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Abstract

We study the accuracy of a variety of parametric price duration-based realized variance es-

timators constructed via various financial duration models and compare their forecasting

performance with the performance of various non-parametric return-based realized variance

estimators. Our financial duration models consist of an ACD(1,1), its logarithmic version,

Log-ACD(1,1), and its long-memory version, FIACD(1,1), as well as the Markov-switching

multifractal duration (MSMD) model and the factorial hidden Markov duration (FHMD)

process. In an empirical study using high-frequency data on ten stocks traded on the New

York Stock Exchange (NYSE), our in- and out-of-sample results show that the parametric

price duration-based realized variance (RV) estimators, especially the ACD-based RV estima-

tor, perform better than the non-parametric return-based RV estimators. Furthermore, we

also find that the price duration-based and return-based RV models produce more accurate

and valid Value-at-Risk forecasts than the GARCH(1,1) model.
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1 Introduction

Although 60 years of research have been dedicated to the study of asset price variability, it has

lost none of its appeal for academia and practitioners, due to its ongoing importance for risk

management, derivative pricing and asset allocation. Initially, a lot of attention was devoted

to the development of parametric approaches to volatility modeling. The incorporation of

the stylized facts of financial return time series data, such as volatility clustering, leverage,

fat tails, jumps, long memory etc., has led to an abundance of GARCH-type and stochastic

volatility (SV) models, see Zaharieva et al. (2020) and the references therein for a recent

overview.

Owing to the advent of high-frequency data, the focus for the measurement of asset price

variability has been shifted from parametric to non-parametric methods during the last two

decades. The first model-free approaches of daily variance estimators utilizing high-frequency

intra-day return data, date back to the seminal works of Andersen et al. (2001a, 2001b),

and Barndorff-Nielsen and Shephard (2002a, 2002b). They established a realized variance

(RV) estimator to obtain a consistent estimate of an asset’s integrated variance. However,

exploiting the entire record of observations induces a severe bias in the proposed RV estimator,

when the price process is distorted by market microstructure noise (cf., inter alia, Hansen

and Lunde, 2006; Bandi and Russell, 2008). As a consequence, a variety of modifications and

refinements have been subsequently proposed to handle the contamination of the observed

(transaction) prices due to market imperfections. The subsampling technique of Zhang et

al. (2005) seeks to increase the sample size without increasing the sampling frequency, by

combining realized variance estimates that are computed using different sparse subsamples

of the same time scale. Zhang et al. (2005) and Zhang (2006) apply this idea to subsamples

of different time scales, which leads to the two-scale and multi-scale RV estimators. Another

way to construct a consistent estimator can be achieved by weighting the original returns, e.g.

by employing kernel functions as in Barndorff-Nielsen et al. (2008), or by pre-averaging the

returns as in Podolskij and Vetter (2009), Jacod et al. (2009) and Christensen et al. (2014).

The (jump-robust) realized bipower variation estimator of Barndorff-Nielsen and Shephard

(2006) is a further remarkable contribution to this field. For a more comprehensive review

on RV estimators, see the extensive study of Liu et al. (2015).

The fact that high-frequency data has become omnipresent has also fuelled the emergence
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of another research area. The last two decades have witnessed a huge effort devoted to

modeling high-frequency financial duration data, i.e. the time that has passed between two

financial events. The vast majority of studies focus on price durations, which are defined as

the time required for a (cumulative) change in the price beyond a pre-specified threshold.

The reasoning is twofold: (i) to test some market microstructure theories and to understand

the abundance of issues related to trading and price-adjustment processes (cf. surveys of

Madhavan, 2000; Biais et al., 2005; Hasbrouck, 2007) and (ii) because modeling financial

durations may help in accurately predicting instantaneous volatility, which is highly beneficial

to measuring and managing intra-day exposure to risk (cf., inter alia, Giot 2005; Dionne et

al., 2009; Liu and Tse, 2015).

Inspired by the GARCH model, Engle and Russell (1998) first propose an autoregressive

conditional duration (ACD) model for analyzing financial durations. Analogously to the

development of the GARCH model family, various extensions of the standard ACD model

have been introduced in the literature in order to appropriately reproduce the stylized facts

of financial durations, see Pacurar (2008) for a detailed literature review on ACD models.

Moreover, the pioneering work of Engle and Russell (1998) can also be regarded as the

starting point that unifies the modeling of (price) durations with the concept of realized

variance. Based on their established linkage between the conditional hazard function and

instantaneous volatility Tse and Yang (2012) and Hong et al. (2023) introduce a paramet-

ric price duration-based approach to estimate the intra-day variance. Their duration-based

method offers two advantages over the return-based approaches: (i) as noted by Andersen

et al. (2009) it exhibits robustness to jumps and market microstructure noise and (ii) uti-

lizes the data more efficiently. When constructing price duration data, sampling occurs more

frequently in turmoil periods (with many price changes) than in tranquil periods (with few

price changes), whereas the sampling mechanism for intra-day returns completely ignores

current market dynamics and only records prices in fixed time intervals. Hence, the sampling

of price duration can extract the data’s informational content more efficiently and preserves

the irregular spacing feature of the raw data qua construction.

Despite the promising results of the price duration-based approaches, the current state

of the literature is still at an early stage. It lacks a systematic comparison of the impact

of different modeling frameworks governing the (price) durations, sampling methods and
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distributional assumptions. To this end, our paper seeks to close this gap, and considers

different model setups and investigates their impact on estimation accuracy and forecasting

performance for daily variance.

For our study, we employ the Markov-switching multifractal duration (MSMD) process.

The successful application of the Markov-switching multifractal (MSM) model of Calvet and

Fisher (2004) in modeling and forecasting financial market volatility motivated both Chen

et al. (2013) and Žikeš et al. (2017) to adapt the model to the duration setting. The MSMD

model can reproduce, by its very principle of construction, short- and long-memory as ob-

served in financial duration data.

Recently, Schulte-Tillmann and Segnon (2024) applied the factorial hidden Markov volatil-

ity (FHMV) process of Augustyniak et al. (2019) to the framework of durations. The resulting

factorial hidden Markov duration (FHMD) model can be regarded as a viable alternative to

the MSMD process and traditional ACD-type models. By design it possesses a very flex-

ible autocorrelation structure capable of reproducing a wide range of persistence observed

in financial duration data. Moreover, it also embeds a jump component and more versatile

support than the MSMD process, and can thus generate richer dynamics. The hierarchical

structure of the latent components in the FHMD process may enable the model to repro-

duce self-similarity properties observed in financial durations. The presence of self-similarity

in financial durations suggests that the information flow arrives in the markets not only in

clusters, but also in cascades. This is in line with the conjecture of heterogeneous market

participants who act on different time scales, and have limited attention.

To complete our set of competitor models we consider the ACD(1,1) process (Engle and

Russell, 1998) as the benchmark model, its logarithmic version, the Log-ACD(1,1) model

(Bauwens and Giot, 2000) and the FIACD(1,1) process (Jasiak, 1999) as a genuine long-

memory model.

We apply the models to price durations of ten actively traded stocks on the New York

Stock Exchange (NYSE) to conduct an in-sample and an out-of-sample analysis. Moreover,

we also compare their performance with those of well-established RV estimators. In an

application to forecast the stocks’ Value-at-Risk (VaR) for a holding period of one day ahead,

we find that predictions based on intra-day duration data are superior compared to those that

rely on daily and intra-day return data.
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The rest of this paper is organized as follows. Section 2 presents the theoretical framework

of price duration-based variance estimation, describes the duration models and the different

RV estimators. Section 3 discusses the empirical application and Section 4 concludes.

2 Theoretical foundation

We consider an arbitrage-free financial market, in which an asset’s (continuous-time) log-price

process follows a semimartingale (cf. Back, 1991; Delbaen and Schachermayer, 1994) of the

form

dX(t) = µ(t)dt+ σ(t)dW (t), (1)

where W (t) is a standard Brownian motion, µ(t) is a continuous drift process with locally

bounded variation and σ(t) denotes a Càdlàg volatility process. The riskiness of such an

asset over the time span [0, t] can be reflected by its integrated variance,

IVt =

∫ t

0
σ2(s)ds. (2)

Starting at the beginning of a trading period, t0, we mark each point in time, at which the

absolute cumulative price change exceeds a certain threshold, ι, by t1 < t2 < . . . < tN . As a

result, we obtain the strictly increasing sequence of hitting times {tj}j=0,...,N . Moreover, we

denote the associated total number of hitting events up to time t by Nt. In our analysis, we

concentrate on the time difference between consecutive arrivals, and refer to them as price

durations, di = ti − ti−1, to infer the integrated variance, our objective of interest.

2.1 Financial duration models

In general, financial durations, di, can be modeled as

di = ψiεi, i ∈ Z, (3)

where {εi} is a sequence of independent and identically distributed (i.i.d.) unit-mean inno-

vations with positive support. We then present various processes that model the dynamics

of {ψi} in different ways. However, all models are estimated by maximum likelihood.
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2.2 Autoregressive conditional duration (ACD) models

2.2.1 ACD(1,1) model

In the ACD(1,1) framework proposed by Engle and Russell (1998), the conditional duration

process is given by

ψi = ω + α1di−1 + β1ψi−1. (4)

The conditional duration, ψi, follows an autoregressive process à la GARCH. To ensure the

stationarity and positivity of the conditional duration, the parameters in the model have to

satisfy ω > 0, α1, β1 ≥ 0 and α1 + β1 < 1.

2.2.2 Log-ACD(1,1) model

To avoid the non-negativity restrictions in the original ACD model and to provide more

flexibility, Bauwens and Giot (2000) propose the Log-ACD specification that models the

conditional duration, ψi, as follows:

ϕi = ω + αεi−1 + βϕi−1, (5)

where ϕi is the logarithm of the conditional duration, i.e. ψi = exp(ϕi). This specification is

known in the literature as the Log-ACD model of type 2 (Hautsch, 2012).

2.2.3 Fractionally integrated ACD(1, d, 1) model

In order to accurately reproduce the long-range dependence that characterizes the auto-

correlation function of financial duration data, Jasiak (1999) proposes the FIACD(1, d, 1)

framework that expresses the conditional duration as

ψi = ω (1− β1L)−1 +
[
1− (1− β1L)−1 (1− φ1L) (1− L)d

]
di

= $ +B(L)di,
(6)

where φ1 = α1 + β1, B(L) = b1L + b2L2 + . . . = 1 − (1− β1L)−1 (1− φ1L) (1 − L)d is a lag

polynomial of infinite order with bk ≥ 0, k = 1, 2, . . . and $ = ω (1− β1L)−1 > 0.
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The parameters, bk, can be expressed as

b1 = φ1 − β1 + d

b2 = (d− β1)(β1 − φ1) +
d(1− d)

2
...

bk = β1bk−1 +

(
k − 1− d

k
− φ1

)
πd,k−1,

(7)

where πd,k = πd,k−1(k− 1− d)k−1 for k = 2, 3, . . .. Note that πd,k represents the terms of the

expansion of (1− L)d, which can be expressed as

πd(L) =
∞∑
k=0

πd,kL
k. (8)

To ensure positivity of the conditional durations in the FIACD(1, d, 1) framework, the pa-

rameters φ1, β1 and d must fulfill the following conditions, see Bollerslev and Mikkelsen

(1996):

β1 − d ≤ φ1 ≤
2− d

3
, d

(
φ1 −

1− d
2

)
≤ β1(d− β1 + φ1). (9)

As stressed in Jasiak (1999), the FIACD(1, d, 1) can easily be estimated via the maximum

likelihood method by choosing a suitable truncation point that we set to 1,000 in our empirical

study.

Remark. The necessary and sufficient conditions for the covariance stationarity of the

ACD(1, 1) are provided in Engle and Russell (1998). Furthermore, ergodicity, mixing and

the existence of moments are discussed in detail in Meitz and Saikkonen (2011). We note

that the FIACD(1, d, 1) is not covariance stationary, but strictly stationary, see Jasiak (1999).

We refer the reader to Conrad and Haag (2006) for less restrictive positivity conditions than

those provided in Eq. (9).

2.3 Hidden Markov duration (HMD) models

2.3.1 MSMD model

The adaption of the MSM stochastic volatility model of Calvet and Fisher (2001, 2004) to

the duration setting has been proposed independently by Chen et al. (2013) and Žikeš et

al. (2017). In the resulting MSMD framework, the price durations are defined as in Eq. (3).
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More specifically, the process {ψi} is latent and composed of kv independent components,

V
(j)
i , j = 1, . . . , kv, that are multiplicatively connected and scaled with factor ψ̄, i.e.

ψi = ψ̄

kv∏
j=1

V
(j)
i . (10)

The dynamics of the process result from the renewal mechanism underlying the components.

