (Kaufmann et al.,

2008). Moreover, destabilizing positive feedback traders are blamed for having subdued

the stabilizing influence of fundamentalists, what, in conjunction with weak mean

reversion, might have caused the substantial overshooting of the oil price (Cifarelli and

Paladino, 2010; Reitz and Slopek, 2009; Tokic, 2011). However, pertaining to the price

discovery mechanism, oil futures markets do not unambiguously lead spot markets but

are rather interrelated with them, implying that the destabilizing impact of financial

shocks may be less severe for entities interested in physical oil (Bekiros and Diks, 2008;

Kaufmann and Ullman, 2009; Schwarz and Szakmary, 1994; Silvapulle and Moosa,

1999). Apart from that, speculative activity does not precede oil price movements but

rather responds to them, characterizing speculators as trend-extrapolating chartists

rather than as key price drivers (CFTC, 2008; IMF, 2005, 2006; Sanders et al., 2004).

And finally, despite increasing speculation and betting on rising prices, the oil market

was in backwardation between mid-2007 and mid-2008, and oil inventories did not

increase substantially, a precondition that would have had to be met for speculators to

exert persistent influence on the oil price (Kesicki, 2010).3

3As suggested by Hamilton (2009a), it is possible that speculative trading increases prices even
without any inventory accumulation given that the short-run price elasticity of oil (and gasoline)
demand is zero. However, Kilian and Murphy (2010) state that this was by far not the case during
the oil price surge until mid-2008.
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In view of this ambiguity, this paper tries to provide solid statistical inference about

the existence of oil price bubbles. Until now, econometric testing for speculative bub-

bles has mainly been focussing on (US) stock markets. Gürkaynak (2008) provides a re-

cent survey of econometric methods used for detecting asset-price bubbles. This survey

includes the well-known variance bounds tests, West’s two-step tests, (co)integration-

based tests as well as the concept of intrinsic bubbles, and methods treating bubbles as

an unobserved variable. By contrast, up to date little effort has been made to identify

speculative bubbles in markets for commodities in general and for oil in particular, a

shortfall regrettable for various reasons. Since oil is an important input factor of many

products, increasing oil prices may cause recessions, bearish stock markets, and infla-

tionary pressure (Kilian, 2008). As a result, overshooting oil prices may lead central

banks to erroneously adjust monetary policy.4 And finally, misaligned oil prices may

expose market participants to large financial losses once the bubble bursts.

In order to evaluate the oil bubble hypothesis more accurately, we draw on the stan-

dard present-value model for stocks, but adapt it to the oil market (Pindyck, 1993).

In this context, the fundamental value of oil is defined as the sum of discounted oil

dividends, which in turn are approximated by the benefits the holder of the physi-

cal commodity experiences in contrast to the owner of a futures contract written on

the respective asset. These benefits that inventories provide, including the ability to

smooth production, avoid stockouts, and facilitate the scheduling of production and

sale, are termed convenience yield, and bear a particular meaning in the context of

agricultural and energy commodities.5 Using the relationship between oil prices and

4The ECB (2008), for example, justifies its widely criticized decision to reinforce its restrictive
monetary stance in mid-2008 by stating: “At its meeting on 3 July 2008, the Governing Council
of the ECB decided (. . .) to raise the minimum bid rate on the main refinancing operations of the
Eurosystem by 25 basis points to 4.25%. (. . .) The Governing Council’s decision was taken (. . .)
to counteract the increasing upside risks to price stability over the medium term. (. . .) These risks
include notably the possibility of further increases in energy and food prices.”

5Apart from the convenience yield approach, only a few (but less elaborated) alternative meth-
ods have been put forward to determine the fundamental value of commodities. Reitz and Slopek
(2009) and Reitz et al. (2009), for example, use Chinese oil imports to obtain a rough proxy for the
fundamentally justified oil price.



4

oil dividends, we then follow Wu (1995, 1997), and establish a state-space framework

from which we extract the bubble component as an unobservable variable. In line with

Al-Anaswah and Wilfling (2011), we additionally assume the bubble to evolve over time

as a two-state Markov-switching process. By this econometric specification, we aim at

separating two distinct bubble states from each other, namely one in which the bubble

evolves over time as a stable process and one in which the bubble exhibits explosive

dynamics. In order to obtain robust estimation results, we resort to a Bayesian ap-

proach and implement a fully-fledged Markov-Chain-Monte-Carlo (MCMC) estimation

framework.

In our empirical analysis we find convincing evidence of at least two bubble periods

in the oil market, namely (1) between the end of 2004 and mid-2008 and, after a strong

correction of oil prices, (2) between mid-2008 and April 2011. Given the relevance of

the oil price for the real economy, stock markets, and monetary policy, our results may

indicate the need for more efficient regulation of financial investors in oil-derivative

markets.

The remainder of this paper is organized as follows. Section 2 presents our conven-

ience yield approach, and briefly reviews the standard present-value model which we

transform into a state-space representation and enrich by a Markov-switching specifi-

cation. Section 3 establishes our MCMC estimation framework. Section 4 describes

the data, and presents our empirical results. Section 5 offers some policy implications

and ideas for future research.

