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Abstract

We analyze income tax evasion dynamics in a standard model of statistical me-
chanics, the Ising model of ferromagnetism. However, in contrast to previous re-
search, we use an inhomogeneous multi-dimensional Ising model where the local
degrees of freedom (agents) are subject to a specific social temperature and cou-
pled to external fields which govern their social behavior. This new modeling frame
allows for analyzing large societies of four different and interacting agent types.
As a second novelty, our model may reproduce results from agent-based models
that incorporate standard Allingham and Sandmo tax evasion features as well as
results from existing two-dimensional Ising based tax evasion models. We then use
our model for analyzing income tax evasion dynamics under different enforcement
scenarios and point to some policy implications.
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1 Introduction

Agent-based tax evasion models have gained much popularity over recent years because
they allow for analyzing tax compliance behavior in large populations of heterogeneous
agents that interact with each other in a direct manner (see e.g. Korobow et al. (2007)).
Moreover, these models allow for a high degree of complexity. For example, by simul-
taneously incorporating various policy parameters of the government, by endowing each
individual agent with a different set of attributes regarding income, risk aversion, etc. or
by calibrating individual agent behavior with a diversity of different individual human be-
havior patterns, which may have been discovered in tax evasion experiments with human
subjects, in fields such as economic psychology or by empirical analysis (see e.g. Alm et al.
(1992), Andreoni et al. (1998), Kirchler (2007)). To this extent, and in contrast to tradi-
tional models, agent-based tax evasion models allow for analyzing tax evasion dynamics
in a fairly realistic way, which in turn may lead to new insights and policy options for
combating tax evasion.

In this paper, we develop and analyze an agent-based tax evasion model that is based
on a standard model of statistical mechanics, the Ising model of ferromagnetism. Among
other things, the model allows for the numerical simulation of tax evasion dynamics in very
large populations of heterogeneous agents, where heterogeneity refers to several different
behavioral patterns. We show that our model allows for reproducing previously published
results obtained from fundamentally different types of agent-based models. We then use
the model for analyzing tax evasion dynamics that follow from alternative enforcement
scenarios to combat tax evasion. For example, we find that (i) for given parameter values
there is a certain threshold for efficient audits, (ii) real world audit rates may well be too
low to effectively curb tax evasion and (iii) that at some level direct agent interaction may
effectively be a substitute for monetary penalty payments.

The paper is organized as follows. In section two we provide some background on
standard income tax evasion theory and existing agent-based tax evasion models. In
section three, we develop the econophysics model of tax evasion and apply it to an analysis
of audit efficiency and for some replication studies. Concluding remarks are provided in
the final section.

2 Background

In this section we briefly compare and contrast the standard approach to income tax
evasion with essential features of agent-based tax evasion models. Next, we review a few
of these models and offer some background on the Ising model, which we use in section
three for constructing a novel agent-based tax evasion model.
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2.1 Modeling Income Tax Evasion

The neoclassical standard approach to income tax evasion considers a representative,
self-reporting agent who declares an income X so as to maximize expected utility, EU ,
according to,

EU = (1 − p)(W − θX) + p(W − θX − π(W − X)), (1)

where W denotes the true income of the representative agent, θ is the tax rate on de-
clared income and π is the tax rate on undeclared income, where θ < π indicates a
monetary penalty on income tax evasion and p is the audit probability, with 0 ≤ p ≤ 1
[Allingham and Sandmo (1972)]. Given this modeling frame, risk neutral tax payers (i.e.
(1) is a linear function) declare their full income if (θ/π) < p, but declare nothing at all if
(θ/π) > p. In contrast, risk-averse tax payers (i.e. (1) is a concave function) may declare
their income fully, partly or not at all. Other things being equal, the more risk-averse
a tax payer is, the more compliant a tax-payer will be and both absolute and relative
risk-aversion may play a role for the extent of tax evasion. Hence, in the standard in-
come tax evasion model risk aversion is the driving force that allows for interior solutions.
Of course, subsequent literature has developed various extensions and alternatives. For
example, all-or-nothing decisions of risk-neutral tax payers may be avoided, if the au-
dit probability is an increasing function of the amount of undeclared income [Yitzhaki
(1987)], or if there are two or more income sources each having a different audit proba-
bility. Further, the penalty may be proportional to unpaid taxes [Yitzhaki (1974)], which
ensures that the tax rate θ has no influence on the extent of tax evasion.