At time i, each component, V
(j)
i , is either renewed with probability γj or remains unchanged

at its previous value with probability (1 − γj). In the event of a renewal, a new value from

a discrete distribution V with support {v0, 2 − v0}, where v0 ∈ (1, 2), is drawn with equal

probability. Hence, each component is a unit-mean, two-state Markov chain that can be

characterized by

V
(j)
i =


V

(j)
i−1, with prob. 1− γj ,
v0, with prob. 0.5γj ,

2− v0, with prob. 0.5γj

(11)

with corresponding transition probability matrix

Pj =

(
1− 0.5γj 0.5γj

0.5γj 1− 0.5γj

)
. (12)

The parametrization of the transition probability,

γj = 1− (1− γ1)b
j−1
, (13)

where γ1 ∈ (0, 1) and b > 1 for j = 1, . . . , kv, leads to a multiplier renewal with different

frequencies.

2.3.2 FHMD model

In the FHMD framework of Schulte-Tillmann and Segnon (2024), the process {ψi} is also

latent and can be formalized as a product of several independent processes, {Mi} and {C(j)
i },

j = 1, . . . , kc, i.e.

ψi = ψ̄Mi

c0

kc∏
j=1

C
(j)
i

 . (14)

Apart from the parameter ψ̄, which also serves as a scaling factor as in the MSMD model, the

structure of the other components, differ. The process {Mi} is a sequence of i.i.d. discrete

random variables satisfying E(Mi) = 1 and each process {C(j)
i }, j = 1, . . . , kc, is a Markov
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chain with unique support, that is supp(C
(j)
i ) = {cj , 1}. The recursive definition of the

outcome cj ,

cj = 1 + θj−1
c (c1 − 1), j = 2, . . . , kc, (15)

where c1 > 1 and θc ∈ (0, 1), implies a hierarchical structure in the individual supports, such

that c1 > c2 > . . . > ckc > 1. In contrast to the MSMD model, the switching behavior for all

two-state Markov chains, {C(j)
i }, is governed by the same transition probability matrix,

P =

(
p 1− p

1− p p

)
, (16)

where p ∈ (0, 1). Moreover, by setting c0 = 1/E
(∏kc

j=1C
(j)
i

)
, we ensure that E

(
c0
∏kc
j=1C

(j)
i

)
=

1. To facilitate maximum likelihood estimation of this hidden Markov model, we stack the

single components into the state vector Ci =
(
C

(1)
i , . . . , C

(kc)
i

)
with state space

∆C = {c1, 1} × {c2, 1} × · · · × {ckc , 1}. (17)

The component {Mi} follows an i.i.d. discrete random process with probability function

Pr (Mi = m0 ·mi) =

{
q(km − 1)−1, for i = 1, . . . , km − 1,

1− q, for i = km
, (18)

where q ∈ (0, 1), mi = 1 + θi−1
m (m1 − 1) with m1 > 1, mkm = 1 and θm ∈ (0, 1) for i =

2, . . . , km − 1. Analogous to the above definition, the recursive specification implies a hier-

archical structure in the magnitude of the possible outcomes by m1 > m2 > . . . > mkm = 1

and setting m0 =

[
1 + q

(m1−1)(1−θkm−1
m )

(km−1)(1−θm)

]−1

, results in the normalization of the distribution

of the component, such that E(Mi) = 1. Accordingly, the process {Mi} is non-persistent and

takes on values of the finite state space ∆M = {m0m1,m0m2, . . . ,m0mkm}, which enables it

to capture abrupt spikes in the durations.

Combining the Markov chain {Ci} and the process {Mi} leads to the overall state vector

{ψ̃i} with state space ∆
ψ̃

= ∆C ⊗ ∆M . Due to the distinct support of each component

{C(j)
i } and the additional jump component, the FHMD framework is capable of reflecting

richer dynamics than the MSMD model (cf. Section 2.2 in Schulte-Tillmann and Segnon,

2024).

Throughout this article, we let the innovations follow a Burr distribution to ensure a
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flexible shape of the conditional intensity function or the standard exponential distribution

as the baseline specification. Following the notation of Hautsch (2012), the Burr probability

density function and cumulative density function are given by

f(ε|λ, η, a) =
a

λ

( ε
λ

)a−1 [
1 + η

( ε
λ

)a]−(1+η−1)
, ε > 0, λ > 0, a > 0, η > 0 (19)

and

F (ε|λ, η, a) = 1−
[
1 + η

( ε
λ

)a]−η−1

. (20)

Note that the Burr distribution nests the Weibull distribution for η → 0, and by additionally

stipulating that a = 1, it also nests the exponential distribution. We set

λ = η1+a−1 ·B(1 + a−1, η−1 − a−1)−1,

to scale the mean of the innovations to unity.1

2.4 Price duration-based estimation of variance

Of central importance for the inference of intra-day variance from the domain of price du-

rations is the conditional intensity function. It represents the probability of a price event at

time t > ti−1 given the price event has not occurred before time t and the information set

available up to arrival time ti−1, denoted by Fi−1:

λ(d|Fi−1) =
f(d|Fi−1)

1− F (d|Fi−1)
, (21)

where d = t− ti−1 and f(·) and F (·) denote the density and cumulative distribution function,

respectively. According to Engle and Russell (1998), the conditional intensity function (or

equivalently, the conditional hazard function) can be linked to the conditional instantaneous

variance by

σ2(t|Fi−1) =

(
ι

Pi−1

)2

λ(d|Fi−1), (22)

where Pi−1 denotes the asset’s price at time ti−1. Building on this work, Tse and Yang (2012)

and Hong et al. (2023) provide the foundation for non-parametric as well as parametric price

1 B(·, ·) denotes the Beta function, i.e. B(x, y) = Γ(x)Γ(y)
Γ(x+y)

. Moreover, we assume a > η to ensure the existence
of the first moment.
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duration-based estimators. By integrating over the interval (ti−1, ti), we obtain an estimator

of the integrated variance. However, we are generally interested in the integrated variance

over a specific time interval [t0, tN ], which represents a trading day, an hour etc. Hence, we

aggregate the single integrals as follows

ÎV t =
N∑
i=1

∫ ti

ti−1

σ2(t|Fi−1)dt

=
N∑
i=1

(
ι

Pi−1

)2 ∫ ti

ti−1

λ(t− ti−1|Fi−1)dt

= −ι2
N∑
i=1

ln (1− F (di|Fi−1))

P 2
i−1

. (23)

Given Eq. (23) non-parametric and parametric approaches can be employed for the estimation

of the integrated variance. As Hong et al. (2023) demonstrate, replacing the summands in

Eq. (23) by their expectations leads to a non-parametric variance estimator (NPDV), which

is given by

NPDV =
N∑
i=1

(
ι

Pi−1

)2

. (24)

Our focus, though, is on the parametric approach. We employ the models described in

Sections 2.2 and 2.3 in order to obtain parametric price duration-based variance estimators

(PDV).

2.5 HMD-based variance estimator

Since Tse and Yang (2012) and Hong et al. (2023) show how price duration-based variance

estimators can be obtained based on ACD-type models, we concentrate on hidden Markov

model frameworks. To this end, let f(di|ψ̃i,Fi−1) denote the conditional density given state

ψ̃i and information set Fi−1.2 Then, we obtain f(di|Fi−1) by integrating out the states from

the joint density, f(di, ψ̃i|Fi−1), as follows

f(di|Fi−1) =
∑

ψ̃i∈∆
ψ̃

f(di|ψ̃i,Fi−1)f(ψ̃i|Fi−1). (25)

2 For the sake of generality, let ψ̃i also denote the state vector in the MSMD model.
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As a consequence, the corresponding cumulative probability function is given by

F (di|Fi−1) =

∫ di

0
f(ui|Fi−1)dui

=

∫ di

0

∑
ψ̃i∈∆

ψ̃

f(ui|ψ̃i,Fi−1)f(ψ̃i|Fi−1)dui

=
∑

ψ̃i∈∆
ψ̃

f(ψ̃i|Fi−1)

∫ di

0
f(ui|ψ̃i,Fi−1)dui. (26)

Given that the innovations are Burr distributed, the conditional intensity function, λ(di|Fi−1),

becomes

λ(di|Fi−1) =

∑
ψ̃i∈∆

ψ̃

a
ψi
c(a, η) ·

(
di
ψi
c(a, η)

)a−1 [
1 + η

(
di
ψi
c(a, η)

)a]−(1+η−1)
f(ψ̃i|Fi−1)∑

ψ̃i∈∆
ψ̃

(
1 + η

(
di
ψi
c(a, η)

)a)−η−1

f(ψ̃i|Fi−1)

,

(27)

where c(a, η) = B(1 + a−1, η−1 − a−1) · η−(1+a−1).3 For standard exponentially distributed

innovations, the conditional intensity function simplifies to

λ(di|Fi−1) =

∑
ψ̃i∈∆

ψ̃

1
ψi

exp
(
− di
ψi

)
f(ψ̃i|Fi−1)∑

ψ̃i∈∆
ψ̃

exp
(
− di
ψi

)
f(ψ̃i|Fi−1)

. (28)

Combining Eqs. (22) and (25) then results in the parametric price duration-based variance

estimator:

PDVHMD-Burr = −ι2
N∑
i=1

ln

 ∑
ψ̃i∈∆

ψ̃

(
1 +

(
di
ψi
·
B
(
1 + a−1, η−1 − a−1

)
η

)a)−η−1

f(ψ̃i|Fi−1)

 /P 2
i−1

(29)

We receive the conditional density function f(ψ̃i|Fi−1) as a by-product of the maximum

likelihood estimation process, which is described thoroughly in Schulte-Tillmann and Segnon

(2024). Moreover, note that we obtain the price duration-based variance estimator with an

3 Note that ψi is completely determined by the state variable ψ̃i.
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underlying exponential distribution as a special case, when η → 0 and a = 1:

PDVHMD-Exp = −ι2
N∑
i=1

ln

 ∑
ψ̃i∈∆

ψ̃

exp

(
− di
ψi

)
f(ψ̃i|Fi−1)

 /P 2
i−1. (30)

2.6 Review of RV methods

Before we briefly review selected non-parametric and return-based estimation approaches,

we introduce some notation. The entire record of observed (log-)transaction prices on a

trading day is given by {Xt0 , Xt1 , . . . , Xtn}. Employing the complete set of returns, though,

will severely distort the estimation due to microstructure noise. Thus, we consider a sparse

sample {Xt0 , Xt1∆ , Xt2∆ , . . . , Xt(n∆−1)∆
, Xtn∆∆} with reduced sample size n∆, that we obtain

by sampling with interval ∆.

The basic RV estimator is then defined by

RV∆ =

n∆∑
i=1

(Xti∆ −Xt(i−1)∆
)2 =

n∆∑
i=1

r2
ti∆
. (31)

In our empirical application, we use a sampling interval of 5 minutes. However, by doing

so, we discard large quantities of data. A straightforward strategy for making use of more

observations without being exposed to severe estimation bias is the subsampling technique

proposed by Zhang et al. (2005). To illustrate the idea, suppose that the entire grid of

observation times is given by G = {t0, . . . , tn}. By partitioning the original grid into K∆

subsamples, G(k∆), for k∆ = 1, . . . ,K∆, with sampling interval ∆, we can compute the realized

variance for each subsample

RV(k∆) =
∑

ti∈G(k∆)

r2
ti . (32)

Note that all subsamples share the same sampling interval, i.e. they exhibit the same time

scale, but the subsamples differ in their starting point, so that they are non-overlapping. By

taking the average, we obtain the subsampled version of the basic realized variance estimator

RV∆
ss =

1

K∆

K∆∑
k∆=1

RV(k∆). (33)

The above proposed estimator, however, only reduces the distortion induced by mi-

crostructure noise, but does not eliminate the bias. Following Zhang et al. (2005), a bias-
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corrected version can be obtained by combining two different time scales of the basic realized

variance estimator which is computed on the basis of all observations and its subsampled

version,

TSRV∆ = RV∆
ss −

n̄K∆

n
RV, where n̄K∆

=
1

K∆

K∆∑
k∆=1

nk∆
and RV =

n∑
i=1

r2
ti . (34)

As recommended by the authors, we sample the price process every 5 seconds in our appli-

cation.

Zhang’s (2006) generalization of this approach to multiple time scales (i.e. utilizing dif-

ferent sampling time intervals ∆i for i = 1, . . . ,M) yields a more efficient estimator, which

is also unbiased in the presence of microstructure noise, that is

MSRV =

M∑
i=1

αiRVk∆i +
1

n
RV, (35)

where the weights αi are appropriately chosen.

Barndorff-Nielsen et al. (2008) propose the realized kernel estimator, which is defined as

RK = γ0 +

H∑
h=1

k

(
h− 1

H

)
(γh + γ−h), (36)

where k(x) for x ∈ [0, 1] represents a weighting function and the h-th realized autocovariance

can be computed by

γh =

n∑
i=|h|+1

rtirti−h for h ∈ Z and |h| < H. (37)

We employ several weighting functions: (i) the Parzen kernel, (ii) the cubic kernel, (iii) the

Bartlett kernel and (iv) the (modified) Turkey-Hanning kernel (abbreviated by ’th2 ’). The

optimal bandwidth length H is chosen according to Barndorff-Nielsen et al. (2009). Moreover,

we follow their recommendation to use a high sampling frequency by setting the sampling

interval to 5 seconds.