2 Economic modeling and econometric specifica-

tion

2.1 The convenience yield and the present-value model

Following Pindyck (1993), we use futures prices to measure the convenience yield of

actively traded storable commodities drawing on the so-called cost-of-carry equation.
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In the absence of arbitrage, the (capitalized) flow of convenience yield net of storage

costs from date t to T per unit of commodity, dt,T , is given by

dt,T = Pt(1 + rt(T − t)/365)− Ft,T , (1)

where Pt denotes the spot price, rt is the (annualized) risk-free interest rate, and Ft,T

is the futures price for delivery on date T .6 Dividing dt,T by the time to delivery

then leads to the standardized convenience yield dt. Eq. (1) states that in equilibrium

the futures price must equal the spot price (adjusted to the opportunity costs) and

the benefits of holding the physical commodity. In other words, investing borrowed

money only and taking no risk necessarily leads to a terminal wealth of zero.7 From an

economic point of view, the convenience yield approach can be interpreted as a highly

reduced supply and demand model, which allows using daily data, a major advantage

compared to many previous studies on speculative bubbles.

Next, we briefly review the standard present-value model with time-varying expected

returns as described, among others, in Campbell et al. (1997, Chapter 7). While in its

original form the model is designed to explain stock price behavior, we follow Pindyck

(1993), and use it to describe the dynamics of commodity prices. To this end, we

replace the original variables representing the log stock price and the log dividend by

the log commodity price and the standardized convenience yield as defined above.

In order to build up the model, we consider the relationship between the current log

commodity price, the next period’s expected log commodity price, and the convenience

6It should be noted that we compute our convenience yield measure by assuming arbitrage-free
markets at each point in time. We are aware of the fact that this assumption may not be continuously
satisfied in reality (Lombardi and Van Robays, 2011). However, owing to the fact that no alternative
method for determining the fundamental value of commodities has been established so far in the
literature, we retain the no-arbitrage condition.

7Besides Eq. (1) more sophisticated unobserved-components models have been put forward in
the literature to approximate the convenience yield. Schwartz (1997), for example, presents a two-
factor model by specifying the change of the logarithmic spot price and the convenience yield rate
as a geometric Brownian motion and an Ornstein-Uhlenbeck process, respectively, the parameters of
which he estimates via the Kalman-filtering technique. For our data, however, we find that the time
series resulting from Schwartz’ more complex procedure are qualitatively indistinguishable from those
obtained by Eq. (1).
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yield under rational expectations:

q = κ+ ψEt(pt+1) + (1− ψ)dt − pt, (2)

where q is the required log gross return rate, Et(·) is the mathematical expectation

operator conditional on all information available at date t, pt ≡ ln(Pt) is the log

commodity price at the end of period t, dt is the convenience yield which the owner of

the commodity experiences between t and t+ 1, and κ = − ln(ψ)− (1−ψ) ln(1/ψ− 1)

and 0 < ψ < 1 are parameters of linearization.

Eq. (2) constitutes a linear expectational difference equation for the log commodity

price which we routinely solve forward by repeatedly substituting out future prices

and by using the law of iterated expectations to eliminate future-dated expectations.

Imposing the transversality condition

lim
i→∞

ψiEt(pt+i) = 0,

we obtain the unique no-bubble solution to Eq. (2):

pft =
κ− q
1− ψ

+ (1− ψ)
∞∑
i=0

ψiEt(dt+i). (3)

Eq. (3) represents the well-known present-value relation stating that the log com-

modity price is equal to the present-value of expected future convenience yields out to

the infinite future. However, it is important to note that from a mathematical point

of view the above transversality condition may not be satisfied. Thus, the no-bubble

solution pft represents only a particular solution to the difference equation (2), while

its general solution has the form:

pt = pft +Bt, (4)

with the process {Bt} satisfying the homogeneous difference equation:

Et(Bt+i) =
Bt

ψi
for i = 1, 2, . . . (5)
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(e.g. Cuthbertson and Nitzsche, 2004, pp. 397-401).

Obviously, the general solution in eq. (4) consists of two components. First, the

no-bubble solution pft only depends on the convenience yield, and therefore represents

the market-fundamental solution. Second, events extraneous to the market may drive

the mathematical entity Bt which we thus refer to as the rational speculative bubble

component.

In order to circumvent nonstationarity problems, we express the model in first-

difference form which, by virtue of Eqs. (3) and (4), is given by

∆pt = ∆pft + ∆Bt = (1− ψ)
∞∑
i=0

ψi[Et(dt+i)− Et−1(dt+i−1)] + ∆Bt. (6)

Following Wu (1995, 1997), we also assume that the convenience yield may contain

a unit root but that we can approximate the convenience yield process {dt} by an

autoregressive integrated moving average (ARIMA) process. In particular, we assume

an ARIMA(h, 1, 0)-process of the form

∆dt = µ+
h∑
j=1

φj∆dt−j + δt, (7)

with δt ∼ N(0, σ2
δ ) denoting a Gaussian white-noise error term, in which we have to

estimate the autoregressive order h from the data.