In any case, essential features of the neoclassical standard approach to tax evasion
are: (i) each agent has perfect knowledge about his own expected utility function and
the relevant parameter values, which allows him to maximize his own expected utility,
(ii) the mathematical specification of the utility function leads to situations where the
agent maximizes his expected utility either by an all-or-nothing decision or by an interior
solution in which the agent may declare just some part of his true overall income, (iii)
heterogeneity in agent behavior may be introduced by individualizing one or more param-
eter values that enter an agent’s expected utility function, (iv) dynamics in the behavior
of agents can be due to parameter changes only, (v) any kind of direct interaction among
the agents is ruled out.

Agent-based tax evasion models deviate from the neoclassical standard approach in at
least three ways. A feature that distinguishes any agent-based tax evasion model from the
neoclassical approach is the direct interaction among agents. In particular, the behavior
of all or at least some agents depends on the behavior shown by a well specified subgroup
of other agents, say neighbors, within the same model. Besides this type of interaction
is non-market based. Another important difference is that some agents, if not all agents,
may not possess an utility function. Finally, in agent-based models tax evasion dynamics
may be triggered by either parameter changes or by stochastic processes or a combination
of both.
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Although agent-based tax evasion models are a comparatively new tool for analyzing
tax compliance issues, substantial differences already exist between these models or model
types. Therefore, in the next subsection we briefly review the literature on agent-based
tax evasion models.

2.2 Agent-based Tax Evasion Models

As noted, the essential feature of any agent-based model is the direct non-market based
interaction of agents, which is combined with some process that allows for changes in
individual behavior patterns. Therefore, agent-based tax evasion models may be catego-
rized according to the features of this individual interaction process. In fact, according
to this criterion models may either fall into the economics domain or into the econo-
physics domain. In the latter category, this process is driven by statistical mechanics
using a model structure that is well known in physics, the Ising model. Examples in-
clude Zaklan et al. (2008, 2009), Lima and Zaklan (2008), and Lima (2010). In contrast,
if the interacting process is driven by parameter changes that induce behavioral changes
via an utility function and/or by stochastic processes that are not related to models of
statistical mechanics, these models belong to the economics domain. Examples include
Mittone and Patelli (2000), Davis et al. (2003), Bloomquist (2004, 2011), Korobow et al.
(2007), Antunes et al. (2007), Szabó et al. (2008, 2009), Hokamp and Pickhardt (2010),
Méder et al. (2010), Nordblom and Z̆amac (2011) and Pellizzari and Rizzi (2011).

Bloomquist (2006) offers a review of the first three models and, therefore, in the
following we just consider the remaining models. Korobow et al. (2007) set up a model
where agents compare expected payoffs from three alternatives: non-compliance, partial-
compliance and full-compliance. The key feature of their model is the way in which audits
and risk aversion are modeled. Agents never know the true audit probability. Rather,
they are heterogeneous with respect to the perceived chance of being audited and they
update their individual rate by observing how many members of their social network were
actually audited. Likewise, agents are endowed with a different perceived taste for risk
which they update based on the last period’s interaction with the tax authority and by
observing relative payoffs within their social network. Another important feature of their
model is the social network size of nine members, of which eight are neighbors of the
agent under consideration. Finally, they run a setting with no social network and three
scenarios that differ with respect to the weight agents place on their neighbor’s payoffs in
updating their own perceived audit and risk parameters. With respect to the results they
focus on stability of equilibria under changing enforcement regimes. Among other things,
they find that even low rates of enforcement may support a highly compliant society of
taxpayers, despite strong dynamics at the agent level.

Szabó et al. (2008, 2009) model an entire economy with one industry consisting of
several competing firms that need to hire employees, if they wish to produce output.
Firms wish to minimize the expected effective salary, whereas employees want to maximize
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expected effective net income. Moreover, there is a government that provides public goods
to the firms and the employees and there is a tax authority that conducts audits. To
survive in the competitive environment, employers and employees can agree on various
forms of contracts of which some are legal and others represent different forms of black
labor, inducing tax evasion. Activities of the government, the tax authorities, or the social
networks of employers and employees may alter the dynamics of tax compliance in one
way or another.

Méder et al. (2010) consider a number of tax evasion models of which one is agent-
based. In this model tax payers have identical utility functions and can make binary
decisions, to comply or to evade. Relevant for this decision is the level of individual
utility, which in turn depends on a combination of internal and external factors. The
internal factor is utility that depends on the provision of a public good and the external
factor is observed behavior within the social network of an agent. Moreover, a stochastic
process is added with a fixed probability of random switches between the two states,
compliance and evasion. However, no audits or penalties are considered. Among other
things, they find that efficiency in the provision of public goods reduces tax evasion.