Building on the pre-averaging concept of Podolskij and Vetter (2009) and Jacod et

al. (2009), Christensen et al. (2014) develop a noise-robust realized variance estimator. The

pre-averaging of the observed prices in their local neighbourhood of L observations reduces
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the impact of the noise. The returns based on pre-averaged (log-)prices are given by

r∗ti =
1

L

 L−1∑
j=L/2

Xti+j −
L/2−1∑
j=0

Xti+j

 , (38)

where L = θ
√
n has to be even. Following Christensen et al.’s (2014) empirical application,

we set θ = 1 and employ their noise-robust realized variance estimator

RVpa = ζL

N−L+1∑
i=0

|r∗ti |
2 + νL, (39)

where ζL = L
L−K+2

12
1+2L−2 and νL = 1

n−1
12

θ2(1+2L−2)

∑n
i=2 r

∗
tir
∗
ti−1

serves as a bias-correction.

Finally, we consider the realized bipower variation estimator of Barndorff-Nielsen and

Shephard (2006)

BPV =
π

2

n−1∑
i=1

|rti+1 ||rti |. (40)

Note that we apply Sheppard’s Matlab toolbox ’Oxford Realized ’ to compute all return-based

measures.4

3 Empirical analysis

3.1 Data description and adjustment

We apply the parametric as well as the non-parametric approaches described in Sections 2.5

and 2.6, for the estimation of daily variance for ten actively traded stocks. We investigate

the returns and price durations of Apple (AAPL), Bank of America (BAC), The Walt Disney

Company (DIS), Evergy Inc (EVRG), Facebook (FB), General Electric (GE), International

Business Machines (IBM), Pfizer (PFE), Tesla, Inc. (TSLA) and Walmart (WMT). For each

stock, except FB and TSLA, we extract the data for the time period from January 03, 2007 to

December 31, 2019, spanning 3272 trading days, from the Trade and Quote (TAQ) database.

Owing to later initial public offerings we base our analysis on data beginning on May 18, 2012

for FB and on June 29, 2010 for TSLA, covering 1917 and 2394 trading days, respectively.

The TAQ database is inevitably prone to market microstructure and thus requires a certain

amount of cleaning. Our data cleaning steps are described in the Appendix. Generally, we

4 See https://www.kevinsheppard.com/code/matlab/mfe-toolbox/ for further information.

14



concentrate on trades that occurred between 9:30 and 16:00 and resample the trade data to

a second by second frequency, taking volume-weighted price averages within one second.

We define the price duration for each stock as the minimal time required to observe a

cumulative change in the price not less than the threshold ι. Since no uniform method for

determining the threshold parameter has yet been established in the literature, we follow two

approaches to find an appropriate threshold. Firstly, in line with Tse and Yang (2012), we

aim to set the value for the daily threshold, such that we obtain an average price duration

of 5 minutes. To this end, we define a fine grid of threshold values and choose the threshold

that leads to an average duration that comes closest to our target. Secondly, akin to Hong et

al. (2023), we define the threshold parameter as the average daily bid/ask-spread multiplied

by a factor lying within the range of 3 to 10. In both approaches, we discard all overnight

durations following Engle and Russell (1998).

The intensity of trading activities on financial markets changes over the course of a trading

day. Typically, the average duration is short at the market open and close, and comparatively

longer in between. At the beginning of a day, trading activities are very high due to new

events that have occurred during the night (macroeconomic or firm-related news that have

become public after the previous market close). At the end of a day, traders tend to close

their positions to reduce their exposure to overnight stock market risk.5 These systematic

variations are responsible for the pronounced diurnal seasonality observed in high-frequency

financial duration data. However, since these variations are predetermined by market char-

acteristics, we remove the intra-day seasonality component, so that we are able to apply

our parametric estimation approaches to the stochastic part of the data. Some studies, like

Rodŕıguez-Poo et al. (2008), directly incorporate the deterministic part in their modelling

approach. But as Engle (2000) notes, this procedure does not yield substantial efficiency

gains relative to a two-stage adjustment process. Hence, most studies opt for the latter, that

is, a prior adjustment of the data. To this end, a variety of adjustment methods have been

proposed in the literature (cf. Engle and Russell, 1998; Wu, 2012; Hong et al., 2023; among

others, for different adjustment methods). Since Tse and Dong (2014) find that the diurnal

adjustment does not have a huge impact on the daily volatility estimation, we follow the

5 Besides this so-called time-of-the-day-effect, early studies based on duration data from the nineties or the start
of the new millennium, like inter alia Engle and Russell (1998) and Bauwens et al. (2004), document a distinct
day-of-the-week effect, which does not seem to be present in our data.
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robust and simple-to-implement dummy-adjustment approach of Ghysels et al. (2004)6:

We split the 6.5-hour trading time per day into 13 intervals of 30 minutes. Then, we

construct an indicator variable

yki =

{
1 if i ∈ k,
0 otherwise

(41)

for each 30-minute interval k = 1, . . . , 13 and perform a logarithmic dummy variable regres-

sion

ln(Di) =

13∑
k=1

αkyki + ui, (42)

where Di represents the raw duration data. Finally, we eliminate the time-of-the-day effect

and obtain the adjusted durations by

di = Di exp
(
−α̂′yi

)
, (43)

where α̂ = (α̂1, . . . , α̂13)′ and yi = (y1i, . . . , y13i)
′. In line with the aforementioned literature,

our durations exhibit a hump-shaped pattern over a trading day. As Figure 1 illustrates, the

increase in trading activity at the end of a day is not as distinct as at the beginning of the

day.7 Table 1 reveals that all stocks exhibit overdispersion, right skewness and heavy tails,

irrespective of the method used to obtain the raw duration data (5 min. or spread-based).

However, the data sets differ in many respects. The mean duration ranges from almost 2

(FB) to more than 12 minutes (PFE) for the spread-based data, whereas for the other data

set, the average time for a price event is close to 5 minutes as desired. We also find that

the degree of overdispersion, skewness and kurtosis is always substantially higher for the

spread-based data. The data adjustment process leads to a small attenuation of the degree

of overdispersion, but to an amplification of the other two characteristics for both data sets

in most of the cases. Hence, we ascertain that the method used to determine the threshold

parameter has a great impact on the received price duration data.

Figure 1 about here

6 Note that we also apply Nadaraya-Watson kernel regressions and spline functions to remove the diurnal
pattern, but we often observe negative durations and sharp declines in the degree of dispersion, and therefore
prefer the robust dummy-adjustment approach.

7 We refrain from displaying the analogous figure for the spread data, since the seasonality pattern is qualitatively
similar.
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Table 1 about here

3.2 In-sample analysis

In our in-sample analysis, we estimate the daily variance of all ten stocks over the whole

sample period using all previously presented estimators. Figure 2 shows the annualized

volatility of IBM for an illustrative set of RV estimators (PDV5min
FHMD, db, TSRV5sec

db and RV5min).

The trajectories follow each other quite closely, and for all estimates, the volatility peaks

during the financial crisis, but, the estimates often differ in their volatility level.

Figure 2 about here

The general tendency, however, that estimates keep close track of each other is also confirmed

for the remaining estimates by the correlation heat map in Figure 3, in which we display the

correlation coefficients between all realized variance estimates for IBM. In comparison to

earlier studies (cf. Patton and Sheppard, 2009), which rely on older high-frequency data

(1996-2008), we find a higher overall level of correlation.

Figure 3 about here

We refrain from presenting the results for other stocks, as the outcomes are qualitatively

similar.

Our next step is to evaluate the estimation accuracy of all presented RV estimators. In

contrast to Tse and Yang (2012) and Hong et al. (2023), who assess the accuracy of their

newly introduced price duration-based estimators in the context of a simulation study, we

compare their estimation accuracy in a real-world application. We overcome the problem that

the object of interest is not observable, not even ex post, by applying the data-based ranking

methodology of Patton (2011a). The approach requires an unbiased, but not necessarily

precise proxy for the integrated variance. However, since the proxy and the estimators share

the same data basis, the estimation errors are likely to be correlated. Therefore, Patton

(2011a) recommends employing a one-day lead of the proxy as an instrument to break the

correlation.

We measure the estimation accuracy using two well-established loss functions, the root
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mean squared error (RMSE),

RMSE =

√√√√ 1

T

T∑
t=1

(θt −Mi,t)2, (44)

and the quasi-likelihood (QLike), that is defined by

QLike =
1

T

T∑
t=1

(
θt
Mi,t

− ln

(
θt
Mi,t

)
− 1

)
, (45)

where θt displays the instrument at day t, and Mi,t denotes the i-th RV estimator at day t.

This setup enables us to obtain a consistent estimate of the difference in accuracy between two

competing estimators, so that an iterative testing procedure, such as the model confidence

set approach of Hansen et al. (2011) can be applied.

In our in-sample analysis, we estimate the parameters underlying the parametric ap-

proaches on a monthly basis, and use the one-day lead of the 5-min RV estimator as an

instrument. In Table 2, we report the values for the RMSE and QLike criteria for all stocks,

and mark estimators that belong to the 75%-model confidence set. Depending on the con-

sidered loss function, the results differ substantially. In general, the sets of surviving models

under the RMSE loss function are less sparse than the model confidence sets under the QLike

criterion. The final sets are also found to be different in terms of their composition. Thus, for

the RMSE loss function, parametric approaches outweigh the model confidence sets, which is

evident from the fact that the estimates of daily volatility based on the ACD(-Burr) model

using spread data are always part of the model confidence sets for all stocks. Additionally,

the FHMD-Burr, as well as the MSMD-Burr model also relying on spread data are included

in seven out of ten cases, whereas the most successful return-based approaches (BPV5min
db and

BPV5min
ss, db) only appear in three model confidence sets. The good performance of the para-

metric price duration-based estimators is also reflected in the smallest average losses across

all stocks. With 4.58 × 10−4 the ACD-Burr (spread data) has the lowest mean loss across

all stocks, closely followed by the FHMD-Burr model (spread data) with an average loss of

4.63× 10−4.

However, under the QLike criterion, the composition of the model confidence sets changes.

The two-scale realized variance estimator (TSRV5sec
db ) clearly prevails in this situation, since it
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is part of the surviving set for eight stocks and also exhibits the smallest average loss across

all stocks at 0.19. The FHMD-Burr model on spread data appears second most frequently in

the model confidence sets and also has the fourth lowest average loss at 0.20. Interestingly,

the performance of the two-scale realized variance estimator in terms of the QLike criterion

is in stark contrast to its performance under the RMSE loss function, where it is only present

in two model confidence sets and has the fourth highest average RMSE-loss across all stocks.

Another noteworthy finding is that the performance of price duration-based estimators is

in general better, when they are based on spread data instead of 5-min data.

Table 2 about here

3.3 Out-of-sample analysis

Next, we investigate whether accurate estimates translate into precise forecasts. In order to

construct individual variance forecasts for each estimator, we need to employ a time series

model that reflects the dynamics of the IV estimates. Owing to the strong persistence of the

RV measures, we base our predictions on the heterogeneous autoregressive (HAR) model of

Corsi (2009), that accommodates the long-memory feature of realized variance:

θt+h = β0,i,h + β1,i,hMi,t + β2,i,h
1

5

4∑
l=0

Mi,t−l + β3,i,h
1

22

21∑
l=0

Mi,t−l + ui,t. (46)

We estimate the HAR model based on a rolling window of the 500 most recent observations

for three forecast horizons, h = 1, 5, 22, that represent forecasts one day/week/month ahead.

Despite the documented bias in the estimated coefficients of the HAR model in the presence of

measurement errors in RV, we do not address this issue directly, unlike Bollerslev et al. (2016)

with their HARQ model, but employ a weighted least squares (WLS) estimation technique

proposed by Clements and Preve (2021) to overcome this deficiency. In contrast to the usual

OLS, WLS places less weight on observations, for which the errors are likely to be large,

leading to more efficient estimators. Clements and Preve (2021) provide evidence by means

of a large-scale out-of-sample forecasting study that the HAR model estimated with WLS

exhibits higher predictive accuracy than current state-of-the-art models or extensions of the

original model, like e.g. the HARQ model (Bollerslev et al., 2016) or the Leverage HAR model

(Corsi and Reno, 2012). Again, we employ the 5-min RV estimates as the variance proxy
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and use the RMSE and QLike criteria to assess the forecast performance following Patton

(2011b). To rule out any look-ahead bias, we estimate the duration-based models day-by-day

using the 21 most recent days of intra-day observations.