In what follows, it is convenient to express the autoregressive process (7) in compan-

ion form. Defining the (h× 1) vectors

yt = (∆dt,∆dt−1, . . . ,∆dt−h+1)′, u = (µ, 0, 0, . . . , 0)′, νt = (δt, 0, 0, . . . , 0)′,

and the (h× h) matrix

A =


φ1 φ2 φ3 . . . φh−1 φh
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0

 ,

we may write Eq. (7) in the form

yt = u + Ayt−1 + νt. (8)
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Based on this representation, it follows from Campbell and Shiller (1987) that the

solution to our commodity price model (6) results from the formula

∆pt = ∆dt + m∆yt + ∆Bt, (9)

where m is the (h× 1) vector

m = gA(I−A)−1[I− (1− ψ)(I− ψA)−1], (10)

with the (h × 1) vector g = (1, 0, 0, . . . , 0)′ and I symbolizing the (h × h) identity

matrix.

In line with Wu (1995, 1997), we also assume a linear bubble process {Bt}. Hence,

Eq. (5) implies

Bt = (1/ψ)Bt−1 + ηt, (11)

where we assume the innovation process {ηt} to be i.i.d. N(0, σ2
η). Additionally, we

assume that ηt is uncorrelated with the convenience yield innovation δt from Eq. (7).

2.2 Basic state-space representation

When estimating the commodity price equation (9), we are faced with the problem that

the bubble component {Bt} is unobservable. To sidestep this issue, we closely follow

the lines of Wu (1995, 1997) and Al-Anaswah and Wilfling (2011) by first expressing

our present-value model from above in state-space form, and then using the Kalman

filter to estimate the unobservable oil price bubble {Bt}.

Let βt be an (n × 1) vector of unobserved variables referred to as state variables,

and gt and zt (m × 1) and (l × 1) vectors of observable variables referred to as input

and output variables, respectively. Then, we can write the state-space model as

βt = Fβt−1 + ξt, (12)

zt = Hβt + Dgt + ζt, (13)

where ξt and ζt are (n × 1) and (l × 1) vectors of disturbances, respectively, and F,

H, and D are constant real matrices of conformable dimensions. We assume that the
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disturbance vectors ξt and ζt are serially uncorrelated, uncorrelated with each other,

and that
E(ξt) = 0, E(ζt) = 0,

E(ξtξ
′
t) = Ω, E(ζtζ

′
t) = R.

Eqs. (12) and (13) are known as the transition and the measurement equation.

Basically, our present-value model established above consists of the following three

components: the ARIMA(h, 1, 0) convenience yield process {∆dt} from Eq. (7),

the commodity price process {∆pt} from Eq. (9), and the bubble process {Bt} from

Eq. (11). It is straightforward to verify that we can express the entire present-value

model in state-space form as follows:

βt = (Bt, Bt−1)′, zt = (∆dt,∆pt)
′, gt = (1,∆dt,∆dt−1,∆dt−2, . . . ,∆dt−h)

′,

ξt = (ηt, 0)′, ζt = (δt, 0)′,

F =

(
1/ψ 0

1 0

)
, H =

(
0 0
1 −1

)
, (14)

and

D =

(
µ 0 φ1 φ2 . . . φh−1 φh
0 (1 +m1) (m2 −m1) (m3 −m2) . . . (mh −mh−1) −mh

)
, (15)

where mi is the ith component of the (h × 1) vector m defined in Eq. (10). The

covariance matrices Ω and R are given by:

Ω =

(
σ2
η 0

0 0

)
and R =

(
σ2
δ 0

0 0

)
. (16)

To sum up, our state-space representation treats the commodity price bubble as an

unobservable state variable, and specifies two transition and two measurement equa-

tions. Both transition equations represent the bubble process (11), while the first

measurement equation represents the convenience yield process (7), and the second

measurement equation the commodity price process (9).
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2.3 State-space representation with Markov-switching

We now introduce two distinct Markov-regimes into the basic state-space model from

above. By this approach, we aim at econometrically separating two distinct states

in the data-generating process of the bubble from each other, namely one regime in

which the bubble is a stable process and a second regime in which the bubble process

is explosive. In what follows, we refer to the stable regime as regime 1, and to the

exploding regime as regime 2. Using this interpretation of the distinct regimes, we

identify a collapse of the bubble by the transition from regime 2 to regime 1. Our

formal exposition closely follows Kim and Nelson (1999, Chapter 5).

We begin with the state-space representation of a dynamic system consisting of the

transition equation (12) and the measurement equation (13). Additionally, we now

allow the parameters in the matrices F,H,D,Ω, and R to switch between two distinct

regimes. We denote this switching-property by writing the state-space model from

above compactly as

βt = FStβt−1 + ξt, (17)

zt = HStβt + DStgt + ζt, (18)(
ξt
ζt

)
∼ N

(
0,

(
ΩSt 0
0 RSt

))
, (19)

where the subscript St ∈ {1, 2} indicates that the parameters in the matrices are

governed by an unobservable two-state random variable determining the specific regime

the parameters are in at date t. We specify the probabilistic nature of the regime-

indicator St by a first-order Markov process with constant transition probabilities pij =

Pr[St = j|St−1 = i] which we collect in the matrix

Π =

(
p11 1− p22

1− p11 p22

)
. (20)

In the next section we establish a Bayesian approach to estimating all parameters

contained in the Eqs. (17) to (20).
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3 Model adjustments and MCMC estimation

3.1 Model adjustments

We estimate the model in Eqs. (17) to (20) by Bayesian MCMC methods.8 Let S

be the vector of regimes, β the vector of states, and z the two-dimensional process

z =

(
∆d
∆p

)
. We thus have:

S = (S1, . . . , ST ) ,

β = (β1, . . . , βT ) ,

z = (z1, . . . , zT ) .