Antunes et al. (2007) and Hokamp and Pickhardt (2010) both consider a model with
different behavioral types of which one type more or less complies with a rational tax payer
of the Allingham and Sandmo type. They then consider income tax evasion dynamics
that results from alternative governmental policies and also include lapse of time effects
(back auditing). In fact, the model of Hokamp and Pickhardt (2010) may be considered
as the agent-based model that is closest to the Allingham and Sandmo (1972) model. In
particular, with 100 percent selfish a-type agents (cf. below) the Hokamp and Pickhardt
model represents a numerical version of the Allingham and Sandmo (1972) model.

Nordblom and Z̆amac (2011) deal with endogenous norm formation over the life cycle
of agents. In particular, their simulations support the view that older people hold stronger
moral attitudes (i.e. evade less taxes) than younger agents due to an age effect rather
than a cohort effect. In their model both personal and social norms influence an agent’s
decision of whether to evade taxes or not. Moreover, they allow for heterogenous norm-
updating via several social psychology mechanisms (cognitive dissonance, self-signaling,
and conformity with social network preferences). Otherwise, they follow the segregation
model approach of Schelling (1971).

Pellizzari and Rizzi (2011) consider a model with heterogenous agents who differ with
respect to income, risk-aversion, preferences for public expenditure, and believes about the
actual level of tax compliance in the population. Audits and interactions among the agents
are randomized and the government not only sets tax and penalty rates, but also spends all
revenue to finance public expenditure. The population is set to 1,000 agents, each having
a Cobb-Douglas utility function with their after tax monetary income, their perceived
value of public expenditure and some relevant individual characteristics as arguments.
Findings include that equilibrium situations still arise even in the heterogeneous case,
that the presence of public expenditure may establish a positive relationship between the
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tax rate and tax evasion without assuming tax morale or the like, and that individual
characteristics of the agents matter more for individual compliance than audit policy
parameters. However, at least the latter finding may depend on the fact that their model
does not allow for auditing past periods (back auditing).

Agent-based tax evasion models that fall into the econophysics domain differ fun-
damentally from the aforementioned models of the economics domain. An important
difference is that in an econophysics model none of the agents has an utility function of
some sort. Rather, agents are in one of two possible states ’evading’ or ’compliant’ and the
transition between both is a stochastic process. The latter is influenced by the behavior
of neighbors and a global influence denoted as ’temperature’, which has, just like a public
good, a nonrival and simultaneous impact on the extent to which all agents are influ-
enced by their respective neighbors. In fact, this difference has a number of implications
and consequences. First of all, econophysics models are not based on the individualistic
premises on which mainstream neoclassical economics rests. Therefore, in these models
no agent possesses individual properties such as age, income, risk preferences, etc. A ma-
jor consequence of this feature is that in econophysics models no monetary penalties can
be charged and penalties cannot be differentiated with respect to the individual behavior
or individual properties of the evader. Rather, if caught, the penalty of an evader in an
econophysics model consists of an obligation to be compliant for a specified number of
periods. To this extent, penalties in econophysics models differ fundamentally from those
charged in economics models. Another important consequence is that econophysics mod-
els cannot consider any past decisions of tax payers. Moreover, agents in econophysics
models are always limited to a binary decision space, in the present context they can be
either compliant tax payers or evaders. Hence, the rate of tax evasion is measured in
these models as the ratio of evaders over the total number of agents.

Yet, despite these fundamental differences an interesting aspect is that on the ag-
gregate level econophysics models may mimic results obtained by economics models and
that both model types may lead to stable equilibrium situations (steady states), which
are characterized by a prevailing positive rate of tax evasion. Essentially, this implies that
the results of individual rational behavior patterns may be reconstructed at the macro or
aggregate level by means of natural stochastic processes such as statistical mechanics. In
addition, econophysics models generate some interesting policy conclusions. For exam-
ple, Zaklan et al. (2008) find that even very small levels of enforcement are sufficient to
establish almost full tax compliance and Zaklan et al. (2009) conclude that regardless of
how strong group influence may be, enforcement always works to enhance tax compliance.
However, in both cases the adjustment process may take a very long time.
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2.3 Statistical Mechanics: The Ising Model