We display the relative forecasting performance compared to the 5-min RV estimator for

each stock in Tables 5 - 14. Analogously to the in-sample analysis, we mark the models

belonging to the 75% model confidence sets. In Table 3, we summarize the results and

report how often a particular model is part of the final surviving set. Across all stocks

and for each forecasting horizon, the parametric duration estimator PDVSpread
ACD, db exhibits the

highest precision in terms of the RMSE and QLike criteria in most cases (cf. Tables 5 - 14).

Especially in terms of the QLike criterion, we find large improvements up to 12% compared

to the benchmark model RV5min (cf. Table 14). This is also reflected in the highest number of

inclusions in the model confidence sets. In 58 out of 60 cases, the PDVSpread
ACD, db belongs to the

final set. The best return-based method, the BPV5min
ss, db, follows at a wide gap with only 30

inclusions. The other duration-based approaches also do not appear frequently in the model

confidence set, e.g. the PDVSpread
FHMD-Burr,db has a total of 30 inclusions. In general, we find that

the forecasting performance of the parametric price duration-based approaches hinges on the

specification underlying the PDV. Moreover, the accuracy of all parametric duration methods

is once again higher when they are based on spread-data instead of 5-min data.

Table 3 about here

3.4 Value-at-Risk forecasting

Since the introduction by the first pillar of the Basel 2 Accord of the Value-at-Risk (VaR)

as the leading market risk measure, it has become pivotal for any bank’s minimum capital

requirements. Due to its importance, several different methods have been proposed to forecast

VaR as accurately as possible, see Nieto and Ruiz (2016) for a recent survey. The vast majority

of studies relies on daily return data to forecast the VaR. One of the most popular approaches

imputes that the conditional distribution of returns can be described by

rt = µt + εt, εt = σtut, where ut
iid∼ (0, 1). (47)
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Based on this location-scale family setting, the resulting one-step-ahead 100α% VaR, condi-

tional on the information set available at time t− 1, can be computed by

VaRα
t|t−1 = µt + σtF

−1(α), (48)

where F−1(α) displays the α-quantile of the distribution of ut. As a major benefit, this frame-

work offers a wide spectrum of models and distributions that can be employed to represent

the dynamics of the conditional mean, µt, the conditional variance, σ2
t , and the distribution

of the innovation, ut. The simple GARCH(1,1) model (Bollerslev, 1986), coupled with the as-

sumption of a constant conditional mean return, is a common choice among both practitioners

and academics for modelling the conditional variance. Moreover, the Student-t distribution

is often adopted in order to reflect the leptokurtotic nature of the returns. Expressing this

modeling approach in the framework presented in Eq. (47), we have

rt = µ+ εt, εt = σtut, where ut
iid∼ tν(0, 1),

σ2
t = β0 + β1σ

2
t−1 + β2ε

2
t−1.

(49)

However, some recent approaches employ intra-day data in the form of different RV

measures for VaR forecasting with promising results, like inter alia Giot and Laurent (2004),

Clements et al. (2008) or Fuertes and Olmo (2013). Given the success of the parametric

price duration-based approaches in the in-sample as well as in the out-of-sample analysis, we

examine whether the usage of RV measures based on high-frequency duration data can offer

benefits compared to daily and intra-day return data. For incorporating RV measures in the

VaR predictions, we need to have (i) a law of motion for the RV dynamics and (ii) a mapping

between the conditional expectation of the RV measure and the conditional variance of the

returns (cf. Brownless and Gallo, 2010). Most approaches rely on a two-step procedure that

builds, for example, on a HAR or ARFIMA(X) model (cf. Giot and Laurent, 2004; Clements et

al., 2008) in the first instance and relates the conditional RV prediction with the conditional

variance by means of a linear function, which serves as a bias-correcting mechanism, in a

consecutive step. A more novel approach from Maheu and McCurdy (2011) combines the

two steps into one by using a bivariate model. Owing to its success in the closely related

field of return density forecasting, we follow their approach and model the return and the RV
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simultaneously in the following way8

rt = µ+ εt, εt = σtut, where ut ∼ tν(0, 1),

log(RVt) = ω + φ1 log(RVt−1) + φ2 log(RVt−5,5) + φ3 log(RVt−22,22) + vt,
(50)

where RVt−j,j = 1
j

∑j
i=1 RVt−i and vt ∼ N (0, 1). The authors argue that - under certain

empirically realistic conditions - the conditional expectation of an unbiased RV measure is

equal to the conditional variance of returns, i.e. Et−1(RVt) = Vart−1(rt) = σ2
t . Accordingly,

they establish a linkage between these two measures. Due to the log-normal distribution of

the RV measure in this specification, the connection is given by

σ2
t = Et−1(RVt) = exp

(
Et−1 (log(RVt)) + 0.5Vart−1 (log(RVt))

)
. (51)

Based on this framework, we employ duration-based as well as return-based RV measures

for our VaR forecasting exercise. In our analysis, we concentrate on the most successful

RV measures from Sections 3.2 and 3.3. Relying on the PDVSpread
FHMD-Burr,db and the PDVSpread

ACD, db

as duration-based RV measures and on the RV5min, the TSRV5sec
db as well as the BPV5min

ss, db

as return-based benchmarks, we estimate the bivariate model via maximum-likelihood and

project the conditional return variance one-day ahead to obtain a VaR forecast. Doing so for

a rolling window of 500 observations, we obtain a series of 2752 VaR predictions for the time

span December 2008 until December 2019.9

A suitable illustration of our VaR predictions using the RV5min and PDVSpread
ACD,db measures

as components for the bivariate model for IBM against its returns in Figure 4, reveals that

our forecasts sometimes fail to quantify the maximum loss that will not be exceeded with

95% probability and that the returns occasionally exceed (or ’hit’) the threshold set by the

forecasted VaR. As long as the number of failures (’hits’) is within the range of expectable

exceedances, the forecasting approach can be regarded as adequate. In Figure 4, we see that

for both approaches, the VaR violations often coincide. Furthermore, the total numbers of

’hits’ (137 and 140 for RV5min and PDVSpread
FHMD-Burr,db, respectively) are close to the expected

number of 137.55.

8 Other options for characterising the dynamics of the log-RV than the HAR model presented above are also
viable and are described by Maheu and McCurdy (2011).

9 For FB and TSLA, the out-of-sample period is reduced.
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Figure 4 about here

However, the number of ’hits’ is a very uninformative indicator and does not reflect the

trade-off between the costs of over- and under-prediction (regulatory penalty vs. opportunity

cost of capital). In order to account for these conflicting targets, we compare the forecasting

accuracy on the basis of the asymmetric tick-loss function of Giacomini and Komunjer (2005),

which is given by

TLα
(
rt+1,VaRt+1|t

)
=
(
α− 1{rt+1<VaRαt+1|t}

)(
rt+1 −VaRα

t+1|t

)
. (52)

For 5%- as well as 1%-VaR forecasts, we present the average tick-loss function values for

each stock in Table 4. For each row, we highlight the best forecast in bold numbers. To test

for the predictive power of the duration-based RV measure stemming from the ACD model,

we conduct pairwise comparisons via the Diebold-Mariano test (1995) in the framework of

Giacomini and White (2006).10 We display significant outperformance (underperformance)

by ∗∗∗ (†††), ∗∗ (††), and ∗ (†) for the 1%, 5% and 10% significance levels. Apart from our intra-

day based RV measures, we opt for the classic location-scale family approach in combination

with a GARCH(1,1) model as described in Eq. (49) as a benchmark.

Table 4 about here

According to Table 4, the predictions of future VaR values based on the PDVSpread
ACD, db mea-

sure perform best in terms of the tick-loss function for almost every stock and confidence

level. In comparison to other forecasts, we find that the PDVSpread
ACD, db-based forecasting ap-

proach is significantly better than the other forecasting methods in the vast majority of cases.

In particular, compared to GARCH model-based forecasts, we find highly significant outper-

formance in favour of the duration-based approach. This result also holds for all other VaR

forecasts that rely on high-frequency intra-day data. They furthermore, perform substantially

better than predictions that only employ daily return data (GARCH).

Among all competitors, VaR forecasts utilizing the estimates of the other duration-based

10 We note that the asymmetric tick-loss function defined in Eq. (52) is not differentiable due to the presence of
the indicator function. The non-differentiability may cause a problem in the implementation of the Diebold-
Mariano test. However, as pointed out by Granger (1999), the issue is just a technicality, due to the fact that
it is always possible to find a smooth function which can approximate the non-differentiable one arbitrarily
closely.
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variance measure, PDVSpread
FHMD-Burr,db, seem to be a viable option. They often perform slightly

better than return-based methods. However, in comparison to predictions on the basis of

PDVSpread
ACD,db estimates, we often find significantly inferior forecasting accuracy.

4 Conclusion

As a result of the availability of high-frequency asset price data, numerous ways to estimate

the asset price variability have been proposed. These estimators, known as RV measures,

are all based on evenly-spaced intra-day return data. A more recent approach allows the

estimation of the asset’s integrated variance by employing irregularly-spaced price duration

data. The usage of intra-day duration data is more robust than return data and ensures

that the information content of the data can be extracted more efficiently. However, an inte-

gral component of the newly-introduced estimator is the specification of a financial duration

model. Until now, models from the ACD family have been the standard choice. However,

motivated by the success of alternative duration models, we propose new duration-based

realized variance estimators based on the FIACD and the Log-ACD, as well as two hidden

Markov duration models, the MSMD and the FHMD model. For both of them, we derive

the price duration-based estimator.

In an in-sample analysis, we apply the duration-based estimators and a set of well-

established return-based RV measures to estimate the daily integrated variance of ten highly

liquid stocks. We compare the estimation accuracy on the basis of intra-day data from Jan-

uary 2007 to December 2019 and find that (i) the duration-based approaches, in particular

the ACD- and FHMD-based estimates, exhibit high estimation precision under the RMSE

criterion and (ii) the TSRV measure and the FHMD-based estimator perform best in terms

of the QLike loss. Moreover, we evaluate our duration-based variance estimators in two fore-

casting exercises. First, we construct predictions of future variance on the basis of a HAR

model. Using the model confidence approach, we find that the ACD-based forecasts are

almost always part of the final surviving set, irrespective of the loss function and forecast

horizon. Focusing on the best-performing duration- and return-based estimators in our sec-

ond forecasting application, we employ our daily estimates of the realized variance to predict

the VaR one-day-ahead. On the basis of a Diebold-Mariano test, we find that the ACD-based

method often provides significant accuracy gains. Our results indicate that the informational
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content in the irregularly-spaced price duration data can help in improving the estimation

and forecasting accuracy, especially by employing the ACD(1,1) as the underlying duration

model.

In this paper, we separately investigate estimators for the integrated variance for ten

different stocks. However, employing high-frequency data to produce accurate estimates

of the covariance matrix might also be highly relevant for portfolio optimisation and risk

management. In the domain of intra-day returns, multivariate analogons to popular RV

measures have been already proposed, such as, inter alia, the two-scale integrated covariance

estimator of Zhang (2011) and the multivariate realized kernel estimator of Barndorff-Nielsen

et al. (2011). Extending the parametric duration-based approach to the multivariate setting

may therefore be a promising path for future research.

Appendix: A. Data cleaning

We retain only trades with positive trade prices and volumes, and valid trade correction

indicators “00” and “01”. Following Aı̈t-Sahalia et al. (2020), we further exclude trade sale

conditions, “Z”, “B”, “U”, “T”, “L”, “G”, “W”, “K”, and “J”, as well as an accompanying

“I” for odd lot trades. We take the median price if multiple trades are recorded at the same

timestamp, which further reduces recording errors. This procedure however, does not yet

guarantee fully reliable data. When merging the trade and quote observations within one

microsecond, we apply the following two filters: (i) we remove all crossed quotes, i.e. all quotes

for which a higher bid than ask-price is reported and (ii) we exclude all transaction prices

which are smaller than the bid-price minus the spread, or resp. greater than the ask-price

plus the spread.
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Table 1: Descriptive statistics of the raw and adjusted duration data

Raw duration data Adjusted duration data

No. of obs. Mean Overdisp. Skewness Kurtosis Mean Overdisp. Skewness Kurtosis

5
m

in
.

d
at

a

AAPL 251,348 299.731 1.346 3.768 30.547 1.613 1.072 3.416 31.136

BAC 253,726 296.695 1.406 4.057 33.295 1.689 1.142 3.718 38.271

DIS 251,566 299.364 1.359 3.509 24.091 1.714 1.175 3.823 31.864

EVRG 251,864 299.244 1.419 4.161 36.818 1.858 1.210 4.210 50.773

FB 146,714 299.486 1.378 3.787 30.656 1.597 1.059 3.372 33.972

GE 253,982 297.236 1.412 4.013 33.176 1.755 1.180 3.556 28.246

IBM 251,565 299.895 1.385 3.814 30.253 1.722 1.156 3.578 28.198

PFE 253,489 298.128 1.368 3.688 26.967 1.744 1.159 3.321 23.325

TSLA 182,464 299.669 1.534 4.363 37.765 1.800 1.296 5.779 94.962

WMT 251,848 299.485 1.412 3.906 32.217 1.716 1.164 3.704 34.967

S
p

re
a
d

d
at

a

AAPL 168,165 430.600 1.957 6.549 71.632 1.709 1.309 8.047 206.391

BAC 585,670 127.545 2.771 10.489 209.479 1.746 1.394 13.949 1151.886

DIS 253,402 294.969 1.668 5.455 61.693 1.797 1.338 7.845 233.522

EVRG 181,249 409.463 1.748 5.554 55.344 1.862 1.357 7.469 179.940

FB 396,104 111.695 1.841 9.759 259.408 1.699 1.244 5.898 118.267

GE 378,093 198.547 2.114 8.096 138.145 1.828 1.372 5.816 97.187

IBM 252,155 296.280 1.727 5.569 60.275 1.777 1.233 4.153 39.834

PFE 95,662 747.073 1.721 4.597 35.803 1.783 1.335 8.736 266.290

TSLA 261,735 207.892 1.990 8.367 147.362 1.858 1.415 8.248 220.006

WMT 128,303 526.859 1.796 4.946 42.316 1.823 1.616 19.660 910.529

Note: For each stock we report the descriptive statistics for the (raw and adjusted) 5 min. data in the top panel

and for the (raw and adjusted) spread-based data in the bottom panel.