However, before starting the estimation, we have to tackle two problems. First, con-

venience yields may become negative. This is in contrast to the investigation of stock

price bubbles where both the stock prices and the dividends are always positive. As a

result, a gap might open between the fundamental value and the bubble term modeled

as an AR(1)-process with regime-switching parameters 1/ψSt and ση,St . We account

for this gap by including an additional parameter, γSt , in the bubble specification:

Bt − γSt =
1

ψSt
· (Bt−1 − γSt) + ηt, ηt ∼ N (0, ση,St). (21)

With this adjustment, the elements of the transition and measurement equations be-

come

βt =

 Bt

Bt−1

1

 , F St =

 1
ψSt

0 γSt(1− 1
ψSt

)

1 0 0
0 0 1

 , ξt =

 ηt
0
0

 , (22)

and

HSt =

(
0 0 0
1 −1 0

)
. (23)

All other matrices and vectors remain unchanged. The parameters γ1 and γ2 cap-

ture those components of the fundamental value which are not accounted for by the

convenience yield.

8For the implementation we use the MCMCpack and dlm packages available for the statistical software
R.
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A second problem arises from the fact that our convenience yield data are rather

volatile. There are two distinct sources for high volatility. First, it may result from

our use of daily data which are known to be noisy in many real-world situations.

Second, the convenience yield is modeled as a function of spot and futures prices and

the risk-free interest rate, all of which typically exhibit high volatility on their own.

However, since the purpose of the fundamental value is to describe the basic movement

of the asset price, we decide to smooth our convenience yield data by applying local

polynomial regression-fitting.9

With this modifications in mind, we can proceed to the MCMC method’s sampling

process. The distribution we wish to sample from is the joint posterior distribution

π(P,β,S, p11, p22|z = (∆d,∆p)). (24)

where P = (µ1, µ2, δ1, δ2, η1, η2, ψ1, ψ2, φ1,1, . . . , φh,1, φ1,2, . . . , φh,2) collects the model’s

parameters. We use the Gibbs sampler in order to generate a sample from (24).

3.2 Description of the Gibbs sampler steps

The model parameters can be split into four groups: States β, parameters of the model

equations P, regimes S, and Markov regime-switching probabilities p11, p22. For each

group, we set up a Gibbs sampler step:

(1) Sample from π(β|z,P,S, p11, p22).

(2) Sample from π(P|z,β,S, p11, p22).

(3) Sample from π(S|z,β,P, p11, p22).

(4) Sample from π(p11, p22|z,β,P,S).

Note that not all parameters listed in the conditioning sets are necessary, and may be

omitted at some point in the estimation process. For instance, the conditional posterior

9Details of our smoothing procedure are available upon request.
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distribution of p11 and p22 does not depend on β and P. The order of the four Gibbs

steps is arbitrary as long as one iteration of the Gibbs sampler includes each step once

and only once. The algorithm can be summarized as follows:

(1) Sampling from the conditional distribution of the states π(β|z,S,P) requires

a Forward-Filtering-Backward-Sampling (FFBS) algorithm as in the standard

Kalman filter with time-varying parameters. We declare the parameters that are

subject to regime switches as time-varying with the two possible values deter-

mined by the regimes. For efficient programming, we use the dlm package of

R.10 The FFBS methods provided by the dlm package can be used to generate

a sample of the process β. Concerning starting values, we use arbitrarily chosen

values for all parameters, and a randomly generated regime process.

(2) The second step is sampling of the parameters P. Notice that if both the regime

process S and the state process β are given, the measurement equation (18)

and the transition equation (21) become independent and thus can be han-

dled separately. As to the measurement equation, we sample the parameters

µ1, µ2, φ1,1, . . . , φh,1, φ1,2, . . . , φh,2, and σδ,1, σδ,2 of the dividend process

∆dt = µSt + φ1,St∆dt−1 + . . .+ φh,St∆dt−h + δt,St , δt,St ∼ N (0, σ2
δ,St). (25)

The price process does not have any parameters to be estimated.

Sampling the parameters of the transition equation (21) is similiar. We use

the MCMCregress command in order to draw from the conditional posterior

distribution of the parameters of

(βt − γSt) =
1

ψSt
(βt−1 − γSt) + ηt, ηt ∼ N (0, σ2

η,St), (26)

10For a detailed documentation see Petris et al. (2009) or the more general overview over filtering
techniques by Petris and Petrone (2011). The package provides extensive methods for estimation,
filtering, and sampling of dynamic linear models, and can handle time-varying parameters. Note that
the dlm package does not natively support additional exogenous variables such as the term DSt

gt

in Eq. (18). In order to avoid a re-parametrization of the model, we calculate zdlm
t = zt −DStgt.