The Ising model was originally introduced by the German physicist Wilhelm Lenz in order
to study the formation of ferromagnetism. Lenz gave it as a problem to his student Ernst
Ising who presented the solution for the one-dimensional system in his PhD thesis [Ising
(1925); Brush (1967)]. It can be viewed as the simplest model for interacting magnetic
moments (here and in the following referred to as ’spins’), which only can take the values
±1. As illustrated in Fig. 1, the spins can thus be represented as vectors Si which are
attached to a lattice point (Fig. 1 shows a one-dimensional example). These vectors are
only allowed to point in the positive (Si = +1) or negative (Si = −1) z-direction. The
interaction energy Eint

Eint = −
∑

ij

JijSiSj (2)

drives the orientation of the spins where in the simplest case the interaction constant
Jij ≡ J is only non-zero between adjacent sites i and j. As can be seen from Fig. 1, the
corresponding interaction energy is Eint = −J for parallel and Eint = J for antiparallel
spins. A positive (negative) exchange constant J > 0 thus favors parallel (antiparallel)
alignment of the spins since the configurations are associated with a lower energy.

i−2 i−1 i i+1 i+2

z

x

−J J

Figure 1: Sketch of the one-dimensional Ising model. Spin vectors are placed on discrete
sites i on a one-dimensional chain. The spin variables can take the value Si = +1(−1)
when the vector points in the positive (negative) z-direction. The interaction energy
between parallel spins is E = −J and E = +J between antiparallel spins.

However, the spin configuration of the Ising model also depends on temperature T ,
which tries to disorder the spins. The associated characteristic quantity is the thermal
energy Ethermal = kT , where k ≈ 1.38·10−23m2kg/(s2K) is the Boltzmann constant which
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depends on units m (meter), kg (kilogramm), s (seconds), and K (Kelvin). Basically the
system is in a (dis)ordered state when the interaction energy per spin is much (larger)
lower than the thermal energy. A special case in this regard is the one-dimensional Ising
model which does not have a phase transition at finite temperatures, but only is in an
ordered state at exactly T = 0. The situation is different for higher dimensional lattices.
Onsager (1944) analytically demonstrated the occurrence of a finite temperature order-
disorder transition on a two-dimensional square lattice at kTc ≈ 2.269J , where Tc denotes
the critical temperature and J is the exchange constant between nearest-neighbor sites as
defined in Eq. 2.

In contrast, for dimensions d > 2 despite its simplicity the model can only be solved
numerically. For example, numerical evaluation of the transition temperature for a three-
dimensional cubic lattice yields kTc ≈ 4.51J , below which the spins are in an ordered
state. Note that a spin on a d-dimensional hypercubic lattice is attached to 2d nearest
neighbors so that the higher the dimension (or, more precisely, the coordination number)
the thermal energy has to overcome a larger interaction energy to disorder the spins. In
order to simplify notation we will measure in the following temperature in units of energy
(i.e. we set kT → T ). In section three we will also couple the spins to an external
magnetic field Bi, which can be different at every lattice site. These fields tend to align
the magnetic moments of the spins, which can be described by the energy contribution
EB = −SiBi. Thus, a positive field Bi > 0 lowers the energy for a positive spin value
Si = +1, whereas a negative field favors negative spins Si = −1.

Nowadays, the Ising model is one of the standard models in statistical physics. More-
over, it has become popular in a large variety of different fields like biology, sociology,
economics etc. because it is one of the simplest models that describes the interaction of
entities which try to adjust their behavior in order to be conform with that of their neigh-
bors. For example, Thomas C. Schelling’s (1971) segregation model roughly corresponds
to an Ising model at T = 0 as shown by Stauffer (2008), Stauffer and Solomon (2007) and
Müller et al. (2008).

3 Modeling Income Tax Evasion Dynamics

In this section we model tax evasion dynamics by developing an agent-based econo-
physics model. In section 3.1 we first introduce the standard two-dimensional Ising
model and reproduce some selected results of Zaklan et al. (2009). Next, we extend
this model by incorporating features of heterogeneous multi-agent simulations. We apply
the model to an analysis of different enforcement scenarios and for replicating some results
of Hokamp and Pickhardt (2010). All results presented in this section are obtained from
a Fortran code, which is available upon request.
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a) b)

Figure 2: (a) Square lattice considered in Sec. 3. The spin degrees of freedom sit on the
lattice sites marked by solid dots and each spin interacts with its four adjacent neighbors.
(b) Sketch of a ringworld structure as additionally considered in Sec. 3.2.2. Here each
spin is coupled to two adjacent neighbors only.