32



Table 2: In-sample performance of realized measures (Proxy: 5-min RV)

AAPL BAC DIS EVRG FB

RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 5.064 0.279 14.013 0.225 2.900 0.211 4.292 0.237 3.787 0.231

RV5min
ss 5.317 0.279 15.106 0.219 3.487 0.208 4.263 0.220 3.461 0.229

RK5sec
parzen 5.296 0.265 15.750 0.224 3.860 0.201 4.261 0.223 3.424 0.218

RK5sec
cubic 5.479 0.258 16.104 0.219 3.842 0.193 4.185 0.211 3.386 0.213

RK5sec
th2 6.211 0.245 15.701 0.197 3.767 0.183 4.332 0.193 3.388 0.204

RK5sec
bartlett 5.899 0.245 15.634 0.197 3.741 0.182 4.310 0.192 3.391 0.203

TSRV5sec
db 5.061 0.230 15.181 0.181 3.357 0.171 5.417 0.189 3.808 0.190

MSRV5sec 4.578 0.675 14.071 0.417 3.101 0.510 4.221 0.235 3.490 0.601

RV5min
pa 4.754 0.627 14.791 0.538 3.017 0.464 4.794 0.684 3.529 0.506

BPV5min
db 5.248 0.313 13.100 0.259 2.689 0.234 4.260 0.280 3.431 0.258

BPV5min
ss,db 5.281 0.309 14.796 0.242 3.187 0.229 4.057 0.258 3.297 0.253

PDV5min
FHMD,db 4.366 0.284 14.134 0.206 2.965 0.231 3.918 0.388 3.271 0.242

PDV5min
FHMD-Burr,db 4.380 0.282 13.951 0.204 2.987 0.228 3.915 0.385 3.141 0.240

PDVSpread
FHMD,db 4.196 0.241 12.893 0.184 2.605 0.185 3.726 0.262 2.993 0.228

PDVSpread
FHMD-Burr,db 4.148 0.234 12.853 0.181 2.608 0.182 3.757 0.257 2.981 0.222

PDV5min
MSMD,db 4.494 0.283 13.969 0.207 3.108 0.229 3.920 0.390 3.199 0.241

PDV5min
MSMD-Burr,db 4.464 0.279 14.176 0.203 3.009 0.227 3.916 0.386 3.220 0.237

PDVSpread
MSMD,db 4.216 0.250 12.893 0.189 2.616 0.191 3.748 0.272 3.004 0.236

PDVSpread
MSMD-Burr,db 4.203 0.241 13.075 0.187 2.630 0.187 3.801 0.264 2.987 0.230

PDV5min
ACD, db 4.377 0.268 13.603 0.189 3.049 0.224 4.033 0.386 3.047 0.235

PDV5min
ACD-Burr,db 4.371 0.269 13.473 0.190 2.961 0.223 4.007 0.387 3.089 0.235

PDVSpread
ACD,db 4.086 0.236 12.871 0.182 2.561 0.181 3.705 0.261 2.979 0.229

PDVSpread
ACD-Burr,db 4.088 0.237 12.762 0.182 2.561 0.185 3.706 0.261 2.982 0.229

PDV5min
FIACD,db 4.546 1.004 14.572 0.815 3.074 0.818 3.829 1.205 3.527 0.846

PDV5min
FIACD-Burr,db 4.880 1.081 14.365 0.795 3.140 0.841 3.775 1.391 3.554 0.911

PDVSpread
FIACD,db 4.461 12.446 13.023 3.449 2.905 2.304 3.893 5.646 3.107 0.388

PDVSpread
FIACD-Burr,db 4.463 11.267 13.004 3.305 2.875 2.021 3.880 5.177 3.111 0.386

PDV5min
Log-ACD,db 4.383 0.268 13.576 0.189 2.993 0.223 4.038 0.384 3.052 0.234

PDV5min
Log-ACD-Burr,db 4.376 0.269 13.455 0.191 2.929 0.223 4.015 0.385 3.063 0.234

PDVSpread
Log-ACD,db 4.089 0.239 12.831 0.181 2.574 0.182 3.705 0.258 2.983 0.227

PDVSpread
Log-ACD-Burr,db 4.076 0.244 12.673 0.183 2.562 0.184 3.701 0.258 2.992 0.231

NPDV5min
db 4.405 0.272 14.039 0.192 3.050 0.225 3.986 0.402 3.095 0.233

NPDVSpread
db 4.298 0.278 13.150 0.203 2.656 0.212 3.771 0.301 3.028 0.253

Continued on next page.

33



Table 2: Continued.

GE IBM PFE TSLA WMT

RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 6.168 0.207 2.470 0.199 2.060 0.186 9.221 0.273 2.303 0.244

RV5min
ss 6.204 0.207 2.442 0.198 2.204 0.181 8.846 0.268 2.856 0.239

RK5sec
parzen 6.457 0.207 2.432 0.191 2.222 0.179 8.929 0.264 2.696 0.230

RK5sec
cubic 6.596 0.203 2.371 0.181 2.337 0.172 9.034 0.250 2.975 0.217

RK5sec
th2 6.468 0.185 2.574 0.170 2.461 0.158 8.817 0.229 2.926 0.206

RK5sec
bartlett 6.428 0.185 2.527 0.169 2.420 0.157 8.868 0.229 2.879 0.205

TSRV5sec
db 6.095 0.174 2.809 0.160 2.251 0.149 9.086 0.209 2.314 0.198

MSRV5sec 5.907 0.387 2.418 0.465 2.121 0.362 9.489 0.412 2.187 0.589

RV5min
pa 5.864 0.557 2.357 0.497 1.985 0.514 10.156 0.701 2.507 0.618

BPV5min
db 5.981 0.243 2.538 0.223 1.986 0.214 8.739 0.311 2.305 0.268

BPV5min
ss,db 6.005 0.234 2.448 0.217 2.166 0.207 8.470 0.300 2.740 0.266

PDV5min
FHMD,db 5.647 0.203 2.333 0.209 2.021 0.196 8.578 0.298 2.241 0.269

PDV5min
FHMD-Burr,db 5.641 0.201 2.332 0.207 2.022 0.193 8.698 0.297 2.236 0.266

PDVSpread
FHMD,db 5.280 0.153 2.180 0.176 1.778 0.142 8.682 0.246 1.994 0.193

PDVSpread
FHMD-Burr,db 5.263 0.151 2.224 0.173 1.781 0.141 8.662 0.241 1.990 0.191

PDV5min
MSMD,db 5.795 0.203 2.374 0.208 2.142 0.195 8.584 0.299 2.372 0.266

PDV5min
MSMD-Burr,db 5.720 0.199 2.418 0.205 2.038 0.192 8.584 0.294 2.273 0.266

PDVSpread
MSMD,db 5.318 0.160 2.207 0.185 1.825 0.150 8.705 0.255 2.013 0.200

PDVSpread
MSMD-Burr,db 5.305 0.157 2.225 0.178 1.815 0.147 8.777 0.251 2.013 0.193

PDV5min
ACD,db 5.618 0.180 2.384 0.203 2.088 0.174 8.544 0.297 2.254 0.257

PDV5min
ACD-Burr,db 5.548 0.181 2.387 0.204 2.085 0.177 8.433 0.297 2.269 0.257

PDVSpread
ACD,db 5.255 0.154 2.106 0.174 1.734 0.147 8.690 0.250 1.970 0.185

PDVSpread
ACD-Burr,db 5.248 0.154 2.126 0.178 1.746 0.144 8.655 0.250 1.973 0.187

PDV5min
FIACD,db 6.219 0.527 2.399 0.737 2.166 0.558 8.845 0.677 2.275 0.623

PDV5min
FIACD-Burr,db 6.053 0.619 2.448 0.782 2.084 0.647 10.979 0.860 2.154 0.741

PDVSpread
FIACD,db 5.570 1.748 2.249 3.157 2.445 14.044 9.795 1.578 2.155 8.194

PDVSpread
FIACD-Burr,db 5.575 1.660 2.233 2.750 2.430 13.399 9.713 1.211 2.138 7.711

PDV5min
Log-ACD,db 5.611 0.180 2.385 0.204 2.084 0.175 8.555 0.297 2.261 0.256

PDV5min
Log-ACD-Burr,db 5.543 0.181 2.385 0.204 2.080 0.177 8.447 0.298 2.274 0.256

PDVSpread
Log-ACD,db 5.269 0.154 2.107 0.175 1.764 0.149 8.699 0.245 1.974 0.189

PDVSpread
Log-ACD-Burr,db 5.269 0.155 2.120 0.179 1.755 0.149 8.676 0.247 1.970 0.185

NPDV5min
db 5.587 0.182 2.462 0.206 2.077 0.180 8.369 0.298 2.262 0.259

NPDVSpread
db 5.354 0.170 2.242 0.196 1.876 0.188 8.768 0.281 2.036 0.237

Note: We report the average RMSE and QLike losses. The RMSE means are multiplied by factor 10,000 for

the sake of legibility. For some estimators, we perform a small-sample adjustment, which we abbreviate as

’db’ in the subscript. The sampling frequency (e.g. 5min) of each RV estimator is attached to its superscript.

A gray-shaded cell indicates that the associated estimate belongs to the 75% model confidence set.
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Table 3: Model confidence set inclusion frequency

1 day ahead 1 week ahead 1 month ahead Total

RMSE QLIKE RMSE QLIKE RMSE QLIKE RMSE QLIKE Σ

RV5min 3 0 1 2 10 10 14 12 26

RV5min
ss 4 2 1 2 10 9 15 13 28

RK5sec
parzen 4 3 2 2 10 9 16 14 30

RK5sec
cubic 4 2 1 2 10 9 15 13 28

RK5sec
th2 4 1 1 2 10 9 15 12 27

RK5sec
bartlett 4 1 1 2 10 9 15 12 27

TSRV5sec
db 3 0 1 2 10 9 14 11 25

MSRV5sec 3 0 1 1 9 8 13 9 22

RV5min
pa 4 0 3 3 10 9 17 12 29

BPV5min
db 3 1 3 2 10 9 16 12 28

BPV5min
ss,db 4 2 2 3 10 9 16 14 30

PDV5min
FHMD,db 3 1 1 2 10 9 14 12 26

PDV5min
FHMD-Burr,db 4 1 2 2 10 9 16 12 28

PDVSpread
FHMD,db 3 0 1 2 10 10 14 12 26

PDVSpread
FHMD-Burr,db 4 0 3 3 10 10 17 13 30

PDV5min
MSMD,db 3 1 1 2 10 9 14 12 26

PDV5min
MSMD-Burr,db 4 1 1 2 10 9 15 12 27

PDVSpread
MSMD,db 3 0 1 2 10 8 14 10 24

PDVSpread
MSMD-Burr,db 4 0 1 2 10 10 15 12 27

PDV5min
ACD,db 5 1 1 1 10 10 16 12 28

PDV5min
ACD-Burr,db 5 1 1 2 10 10 16 13 29

PDVSpread
ACD,db 10 10 10 8 10 10 30 28 58

PDVSpread
ACD-Burr,db 6 5 5 3 10 10 21 18 39

PDV5min
FIACD,db 2 0 1 1 10 9 13 10 23

PDV5min
FIACD-Burr,db 2 0 1 1 10 9 13 10 23

PDVSpread
FIACD,db 4 1 3 5 10 9 17 15 32

PDVSpread
FIACD-Burr,db 4 1 3 5 10 9 17 15 32

PDV5min
Log-ACD,db 5 1 1 1 10 10 16 12 28

PDV5min
Log-ACD-Burr,db 4 1 1 1 10 10 15 12 27

PDVSpread
Log-ACD,db 9 6 7 7 10 10 26 23 49

PDVSpread
Log-ACD-Burr,db 6 4 7 4 10 10 23 18 41

NPDV5min
db 4 1 2 2 10 10 15 13 28

NPDVSpread
db 3 0 1 1 10 9 14 10 24

Note: For each RV estimator we report the number of inclusions in the 75% model confidence set across all

ten stocks for both loss functions (RMSE and QLike) and for three forecast horizons (1 day-, 1 week- and 1

month-ahead).
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Table 4: Out-of-sample VaR one-day ahead forecasts evaluated by tick loss function