This poses no problem in the MCMC estimation since all parameters in DSt and the complete regime
process St are known in this step of the Gibbs iteration.
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with given states β and regimes St ∈ {1, 2}.11

(3) In the third step, we sample the regime process S. Sampling from the conditional

posterior distribution π(S|z,β,P) is similiar to the FFBS algorithm used in step

one. As to the forward-filtering part, we perform successive prediction steps

π(St|z1,...,t−1, β1,...,t−1,P) and update steps π(St|z1,...,t, β1,...,t,P) to arrive at the

filtered distributions

π (St|z1,...,t, β1,...,t,P) ∝ π (zt, βt|St, βt−1,P) π (St|z1,...,t−1, β1,...,t−1,P) ,

where π(zt, βt|St, βt−1,P) is multivariate normal:(
zt
βt

)
|St, βt−1 ∼ N (MSt ,ΣSt),

with expectation vectorMSt and covariance matrix ΣSt for regime St. We have:

MSt =

(
FStGStβt−1 +DStgt

GStβt−1

)
,

ΣSt =

(
HStRStH

′
St

+ ΩSt HStRSt

RStH
′
St

RSt

)
.

Note that the process β is assumed to be known in this step, and can be treated

as a constant. The covariance matrix ΣSt is singular in light of Eq. (9) and given

that: (
zt
βt

)
=
(

∆pt ∆dt βt βt−1 1
)′
.

Considering the subvector

(
∆dt
βt

)
yields the expectation vector and the non-

singular covariance matrix

MSt =

(
D1,St · gt
1
ψSt
· βt−1

)
, ΣSt =

(
σ2
δ,St

0
0 σ2

η,St

)
,

where D1,St denotes the first row of DSt for regime St.

11Theoretically, it might happen that the random draw from S only generates a single regime, e.g.
St = 1 for all t. In this case, the parameters pertaining to the other regime would not be identified,
and would have to be drawn from their prior distribution. As there are always regime switches in our
empirical application, we do not deal with this problem any further.
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Once the forward filtering recursion has reached the final period, we draw from

π(ST |z1,...,T , β1,...,T ,P), and then use the backward sampling recursion

π(St|z1,...,t−1, β1,...,t−1, St+1,...,T ,P) ∝ π(St+1|St) · π(St|z1,...,t, β1,...,t,P)

to sample the regimes. π(St+1|St) is given by the transition probabilities of the

underlying Markov process, and π(St|z1,...,t, β1,...,t,P) are the filtered probability

distributions.12

(4) The last step of the Gibbs iteration provides updates for the transition proba-

bilities p11 and p22 governing the regime process. If we choose conjugated priors

for both p11 and p22, i.e. beta distributions, then we only need to calculate

the number of switches between regimes 1 and 2 in order to derive the poste-

rior distributions of p11 and p22. Draws from the posterior beta distribution are

standard.

The draws of each iteration are saved in a global results matrix. After eliminating

the burn-in period, we have a sample from the joint distribution of all parameters,

states, and regimes. Point estimates can be generated by calculating their sample

means. Confidence intervals and standard deviations of single parameters are simply

calculated from the parameters’ sampled distribution.

4 Empirical analysis

4.1 Data

We use spot and futures prices as well as a proxy for the risk-free interest rate to

approximate the convenience yield of oil as given in Eq. (1). Concerning price data,

we analyze the two main reference types of oil, WTI (from April 1983 to April 2011)

12A detailed derivation of the necessary distributions is available from the authors upon request.
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and Brent (from April 1989 to April 2011).13 Panel A of Figure 1 shows the daily spot

price of WTI and Brent.

[Figure 1 about here]

We also calculate artificial spot prices derived from the shape of the futures curve

in order to avoid potential distortions in the actual spot prices due to discounts and

premiums which may result from long-standing relationships between buyers and sellers

(Pindyck, 1993). Our daily futures prices belong to contracts traded on the New

York Mercantile Exchange (NYMEX) for WTI, and on the Intercontinental Exchange

(ICE) Futures Europe for Brent. Applying the first-day-of-delivery-month criterion,

we always draw on the first-nearby contract and roll over to the second-nearby on the

first day of the first-nearby’s delivery month. The reason for rolling over sufficiently

prior to the expiration of the first-nearby is that the latter runs out of liquidity close to

maturity. Alternatively, following the liquidity-peak criterion, we also experiment with

rolling over once the second-nearby exhibits a continuously higher open interest than

the first-nearby. And finally, we approximate the risk-free rate by the three-month US

Treasury bill interest rate, and alternatively also experiment with the Federal funds

rate. We obtain all time series from Thomson Reuters Datastream. Oil prices are

quoted in US-$/bbl, the interest rates are given in percent p.a.