GARCH RV5min TSRV5sec
db BPV5min

ss, db PDVSpread
FHMD-Burr,db PDVSpread

ACD, db

AAPL
5% 0.1956∗∗∗ 0.1820∗∗ 0.1815∗∗ 0.1817∗∗ 0.1813∗∗∗ 0.1801

1% 0.0642∗∗∗ 0.0569 0.0569 0.0569 0.0568 0.0567

BAC
5% 0.3110∗∗∗ 0.2546 0.2514 0.2539 0.2565∗∗∗ 0.2544

1% 0.1123∗∗∗ 0.0786 0.0767 0.0781 0.0768∗∗ 0.0756

DIS
5% 0.1646∗∗∗ 0.1502∗∗ 0.1494∗∗∗ 0.1484 0.1482∗∗ 0.1473

1% 0.0580∗∗∗ 0.0459∗∗∗ 0.0454∗∗∗ 0.0449∗∗ 0.0440 0.0438

EVRG
5% 0.1259∗∗∗ 0.1212 0.1212∗∗ 0.1207 0.1205∗∗∗ 0.1197

1% 0.0428∗∗∗ 0.0382 0.0386∗∗ 0.0379 0.0379∗∗ 0.0374

FB
5% 0.2147∗∗∗ 0.2027∗∗∗ 0.2015∗∗ 0.2020∗∗ 0.2001 0.1997

1% 0.0796∗∗ 0.0714 0.0718∗∗ 0.0713 0.0706 0.0705

GE
5% 0.2016∗∗∗ 0.1811 0.1772 0.1802 0.1794 0.1792

1% 0.0631∗∗∗ 0.0529 0.0517†† 0.0523 0.0534 0.0532

IBM
5% 0.1576∗∗∗ 0.1431 0.1429∗∗ 0.1424 0.1422∗ 0.1416

1% 0.0568∗∗∗ 0.0515 0.0517 0.0517 0.0517∗∗∗ 0.0510

PFE
5% 0.1353∗∗∗ 0.1288∗∗∗ 0.1273 0.1286∗∗∗ 0.1276∗∗ 0.1261

1% 0.0404∗∗∗ 0.0366∗∗ 0.0353 0.0363∗∗ 0.0362∗∗∗ 0.0351

TSLA
5% 0.3525 0.3507 0.3534∗∗ 0.3507 0.3516 0.3508

1% 0.1185 0.1148 0.1158 0.1145 0.1143 0.1142

WMT
5% 0.1281∗∗∗ 0.1230∗∗ 0.1226∗∗ 0.1226∗∗ 0.1225∗∗∗ 0.1212

1% 0.0460∗∗∗ 0.0416∗∗ 0.0411 0.0408 0.0409∗∗∗ 0.0400

Note: We report the average tick loss function values for 5% and 1% -VaR one-day-ahead forecast. Bold

numbers denote the lowest average tick loss values for each considered stock. We test for significant improve-

ments (deteriorations) via the Diebold-Mariano test and report the significance levels 1%, 5% and 10% by
∗∗∗ (†††), ∗∗ (††), and ∗ (†).
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Table 5: Relative forecasting performance for AAPL

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 1.0455 0.9818 1.0058 0.9948 1.0030 0.9892
RK5sec

parzen 1.0444 0.9809 1.0055 0.9926 1.0033 0.9908

RK5sec
cubic 1.0453 0.9841 1.0056 0.9910 1.0036 0.9879

RK5sec
th2 1.0473 0.9837 1.0069 0.9909 1.0050 0.9834

RK5sec
bartlett 1.0403 0.9817 1.0060 0.9903 1.0041 0.9849

TSRV5sec
db 1.0050 0.9904 1.0005 0.9991 1.0007 0.9950

MSRV5sec 1.0050 0.9917 1.0005 0.9993 1.0008 0.9956
RV5min

pa 0.9986 0.9983 1.0013 1.0082 0.9993 1.0010

BPV5min
db 1.0019 1.0066 1.0007 0.9995 0.9989 0.9953

BPV5min
ss, db 1.0442 0.9836 1.0067 0.9963 1.0023 0.9850

PDV5min
FHMD, db 1.0025 0.9740 1.0000 0.9984 0.9997 0.9922

PDV5min
FHMD-Burr,db 0.9997 0.9734 0.9994 0.9986 0.9994 0.9918

PDVSpread
FHMD, db 1.0131 0.9602 0.9998 0.9844 1.0020 1.0002

PDVSpread
FHMD-Burr,db 1.0129 0.9615 0.9997 0.9870 1.0020 1.0014

PDV5min
MSMD, db 1.0026 0.9749 1.0001 0.9991 0.9997 0.9919

PDV5min
MSMD-Burr,db 1.0108 0.9825 1.0020 1.0034 1.0010 0.9945

PDVSpread
MSMD, db 1.0057 0.9600 0.9997 0.9907 1.0015 1.0067

PDVSpread
MSMD-Burr,db 1.0056 0.9569 0.9986 0.9868 1.0008 1.0021

PDV5min
ACD, db 0.9877 0.9709 0.9955 0.9920 0.9984 0.9959

PDV5min
ACD-Burr,db 0.9878 0.9725 0.9954 0.9920 0.9984 0.9962

PDVSpread
ACD, db 0.9874 0.9363 0.9942 0.9762 0.9998 1.0043

PDVSpread
ACD-Burr,db 0.9943 0.9330 0.9957 0.9802 1.0006 1.0031

PDV5min
FIACD, db 1.0087 1.1203 0.9996 1.0028 0.9976 0.9779

PDV5min
FIACD-Burr,db 1.0099 1.1545 0.9985 1.0053 0.9976 0.9764

PDVSpread
FIACD, db 1.0293 1.1998 1.0041 1.0063 0.9931 0.9303

PDVSpread
FIACD-Burr,db 1.0281 1.2160 1.0023 1.0027 0.9933 0.9542

PDV5min
Log-ACD,db 0.9882 0.9724 0.9956 0.9925 0.9984 0.9960

PDV5min
Log-ACD-Burr,db 0.9883 0.9741 0.9956 0.9924 0.9984 0.9964

PDVSpread
Log-ACD,db 0.9848 0.9412 0.9946 0.9809 0.9995 1.0034

PDVSpread
Log-ACD-Burr,db 0.9890 0.9409 0.9950 0.9814 1.0002 1.0040

NPDV5min
db 0.9903 0.9798 0.9962 0.9941 0.9985 0.9969

NPDVSpread
db 1.0125 0.9737 1.0002 0.9913 1.0015 0.9962

Note: We report ratios of the average RMSE and QLike losses of all RV measures relative to the RV5min

measure. A gray-shaded cell indicates that the associated estimate belongs to the 75% model confidence

set.
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Table 6: Relative forecasting performance for BAC

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 0.9841 1.0014 0.9798 0.9934 1.0025 0.9987
RK5sec

parzen 0.9845 0.9998 0.9828 0.9935 1.0050 0.9998

RK5sec
cubic 0.9822 1.0054 0.9770 0.9960 1.0054 1.0009

RK5sec
th2 0.9844 1.0005 0.9673 0.9941 1.0054 0.9986

RK5sec
bartlett 0.9850 0.9988 0.9694 0.9938 1.0051 0.9982

TSRV5sec
db 0.9911 1.0046 0.9599 0.9946 1.0020 0.9885

MSRV5sec 0.9878 1.0394 0.9558 0.9885 1.0005 0.9845
RV5min

pa 1.0056 1.0499 0.9724 1.0039 1.0032 0.9957

BPV5min
db 1.0005 1.0187 1.0220 1.0020 0.9943 1.0042

BPV5min
ss, db 0.9887 1.0061 0.9753 0.9912 1.0003 0.9963

PDV5min
FHMD, db 0.9772 0.9969 0.9554 0.9673 1.0081 0.9849

PDV5min
FHMD-Burr,db 0.9763 0.9955 0.9538 0.9647 1.0088 0.9847

PDVSpread
FHMD, db 0.9634 0.9693 0.9550 0.9609 1.0200 0.9843

PDVSpread
FHMD-Burr,db 0.9687 0.9595 0.9545 0.9627 1.0185 0.9841

PDV5min
MSMD, db 0.9772 0.9957 0.9554 0.9661 1.0080 0.9843

PDV5min
MSMD-Burr,db 0.9681 0.9922 0.9507 0.9629 1.0085 0.9807

PDVSpread
MSMD, db 0.9631 0.9739 0.9564 0.9608 1.0208 0.9826

PDVSpread
MSMD-Burr,db 0.9705 0.9775 0.9524 0.9650 1.0206 0.9840

PDV5min
ACD, db 0.9828 0.9851 0.9517 0.9707 1.0090 0.9824

PDV5min
ACD-Burr,db 0.9818 0.9888 0.9526 0.9734 1.0090 0.9831

PDVSpread
ACD, db 0.9666 0.9207 0.9541 0.9396 1.0198 0.9807

PDVSpread
ACD-Burr,db 0.9692 0.9334 0.9516 0.9449 1.0196 0.9839

PDV5min
FIACD, db 1.0563 1.2763 0.9914 1.0039 0.9982 0.9852

PDV5min
FIACD-Burr,db 1.1287 1.2727 1.0301 1.0010 0.9946 0.9844

PDVSpread
FIACD, db 0.9803 1.4233 0.9723 1.0931 1.0314 1.0424

PDVSpread
FIACD-Burr,db 0.9811 1.4018 0.9725 1.0874 1.0308 1.0403

PDV5min
Log-ACD,db 0.9826 0.9867 0.9526 0.9716 1.0087 0.9828

PDV5min
Log-ACD-Burr,db 0.9816 0.9910 0.9535 0.9743 1.0087 0.9835

PDVSpread
Log-ACD,db 0.9654 0.9327 0.9545 0.9437 1.0194 0.9844

PDVSpread
Log-ACD-Burr,db 0.9698 0.9422 0.9500 0.9449 1.0190 0.9861

NPDV5min
db 0.9747 0.9949 0.9541 0.9770 1.0087 0.9806

NPDVSpread
db 0.9574 1.0080 0.9588 0.9743 1.0220 0.9875

Note: Analogous to the notes to Table 5.
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Table 7: Relative forecasting performance for DIS

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 1.0110 0.9742 0.9984 0.9870 1.0019 0.9967
RK5sec

parzen 1.0122 0.9828 1.0010 0.9920 1.0027 0.9954

RK5sec
cubic 1.0051 0.9845 1.0000 0.9939 1.0022 0.9958

RK5sec
th2 0.9936 0.9846 0.9978 0.9980 1.0009 0.9951

RK5sec
bartlett 0.9941 0.9821 0.9978 0.9963 1.0010 0.9956

TSRV5sec
db 0.9809 1.0019 0.9970 1.0002 1.0002 1.0043

MSRV5sec 0.9838 1.0332 0.9978 1.0107 1.0003 1.0064
RV5min

pa 1.0098 1.0327 0.9961 0.9774 1.0031 0.9988

BPV5min
db 0.9903 0.9664 0.9952 0.9868 1.0023 1.0054

BPV5min
ss, db 1.0060 0.9559 0.9972 0.9863 1.0030 1.0000

PDV5min
FHMD, db 0.9735 0.9532 0.9952 0.9889 0.9986 0.9973

PDV5min
FHMD-Burr,db 0.9731 0.9515 0.9948 0.9885 0.9985 0.9975

PDVSpread
FHMD, db 0.9508 0.9385 0.9862 0.9893 1.0001 1.0091

PDVSpread
FHMD-Burr,db 0.9497 0.9335 0.9856 0.9902 0.9998 1.0093

PDV5min
MSMD, db 0.9734 0.9524 0.9951 0.9892 0.9986 0.9982

PDV5min
MSMD-Burr,db 0.9773 0.9568 0.9952 0.9879 0.9992 0.9990

PDVSpread
MSMD, db 0.9522 0.9528 0.9876 0.9960 1.0000 1.0103

PDVSpread
MSMD-Burr,db 0.9537 0.9469 0.9861 0.9913 1.0003 1.0111

PDV5min
ACD, db 0.9699 0.9445 0.9953 0.9808 0.9989 0.9977

PDV5min
ACD-Burr,db 0.9697 0.9437 0.9949 0.9812 0.9988 0.9975

PDVSpread
ACD, db 0.9409 0.9002 0.9843 0.9769 0.9998 1.0083

PDVSpread
ACD-Burr,db 0.9429 0.9122 0.9849 0.9795 0.9998 1.0089

PDV5min
FIACD, db 1.0361 1.2131 0.9994 0.9898 1.0023 1.0289

PDV5min
FIACD-Burr,db 1.0284 1.1787 0.9982 0.9877 1.0006 1.0270

PDVSpread
FIACD, db 1.0130 1.0507 1.0030 0.9511 1.0013 0.9913

PDVSpread
FIACD-Burr,db 1.0103 1.0277 1.0016 0.9540 1.0014 0.9912

PDV5min
Log-ACD,db 0.9703 0.9460 0.9950 0.9810 0.9989 0.9978

PDV5min
Log-ACD-Burr,db 0.9702 0.9453 0.9947 0.9813 0.9989 0.9976

PDVSpread
Log-ACD,db 0.9418 0.9129 0.9839 0.9750 0.9996 1.0091

PDVSpread
Log-ACD-Burr,db 0.9441 0.9204 0.9840 0.9791 0.9999 1.0104

NPDV5min
db 0.9741 0.9504 0.9950 0.9832 0.9995 0.9984

NPDVSpread
db 0.9576 0.9627 0.9901 0.9981 0.9998 1.0067

Note: Analogous to the notes to Table 5.
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Table 8: Relative forecasting performance for EVRG

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 0.9960 0.9811 0.9982 0.9925 0.9993 0.9999
RK5sec

parzen 0.9930 0.9637 0.9998 0.9863 0.9989 0.9961

RK5sec
cubic 0.9960 0.9768 1.0014 0.9979 0.9991 1.0022

RK5sec
th2 0.9979 0.9868 1.0009 1.0034 0.9991 1.0040

RK5sec
bartlett 0.9977 0.9852 1.0008 1.0016 0.9990 1.0035

TSRV5sec
db 1.0087 1.0173 1.0008 1.0062 0.9999 1.0180

MSRV5sec 1.0183 1.0708 1.0059 1.0397 1.0000 1.0249
RV5min

pa 0.9942 1.0176 0.9971 0.9987 0.9986 0.9797

BPV5min
db 0.9997 0.9570 0.9953 0.9557 0.9974 0.9772

BPV5min
ss, db 0.9951 0.9405 0.9936 0.9484 0.9976 0.9843

PDV5min
FHMD, db 1.0022 0.9895 0.9989 0.9929 0.9981 1.0092

PDV5min
FHMD-Burr,db 1.0031 0.9819 0.9968 0.9865 0.9981 1.0068

PDVSpread
FHMD, db 1.0015 0.9846 0.9973 0.9673 0.9979 1.0008

PDVSpread
FHMD-Burr,db 1.0002 0.9826 0.9962 0.9659 0.9977 0.9995

PDV5min
MSMD, db 1.0029 0.9991 0.9994 0.9994 0.9981 1.0091

PDV5min
MSMD-Burr,db 1.0025 0.9907 0.9990 0.9946 0.9982 1.0109

PDVSpread
MSMD, db 1.0007 0.9873 0.9982 0.9740 0.9979 0.9992

PDVSpread
MSMD-Burr,db 1.0008 0.9826 0.9977 0.9724 0.9980 0.9999

PDV5min
ACD, db 1.0032 0.9948 0.9985 0.9894 0.9980 1.0084

PDV5min
ACD-Burr,db 1.0028 0.9921 0.9987 0.9901 0.9980 1.0092

PDVSpread
ACD, db 0.9977 0.9737 0.9945 0.9441 0.9969 0.9919

PDVSpread
ACD-Burr,db 0.9974 0.9704 0.9950 0.9502 0.9970 0.9932

PDV5min
FIACD, db 1.0338 1.1609 1.0101 1.0429 0.9975 1.0110

PDV5min
FIACD-Burr,db 1.0431 1.2221 1.0157 1.0841 0.9993 1.0205

PDVSpread
FIACD, db 1.0217 1.1224 1.0050 0.9747 0.9985 1.0228

PDVSpread
FIACD-Burr,db 1.0215 1.1110 1.0052 0.9825 0.9992 1.0443

PDV5min
Log-ACD,db 1.0036 0.9947 0.9985 0.9891 0.9980 1.0083

PDV5min
Log-ACD-Burr,db 1.0031 0.9918 0.9987 0.9899 0.9980 1.0090

PDVSpread
Log-ACD,db 0.9969 0.9680 0.9945 0.9455 0.9973 0.9959

PDVSpread
Log-ACD-Burr,db 0.9967 0.9666 0.9952 0.9516 0.9972 0.9947

NPDV5min
db 1.0039 0.9976 0.9983 0.9951 0.9982 1.0090

NPDVSpread
db 1.0006 0.9893 0.9986 0.9821 0.9980 0.9985

Note: Analogous to the notes to Table 5.
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Table 9: Relative forecasting performance for FB

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 0.9954 1.0033 0.9996 1.0031 1.0006 1.0127
RK5sec

parzen 0.9933 0.9944 0.9989 0.9980 1.0002 1.0075

RK5sec
cubic 0.9929 0.9909 0.9989 0.9967 1.0003 1.0062

RK5sec
th2 0.9927 0.9856 0.9987 0.9947 1.0000 1.0042

RK5sec
bartlett 0.9929 0.9873 0.9988 0.9960 1.0001 1.0057

TSRV5sec
db 1.0037 1.0186 1.0006 1.0031 1.0014 1.0107

MSRV5sec 1.0037 1.0189 1.0007 1.0034 1.0015 1.0109
RV5min

pa 0.9975 1.0635 0.9976 1.0174 1.0017 1.0307

BPV5min
db 0.9991 1.0215 1.0001 1.0161 1.0004 1.0108

BPV5min
ss, db 0.9958 1.0103 0.9994 1.0061 1.0004 1.0150

PDV5min
FHMD, db 0.9978 1.0000 1.0003 0.9992 1.0016 1.0118

PDV5min
FHMD-Burr,db 0.9907 0.9979 1.0000 1.0040 1.0006 1.0126

PDVSpread
FHMD, db 0.9895 1.0041 0.9979 0.9917 0.9991 1.0060

PDVSpread
FHMD-Burr,db 0.9870 0.9954 0.9975 0.9907 0.9992 1.0075

PDV5min
MSMD, db 0.9915 1.0017 1.0001 1.0040 1.0006 1.0139

PDV5min
MSMD-Burr,db 0.9906 0.9987 0.9998 1.0055 1.0004 1.0115

PDVSpread
MSMD, db 0.9907 1.0178 0.9990 1.0016 0.9997 1.0114

PDVSpread
MSMD-Burr,db 0.9886 1.0128 0.9981 0.9976 0.9991 1.0088

PDV5min
ACD, db 0.9886 1.0017 0.9994 1.0008 0.9989 1.0045

PDV5min
ACD-Burr,db 0.9886 1.0012 0.9996 1.0013 0.9990 1.0050

PDVSpread
ACD, db 0.9859 0.9877 0.9972 0.9889 0.9991 1.0062

PDVSpread
ACD-Burr,db 0.9867 0.9903 0.9974 0.9905 0.9992 1.0072

PDV5min
FIACD, db 1.0087 1.2309 1.0061 1.0366 1.0009 1.0172

PDV5min
FIACD-Burr,db 1.0098 1.1750 1.0022 1.0122 0.9975 0.9937

PDVSpread
FIACD, db 0.9869 0.9974 0.9961 0.9682 0.9985 1.0077

PDVSpread
FIACD-Burr,db 0.9862 0.9926 0.9958 0.9670 0.9983 1.0052

PDV5min
Log-ACD,db 0.9887 1.0019 0.9995 1.0018 0.9990 1.0053

PDV5min
Log-ACD-Burr,db 0.9887 1.0015 0.9997 1.0021 0.9990 1.0056

PDVSpread
Log-ACD,db 0.9867 0.9883 0.9973 0.9894 0.9991 1.0061

PDVSpread
Log-ACD-Burr,db 0.9880 0.9966 0.9972 0.9886 0.9986 1.0032

NPDV5min
db 0.9888 1.0006 1.0001 1.0056 0.9994 1.0088

NPDVSpread
db 0.9897 1.0186 0.9994 1.0044 0.9996 1.0114

Note: Analogous to the notes to Table 5.
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Table 10: Relative forecasting performance for GE

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 1.0045 0.9983 0.9972 1.0137 1.0029 1.0155
RK5sec

parzen 1.0027 1.0164 0.9982 1.0178 1.0031 1.0179

RK5sec
cubic 1.0002 1.0302 0.9950 1.0269 1.0038 1.0255

RK5sec
th2 0.9874 1.0172 0.9908 1.0349 1.0053 1.0329

RK5sec
bartlett 0.9884 1.0140 0.9909 1.0321 1.0050 1.0320

TSRV5sec
db 0.9706 0.9914 0.9856 1.0397 1.0081 1.0346

MSRV5sec 0.9690 1.0029 0.9821 1.0274 1.0046 0.9866
RV5min

pa 1.0041 1.1038 1.0101 1.0873 1.0136 1.1299

BPV5min
db 0.9978 1.0037 1.0053 1.0064 1.0038 1.0172

BPV5min
ss, db 0.9989 0.9921 0.9977 1.0154 1.0046 1.0273

PDV5min
FHMD, db 0.9687 0.9658 0.9860 1.0152 1.0044 1.0122

PDV5min
FHMD-Burr,db 0.9701 0.9641 0.9866 1.0155 1.0046 1.0118

PDVSpread
FHMD, db 0.9266 0.9471 0.9633 0.9631 0.9999 0.9980

PDVSpread
FHMD-Burr,db 0.9261 0.9381 0.9645 0.9555 0.9997 0.9966

PDV5min
MSMD, db 0.9692 0.9664 0.9860 1.0160 1.0042 1.0115

PDV5min
MSMD-Burr,db 0.9719 0.9774 0.9881 1.0263 1.0048 1.0181

PDVSpread
MSMD, db 0.9238 0.9584 0.9677 0.9767 1.0012 1.0062

PDVSpread
MSMD-Burr,db 0.9234 0.9500 0.9649 0.9716 0.9998 1.0015

PDV5min
ACD, db 0.9751 0.9533 0.9875 1.0107 1.0053 1.0119

PDV5min
ACD-Burr,db 0.9753 0.9574 0.9873 1.0110 1.0053 1.0132

PDVSpread
ACD, db 0.9107 0.9200 0.9576 0.9451 0.9966 0.9923

PDVSpread
ACD-Burr,db 0.9101 0.9313 0.9573 0.9492 0.9975 0.9965

PDV5min
FIACD, db 1.0918 1.1505 1.0271 1.0865 1.0008 1.0643

PDV5min
FIACD-Burr,db 1.0700 1.1909 1.0166 1.1128 1.0042 1.0650

PDVSpread
FIACD, db 0.9960 1.3640 0.9765 1.2513 1.0141 1.3323

PDVSpread
FIACD-Burr,db 0.9947 1.3941 0.9785 1.2864 1.0147 1.3500

PDV5min
Log-ACD,db 0.9754 0.9557 0.9876 1.0116 1.0054 1.0125

PDV5min
Log-ACD-Burr,db 0.9754 0.9596 0.9873 1.0116 1.0053 1.0138

PDVSpread
Log-ACD,db 0.9162 0.9293 0.9581 0.9518 0.9970 0.9960

PDVSpread
Log-ACD-Burr,db 0.9163 0.9406 0.9564 0.9507 0.9963 0.9931

NPDV5min
db 0.9754 0.9581 0.9882 1.0163 1.0058 1.0156

NPDVSpread
db 0.9336 0.9922 0.9661 0.9966 1.0002 1.0110

Note: Analogous to the notes to Table 5.
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Table 11: Relative forecasting performance for IBM