In our economic model, the spot price depends on the convenience yield. According

to Eq. (1), the convenience yield is modeled as a function of the spot price. In order

to sidestep endogeneity problems, we draw on the artificial (actual) spot price in the

economic model if the actual (artificial) spot price is used to calculate the convenience

yield. Additionally, we run our analysis for both nominal and real data. Table 1

provides an overview of the alternative models. For illustrative purposes, Panel B of

13While the prices of WTI and Brent are typically close together, substantial deviations between
both time series have emerged over the last couple of months. In order to check whether this anomaly
has an impact on our overall results, we consider both oil types in our empirical analysis.
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Figure 1 displays the convenience yield of WTI and Brent computed from the models

1 and 9, respectively.

[Table 1 about here]

4.2 Empirical results

We begin with a description of our data and the priors used in the estimation procedure.

Our WTI and Brent datasets consist of 7047 and 5611 observations, respectively. We

run a total of N +R = 25000 + 1000 Gibbs iterations, and delete the first R results as

burn-in phase. We specify the fundamental dynamics (7) as an ARIMA(2,1,0)-process

in both regimes. Table 2 summarizes our starting values and prior distributions.

[Table 2 about here]

Next, we turn to the estimation of model 1 for the WTI dataset. Figure 2 displays

the posterior distributions of the relevant model parameters. The bold vertical lines

represent our point estimates of the respective parameters (that is the mean of the

respective posterior distribution).

[Figure 2 about here]

Tables 3 and 4 display the estimates of the parameters from the models 1 to 8 (WTI

dataset) and the models 9 to 16 (Brent dataset), respectively. Since our study focusses

on the detection of speculative bubbles, we confine ourselves here to discussing only the

bubble-relevant regime-specific parameters ψ1 and ψ2, and the transition probabilities

p11 and p22. It is instructive to recall that according to our bubble specification (21) the

parameters ψ1 and ψ2 indicate whether a bubble regime is explosive (ψSt < 1) or stable

(ψSt > 1). For all models estimated in our study, we consistently find ψ̂1 > 1 indicating

the stable bubble regime 1, and (except for model 4) ψ̂2 < 1 marking the explosive
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bubble regime 2. Analyzing the transition probabilities p11 and p22, we typically find

the stable bubble regime 1 to be more persistent than the explosive regime 2 (except

for model 11).

[Table 3 about here]

[Table 4 about here]

Tables 5 and 6 report the 99% confidence intervals of the bubble parameters ψ1 and

ψ2. Evidently, the large majority of the confidence intervals do not contain the value

1 implying that ψ1 and ψ2 can be considered as significantly different from 1 at the

1%-level in these cases. Only in models 4 and 8, ψ2 does not appear to be significantly

smaller than 1 (meaning that we do not find statistical significance of an explosive

behavior of the bubble process), while in model 14, ψ1 is not significantly larger than

1 (indicating that the bubble process is not significantly stable at the 1% level).

[Table 5 about here]

[Table 6 about here]

Figure 3 displays the estimated bubble process and the corresponding regime-2 prob-

abilities for model 1.14 Obviously, the bubble process is negative for most of the first

5,000 observations, then steadily increases, and reaches a peak in mid-2008. After a

sharp decline, the bubble process grows again until the end of the sample in April 2011.

Pertaining to the regime-2 probabilities, we observe various short-lived switches from

the stable bubble regime 1 to the explosive regime 2 during the first 5,000 observations.

For the rest of the sample the bubble process appears to stay in the explosive bubble

regime 2 with a single interruption observed in mid-2008 reflecting the bursting of the

bubble at that time.

14We define a regime-2 probability as the probability of being in regime 2 at date t given all
information contained in z1, . . . , zT .
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[Figure 3 about here]

When visually inspecting the results for the 16 models estimated, we find striking

synchronicity among all WTI and all Brent regime-2 probability time-series.15 Owing

to this synchronicity, we consolidate the multiple regime-2 probability processes to one

single WTI and one single Brent regime process by first taking arithmetic averages of

the 8 WTI and the 8 Brent regime-2 probability processes, respectively. We then use

these average WTI and Brent regime-2 probability processes to construct a WTI and

a Brent regime process by the following rules:

SWTI

t =

{
1, if at time t the average WTI regime-2 probability < 0.5

2, if at time t the average WTI regime-2 probability ≥ 0.5
,

and SBrent
t analogously defined.

Figure 4 displays the WTI and Brent regime processes {SWTI
t } and {SBrent

t } during the

respective sampling periods. Both panels provide clear-cut evidence that the bubble

component was in the explosive regime 2 at the beginning of the 1990s as well as

between 2004 and 2011. Interestingly, both panels also exhibit a transition from the

explosive bubble-regime 2 to the stable bubble-regime 1 in mid-2008 hinting at the

bursting of the oil price bubble.

[Figure 4 about here]

As a final example, Figure 5 illustrates the WTI spot prices and convenience yields

computed from model 1. The shaded areas show the periods in which we find for the

consolidated regime process SWTI
t = 2 signaling that the WTI bubble process is likely

to have been in the explosive regime 2. In line with our expectations, the explosive

bubble regime 2 appears to have been in force between the end of 2004 and mid-2008,

and again between mid-2008 and April 2011 (the end of our sampling period) providing

clear-cut evidence in favor of the existence of speculative bubbles in recent oil prices.

15All remaining 15 regime-2 probability processes not shown in this study are available upon request.
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[Figure 5 about here]

5 Concluding remarks

Motivated by repeated price spikes and crashes over the last years, we investigate

whether the heavily financialized market for crude oil has been driven by speculative

bubbles. In our theoretical modeling we draw on the convenience yield approach in

order to approximate the fundamental value by the sum of discounted future oil div-

idends. We separate the fundamentally justified part of the oil price from the bubble

component by expressing the standard present-value model in state-space form. We

then introduce two Markov-regimes into the state-space representation in order to dis-

tinguish between stable and explosive phases in the bubble process. In contrast to

Al-Anaswah and Wilfling (2011), who estimate a similar Markov-switching state-space

approach for stock prices by maximum likelihood techniques, we establish an economet-

rically more robust Bayesian MCMC methodology in this paper. Based on inferential

techniques designed for statistically separating both Markov-regimes from each other,

we find robust evidence for the existence of speculative bubbles in recent oil price

dynamics.

Given the importance of the oil price for the real economy, stock markets, and mone-

tary policy, our findings may indicate the need for a more efficient regulation of financial

investors committed to oil derivative markets. As generally accepted, futures trading

is a valuable activity since it improves price discovery, enhances market efficiency,

increases market depth and informativeness, and contributes to market completion.

However, if these benefits are outweighed by over- and undershooting oil prices caused

by speculative trading, regulators should consider implementing effective position lim-

its, as currently executed in the United States (CFTC, 2011b) and at least discussed in

Europe. Apart from that, our results contribute to the on-going discussion on whether

central banks should actively fight speculative bubbles or just observe their evolutions
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and crashes. In addition, given the potential of oil price bubbles to bias the consumer

price index upwards, central banks might benefit from putting more focus on core in-

flation instead of headline inflation in order to avoid erroneous decisions on the course

of monetary policy.

As to commodity portfolio management, our approach can be operated in a routine

way to make density forecasts for future oil prices, taking into account both the con-

ditional information on the regime probabilities and the uncertainty about the model

parameters. Each draw from the forecast density can be generated by first drawing

a sample from the joint posterior density (24). Given the realization of all model pa-

rameters, states, regimes, and transition probabilities, one can use Eqs. (17) to (20) to

draw next period’s state variables, regimes, and observations – including the oil price

change. Repeating both steps a large number of times results in a distribution of future

prices.

Finally, in view of the little explicit testing for speculative bubbles in commodity

markets and the on-going academic and political debate on tighter regulation of spec-

ulators, scope for future research is given by applying our MCMC Markov-switching

state-space approach to other raw material prices which have recently been blamed

for over- and undershooting as well. In addition, similarly powerful testing procedures

should be used to broaden the empirical evidence of speculative bubbles on markets

for raw materials in general and for crude oil in particular.
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Table 1: Overview of the different types of models

Model Oil Type Spot price Convenience yield Nom./Real
Spot price Roll mechanism Interest rate

1 WTI Original Artificial First-day-of-delivery-month US T-bill rate Nominal
2 WTI Artificial Original First-day-of-delivery-month US T-bill rate Nominal
3 WTI Original Artificial Liquidity-peak US T-bill rate Nominal
4 WTI Original Artificial First-day-of-delivery-month Fed funds rate Nominal

5 WTI Original Artificial First-day-of-delivery-month US T-bill rate Real
6 WTI Artificial Original First-day-of-delivery-month US T-bill rate Real
7 WTI Original Artificial Liquidity-peak US T-bill rate Real
8 WTI Original Artificial First-day-of-delivery-month Fed funds rate Real

9 Brent Original Artificial First-day-of-delivery-month US T-bill rate Nominal
10 Brent Artificial Original First-day-of-delivery-month US T-bill rate Nominal
11 Brent Original Artificial Liquidity-peak US T-bill rate Nominal
12 Brent Original Artificial First-day-of-delivery-month Fed funds rate Nominal

13 Brent Original Artificial First-day-of-delivery-month US T-bill rate Real
14 Brent Artificial Original First-day-of-delivery-month US T-bill rate Real
15 Brent Original Artificial Liquidity-peak US T-bill rate Real
16 Brent Original Artificial First-day-of-delivery-month Fed funds rate Real

Table 2: Starting values and prior distributions

Parameter Regime 1 Regime 2 Prior distribution

µ 0 0 N (0, 0.12)
σ2
δ 0.152 0.152 Γ(1, 1

2
)−1

ψ 1.413 0.95 N ([1, 0.75], 0.052)−1

σ2
η 0.452 0.62 Γ(1, 1

2
)−1

p11 - - Beta(15,1)
p22 - - Beta(15,1)
γ 0.2 0.5 N (0, 1)
φ1,...,h random random N (0, 0.12)
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Table 3: Parameter estimates, WTI dataset