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 1.0194 0.9603 1.0013 0.9969 1.0006 0.9992
RK5sec

parzen 1.0242 0.9647 1.0032 1.0020 1.0009 0.9993

RK5sec
cubic 1.0182 0.9593 1.0022 1.0055 1.0008 0.9964

RK5sec
th2 1.0021 0.9611 0.9999 1.0039 1.0007 0.9960

RK5sec
bartlett 1.0019 0.9579 1.0000 1.0039 1.0006 0.9963

TSRV5sec
db 1.0017 0.9703 1.0054 1.0104 1.0011 1.0035

MSRV5sec 1.0034 0.9911 1.0067 1.0218 1.0016 1.0100
RV5min

pa 1.0084 1.0119 1.0015 1.0084 0.9995 0.9927

BPV5min
db 0.9972 0.9872 0.9994 0.9913 0.9993 0.9938

BPV5min
ss, db 1.0203 0.9539 1.0023 0.9954 1.0005 0.9953

PDV5min
FHMD, db 1.0041 0.9573 1.0025 1.0092 1.0016 1.0030

PDV5min
FHMD-Burr,db 0.9999 0.9553 1.0017 1.0080 1.0014 1.0030

PDVSpread
FHMD, db 0.9940 0.9382 1.0022 1.0035 1.0019 1.0101

PDVSpread
FHMD-Burr,db 0.9934 0.9367 1.0018 0.9995 1.0019 1.0094

PDV5min
MSMD, db 0.9937 0.9554 1.0017 1.0093 1.0013 1.0032

PDV5min
MSMD-Burr,db 0.9997 0.9616 1.0016 1.0124 1.0017 1.0045

PDVSpread
MSMD, db 0.9978 0.9556 1.0041 1.0085 1.0022 1.0120

PDVSpread
MSMD-Burr,db 0.9973 0.9456 1.0028 1.0006 1.0014 1.0063

PDV5min
ACD, db 0.9908 0.9571 1.0021 1.0066 1.0016 1.0036

PDV5min
ACD-Burr,db 0.9915 0.9576 1.0022 1.0065 1.0016 1.0039

PDVSpread
ACD, db 0.9856 0.9121 0.9992 0.9853 1.0008 1.0046

PDVSpread
ACD-Burr,db 0.9868 0.9207 1.0003 0.9896 1.0009 1.0054

PDV5min
FIACD, db 1.0329 1.1749 1.0210 1.0806 1.0040 1.0272

PDV5min
FIACD-Burr,db 1.0270 1.1255 1.0170 1.0574 1.0031 1.0140

PDVSpread
FIACD, db 1.0281 1.1503 1.0111 1.0439 1.0025 1.0235

PDVSpread
FIACD-Burr,db 1.0220 1.1164 1.0104 1.0371 1.0025 1.0266

PDV5min
Log-ACD,db 0.9916 0.9577 1.0024 1.0072 1.0016 1.0036

PDV5min
Log-ACD-Burr,db 0.9924 0.9586 1.0025 1.0070 1.0015 1.0040

PDVSpread
Log-ACD,db 0.9866 0.9146 0.9997 0.9879 1.0009 1.0052

PDVSpread
Log-ACD-Burr,db 0.9869 0.9209 1.0000 0.9891 1.0008 1.0058

NPDV5min
db 0.9929 0.9537 1.0028 1.0109 1.0018 1.0037

NPDVSpread
db 0.9936 0.9458 1.0035 1.0095 1.0013 1.0052

Note: Analogous to the notes to Table 5.
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Table 12: Relative forecasting performance for PFE

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 0.9992 0.9808 0.9997 1.0051 0.9988 0.9995
RK5sec

parzen 0.9982 0.9718 0.9993 1.0014 0.9981 0.9975

RK5sec
cubic 1.0038 0.9710 0.9998 1.0079 0.9973 0.9976

RK5sec
th2 1.0061 0.9759 0.9996 1.0090 0.9967 0.9962

RK5sec
bartlett 1.0055 0.9756 0.9999 1.0096 0.9968 0.9972

TSRV5sec
db 1.0082 1.0039 1.0041 1.0198 0.9981 1.0015

MSRV5sec 1.0151 1.0826 1.0060 1.0615 0.9990 1.0213
RV5min

pa 0.9977 0.9975 1.0037 1.0029 0.9991 0.9888

BPV5min
db 1.0022 1.0019 1.0018 0.9991 0.9999 1.0013

BPV5min
ss, db 1.0006 0.9811 0.9994 1.0011 0.9987 1.0016

PDV5min
FHMD, db 0.9852 0.9845 0.9975 1.0167 0.9979 1.0075

PDV5min
FHMD-Burr,db 0.9860 0.9822 0.9972 1.0136 0.9976 1.0065

PDVSpread
FHMD, db 0.9708 0.9611 0.9937 1.0163 0.9983 1.0087

PDVSpread
FHMD-Burr,db 0.9678 0.9486 0.9916 1.0057 0.9981 1.0062

PDV5min
MSMD, db 0.9848 0.9815 0.9972 1.0145 0.9978 1.0057

PDV5min
MSMD-Burr,db 0.9883 0.9870 0.9975 1.0148 0.9984 1.0086

PDVSpread
MSMD, db 0.9687 0.9566 0.9931 1.0157 0.9990 1.0097

PDVSpread
MSMD-Burr,db 0.9673 0.9532 0.9932 1.0116 0.9988 1.0053

PDV5min
ACD, db 0.9832 0.9900 0.9991 1.0216 0.9986 1.0116

PDV5min
ACD-Burr,db 0.9825 0.9899 0.9989 1.0212 0.9988 1.0131

PDVSpread
ACD, db 0.9491 0.8851 0.9891 0.9835 0.9978 1.0068

PDVSpread
ACD-Burr,db 0.9544 0.9098 0.9892 0.9930 0.9981 1.0105

PDV5min
FIACD, db 1.0271 1.1256 1.0123 1.0782 1.0032 1.0414

PDV5min
FIACD-Burr,db 1.0267 1.1051 1.0103 1.0762 1.0014 1.0405

PDVSpread
FIACD, db 1.0963 1.3478 1.0305 1.0518 1.0041 0.9704

PDVSpread
FIACD-Burr,db 1.1082 1.3484 1.0419 1.0540 1.0053 0.9663

PDV5min
Log-ACD,db 0.9831 0.9892 0.9993 1.0220 0.9986 1.0119

PDV5min
Log-ACD-Burr,db 0.9824 0.9891 0.9990 1.0216 0.9987 1.0133

PDVSpread
Log-ACD,db 0.9543 0.9004 0.9915 0.9948 0.9980 1.0077

PDVSpread
Log-ACD-Burr,db 0.9587 0.9284 0.9901 1.0048 0.9987 1.0102

NPDV5min
db 0.9859 0.9909 0.9984 1.0201 0.9989 1.0122

NPDVSpread
db 0.9737 0.9918 0.9969 1.0296 0.9992 1.0115

Note: Analogous to the notes to Table 5.
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Table 13: Relative forecasting performance for TSLA

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 1.0043 0.9855 1.0011 0.9950 0.9995 0.9973
RK5sec

parzen 1.0069 0.9933 1.0013 0.9939 0.9995 0.9969

RK5sec
cubic 1.0127 1.0055 1.0013 0.9971 0.9999 1.0012

RK5sec
th2 1.0137 1.0131 1.0034 1.0064 1.0005 1.0026

RK5sec
bartlett 1.0132 1.0130 1.0031 1.0056 1.0005 1.0035

TSRV5sec
db 1.0178 1.0469 1.0049 1.0223 1.0018 1.0142

MSRV5sec 1.0488 1.1912 1.0188 1.0875 1.0046 1.0319
RV5min

pa 1.0252 1.0247 1.0105 1.0280 0.9991 0.9969

BPV5min
db 1.0007 0.9935 0.9966 0.9889 1.0003 1.0042

BPV5min
ss, db 0.9977 0.9781 0.9987 0.9921 1.0007 1.0056

PDV5min
FHMD, db 0.9955 0.9739 0.9969 0.9889 1.0005 1.0073

PDV5min
FHMD-Burr,db 0.9952 0.9729 0.9971 0.9895 1.0003 1.0060

PDVSpread
FHMD, db 0.9965 0.9844 0.9953 0.9852 1.0007 1.0049

PDVSpread
FHMD-Burr,db 0.9972 0.9869 0.9952 0.9845 1.0005 1.0030

PDV5min
MSMD, db 0.9954 0.9741 0.9968 0.9889 1.0005 1.0074

PDV5min
MSMD-Burr,db 0.9976 0.9722 0.9961 0.9810 0.9996 0.9989

PDVSpread
MSMD, db 1.0009 0.9928 0.9968 0.9899 1.0007 1.0043

PDVSpread
MSMD-Burr,db 0.9999 0.9886 0.9963 0.9891 1.0005 1.0029

PDV5min
ACD, db 0.9898 0.9713 0.9949 0.9823 1.0005 1.0087

PDV5min
ACD-Burr,db 0.9882 0.9715 0.9954 0.9844 1.0007 1.0109

PDVSpread
ACD, db 0.9877 0.9662 0.9914 0.9755 1.0010 1.0052

PDVSpread
ACD-Burr,db 0.9877 0.9649 0.9936 0.9793 1.0010 1.0052

PDV5min
FIACD, db 1.0204 1.1333 1.0047 1.0290 1.0034 1.0458

PDV5min
FIACD-Burr,db 1.0202 1.1164 1.0084 1.0293 1.0023 1.0237

PDVSpread
FIACD, db 0.9970 1.0135 0.9857 0.9328 0.9951 0.9793

PDVSpread
FIACD-Burr,db 1.0016 1.0164 0.9873 0.9337 0.9922 0.9668

PDV5min
Log-ACD,db 0.9897 0.9715 0.9950 0.9827 1.0005 1.0086

PDV5min
Log-ACD-Burr,db 0.9882 0.9717 0.9955 0.9847 1.0007 1.0107

PDVSpread
Log-ACD,db 0.9876 0.9665 0.9913 0.9751 1.0011 1.0055

PDVSpread
Log-ACD-Burr,db 0.9876 0.9647 0.9930 0.9768 1.0008 1.0028

NPDV5min
db 0.9931 0.9723 0.9959 0.9853 1.0003 1.0084

NPDVSpread
db 0.9997 0.9924 0.9976 0.9950 1.0014 1.0112

Note: Analogous to the notes to Table 5.
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Table 14: Relative forecasting performance for WMT

1 day ahead 1 week ahead 1 month ahead
RMSE QLIKE RMSE QLIKE RMSE QLIKE

RV5min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RV5min

ss 0.9982 0.9786 0.9991 0.9912 0.9998 0.9967
RK5sec

parzen 0.9969 0.9748 0.9982 0.9858 0.9995 0.9938

RK5sec
cubic 0.9980 0.9767 0.9981 0.9854 0.9991 0.9903

RK5sec
th2 0.9971 0.9780 0.9981 0.9865 0.9987 0.9874

RK5sec
bartlett 0.9968 0.9745 0.9980 0.9849 0.9987 0.9871

TSRV5sec
db 1.0018 1.0088 1.0000 0.9899 0.9993 0.9856

MSRV5sec 1.0024 1.0105 1.0003 0.9924 0.9994 0.9854
RV5min

pa 0.9998 1.0056 1.0013 0.9950 1.0007 1.0001

BPV5min
db 0.9974 0.9834 0.9997 0.9979 0.9999 0.9962

BPV5min
ss, db 0.9969 0.9634 0.9988 0.9895 0.9998 0.9963

PDV5min
FHMD, db 0.9966 0.9707 0.9980 0.9809 0.9988 0.9826

PDV5min
FHMD-Burr,db 0.9964 0.9703 0.9979 0.9801 0.9988 0.9830

PDVSpread
FHMD, db 0.9901 0.9431 0.9939 0.9502 0.9987 0.9837

PDVSpread
FHMD-Burr,db 0.9888 0.9185 0.9931 0.9450 0.9986 0.9830

PDV5min
MSMD, db 0.9968 0.9708 0.9981 0.9808 0.9987 0.9825

PDV5min
MSMD-Burr,db 0.9990 0.9790 0.9987 0.9815 0.9990 0.9834

PDVSpread
MSMD, db 0.9882 0.9233 0.9940 0.9540 0.9991 0.9862

PDVSpread
MSMD-Burr,db 0.9885 0.9267 0.9938 0.9505 0.9990 0.9841

PDV5min
ACD, db 0.9958 0.9698 0.9975 0.9781 0.9985 0.9842

PDV5min
ACD-Burr,db 0.9961 0.9679 0.9976 0.9796 0.9986 0.9844

PDVSpread
ACD, db 0.9791 0.8760 0.9896 0.9185 0.9977 0.9739

PDVSpread
ACD-Burr,db 0.9824 0.8846 0.9913 0.9295 0.9981 0.9773

PDV5min
FIACD, db 1.0114 1.0877 1.0020 1.0075 0.9983 0.9767

PDV5min
FIACD-Burr,db 1.0156 1.0920 1.0056 1.0147 0.9994 0.9860

PDVSpread
FIACD, db 1.0197 1.1537 0.9988 0.9737 1.0004 1.0037

PDVSpread
FIACD-Burr,db 1.0136 1.1121 0.9963 0.9524 0.9998 0.9947

PDV5min
Log-ACD,db 0.9959 0.9694 0.9975 0.9785 0.9986 0.9845

PDV5min
Log-ACD-Burr,db 0.9962 0.9673 0.9977 0.9800 0.9987 0.9846

PDVSpread
Log-ACD,db 0.9807 0.8962 0.9896 0.9166 0.9980 0.9770

PDVSpread
Log-ACD-Burr,db 0.9828 0.8879 0.9911 0.9294 0.9982 0.9787

NPDV5min
db 0.9970 0.9729 0.9983 0.9837 0.9988 0.9859

NPDVSpread
db 0.9917 0.9580 0.9964 0.9784 0.9989 0.9863

Note: Analogous to the notes to Table 5.
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Figure 1: Plots of the mean diurnal seasonality factor for all ten stocks using 5 min. data.
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Figure 2: Annualized volatility of IBM
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Figure 3: Correlation heatmap for realized variance estimates (IBM)
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