Model 1 Model 2 Model 3 Model 4
Regime 1 2 1 2 1 2 1 2

µ -0.012 -0.018 0.011 0.033 -0.213 0.182 0.056 0.083
σ2
δ 0.024 0.028 0.057 0.173 0.058 0.143 0.032 0.154
ψ 1.393 0.958 1.263 0.791 1.508 0.778 1.260 1.018
σ2
η 0.188 0.369 0.295 0.427 0.297 0.278 0.187 0.446
p11, p22 0.973 0.713 0.986 0.793 0.980 0.929 0.857 0.785
γ 0.034 -2.816 -0.104 -2.799 0.125 -2.628 -0.009 -2.895
φ1 0.112 -0.247 0.295 -0.556 0.276 -0.103 0.321 -0.093
φ2 0.159 -0.405 0.385 -0.700 -0.195 -0.429 0.323 -0.422

Model 5 Model 6 Model 7 Model 8
Regime 1 2 1 2 1 2 1 2

µ 0.033 -0.009 -0.277 -0.120 0.059 -0.335 -0.359 -0.120
σ2
δ 0.077 0.185 0.049 0.356 0.173 0.228 0.020 0.080
ψ 1.238 0.958 1.255 0.676 1.389 0.884 1.442 0.998
σ2
η 0.222 0.176 0.281 0.554 0.041 0.385 0.016 0.149
p11, p22 0.992 0.742 0.904 0.738 0.972 0.769 0.942 0.743
γ -0.071 -2.857 0.042 -2.722 -0.009 -2.760 0.328 -2.628
φ1 0.232 -0.385 0.127 -0.286 0.239 -0.071 -0.038 -0.599
φ2 0.202 -0.592 0.042 -0.352 0.286 -0.606 0.015 -0.333

Table 4: Parameter estimates, Brent dataset

Model 9 Model 10 Model 11 Model 12
Regime 1 2 1 2 1 2 1 2

µ -0.273 -0.116 0.080 -0.037 0.041 -0.225 0.067 0.133
σ2
δ 0.145 0.122 0.261 0.191 0.219 0.196 0.210 0.439
ψ 1.289 0.859 1.422 0.798 1.144 0.668 1.471 0.854
σ2
η 0.403 0.487 0.275 0.258 0.280 0.524 0.251 0.368
p11, p22 0.940 0.870 0.969 0.793 0.817 0.848 0.927 0.638
γ -0.110 0.094 0.020 -0.038 -0.034 -0.128 0.054 0.074
φ1 -0.176 0.077 -0.057 -0.062 0.262 0.166 0.196 -0.051
φ2 0.101 0.274 -0.112 0.061 0.191 -0.200 0.043 -0.257

Model 13 Model 14 Model 15 Model 16
Regime 1 2 1 2 1 2 1 2

µ -0.101 0.071 -0.088 -0.126 -0.057 0.113 -0.018 0.313
σ2
δ 0.044 0.018 0.083 0.217 0.081 0.001 0.190 0.029
ψ 1.233 0.782 1.078 0.677 1.364 0.757 1.563 0.839
σ2
η 0.154 0.611 0.185 0.381 0.268 0.106 0.273 0.356
p11, p22 0.964 0.907 0.889 0.883 0.985 0.932 0.922 0.828
γ 0.183 -0.151 0.360 0.009 -0.038 -0.208 -0.173 0.044
φ1 0.117 -0.129 0.040 0.124 -0.293 -0.082 -0.158 -0.272
φ2 0.123 -0.027 0.022 0.082 0.017 0.132 0.011 -0.214
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Table 5: 99% confidence intervals, WTI dataset

Model 1 Model 2 Model 3 Model 4

ψ1 [1.284 ; 1.480] [1.152 ; 1.373] [1.424 ; 1.588] [1.197 ; 1.346]
ψ2 [0.921 ; 0.981] [0.711 ; 0.865] [0.697 ; 0.854] [0.901 ; 1.180]

Model 5 Model 6 Model 7 Model 8

ψ1 [1.090 ; 1.371] [1.103 ; 1.392] [1.275 ; 1.517] [1.345 ; 1.622]
ψ2 [0.899 ; 0.987] [0.653 ; 0.698] [0.811 ; 0.957] [0.946 ; 1.051]

Table 6: 99% confidence intervals, Brent dataset

Model 9 Model 10 Model 11 Model 12

ψ1 [1.134 ; 1.321] [1.367 ; 1.506] [1.093 ; 1.279] [1.355 ; 1.618]
ψ2 [0.814 ; 0.899] [0.742 ; 0.837] [0.636 ; 0.698] [0.784 ; 0.921]

Model 13 Model 14 Model 15 Model 16

ψ1 [1.174 ; 1.300] [0.912 ; 1.224] [1.268 ; 1.593] [1.477 ; 1.628]
ψ2 [0.755 ; 0.826] [0.613 ; 0.738] [0.697 ; 0.814] [0.775 ; 0.894]
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Figure 1: Spot prices and convenience yields
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Figure 2: Parameter posterior distributions
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Figure 3: Bubble process and regime-2 probabilities
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Figure 4: Average WTI and Brent regime-processes
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Figure 5: Spot prices, convenience yields, and average regime-2 probabilities
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