3.1 The Two-Dimensional Ising Model

Our considerations are based on the two-dimensional Ising model Eq. (2), implemented
on a 1000 × 1000 square lattice (see Fig. 2).1 In addition to the ’bare’ model Eq. (2) we
now allow for the coupling of each spin to a local magnetic field Bi. The corresponding
hamiltonian reads as,

H = −
∑

ij

JijSiSj −
∑

i

BiSi (3)

The spin degrees of freedom Si can take the values Si = ±1 and Jij denotes the interaction
between two spins on sites i and j. We take Jij ≡ J > 0 to be a constant within a given
’interaction range’ (corresponding to the nearest neighbors, i.e. four agents in the present
section) and Jij ≡ 0 otherwise. In the present context Si = 1 is interpreted as a compliant
tax payer and Si = −1 as a non-compliant one. We use the heat-bath algorithm [cf.
Krauth (2006)] in order to evaluate statistical averages of the model. The probability for
a spin at lattice site i to take the values Si = ±1 is given by

pi(Si) =
1

1 + exp{−[E(−Si) − E(Si)]/T}
(4)

1For example, Zaklan et al. (2009, 2008) and Lima and Zaklan (2008) consider, in addition, alterna-
tive lattice structures like the scale-free Barabási-Albert network or the Voronoi-Delaunay network. In
addition Lima (2010) considers Erdös-Rényi random graphs and finds that the results for these alternative
lattices ceteris paribus do not differ fundamentally from those obtained with a square lattice.
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and E(−Si)−E(Si) is the energy change for a spin-flip at site i. Upon picking a random
number 0 ≤ r ≤ 1 the spin takes the value Si = 1 when r < pi(Si = 1) and Si = −1
otherwise. One time step then corresponds to a complete sweep through the lattice. In
analogy to Zaklan et al. (2009) we further implement the probability pa of a tax audit.
If tax evasion is detected the agent has to remain compliant over h periods of time.
Zaklan et al. (2009, 2008) and Lima and Zaklan (2008) interpret this number of h periods
of enforced compliance as a penalty or as a consequence of shame and guilt feelings,
respectively. But, as noted, this kind of penalty is fundamentally different from monetary
penalties applied in tax evasion models of the Allingham and Sandmo type. Rather,
periods of after audit compliance are used elsewhere to accommodate extreme subjective
audit expectations (see e.g. Hokamp and Pickhardt (2010)).

3.1.1 Zero-field Results

For illustrative purposes and in order to define the limits for our multi-agent generalization
below, we consider first the zero-field case (Bi = 0 in Eq. 3). This corresponds to the
model introduced by Zaklan et al. (2009, 2008) where the system is composed of one type
of agent only and spin-flip probability is solely determined by the parameter J/T . In the
present context, the ratio J/T can be viewed as a measure for the autonomous behavior
of the tax payers. In the high-temperature limit J/T << 1 an agent at site i decides
autonomously from his or her social environment (i.e. pi ≈ 1/2), whereas for J/T & 1
the probability pi strongly depends on the compliance of his or her neighbors within the
social network. Note that this is related to the ferromagnetic phase transition of the
two-dimensional Ising model (for Bi = 0), which occurs at J/Tc ≈ 1/2.269 as discussed
in the previous section. In the following we consider a population of 1.000.000 agents,
except in Sec. 3.2.2 where the population is set to 150.000 agents.

Fig. 3 (panels a and b) displays the corresponding extent of tax evasion (i.e. the
fraction of −1-spins) as a function of time for small and large audit probabilities pa = 0.05
and pa = 0.9, respectively. We define J ≡ 1 as reference energy scale and as initial
condition we set all agents to ’compliant’, i.e. Si = 1. Due to the small ’social temperature’
Ti = 2 (which is, thus, of the same order than the exchange energy) only a small number
of agents become non-compliant in the first time step and because the audit probability is
also small, tax evasion pte increases continuously up to some saturation value pte ≈ 0.038.
At this value the system of agents has reached equilibrium between the influence of the
neighborhood to become a non-compliant tax payer and the tax audits which enforce
compliance over h = 10 time periods. Upon increasing the audit probability to pa = 0.9
(panel b) the number of tax evaders reaches its maximum already after about three time
steps and then starts to decrease due to the high audit probability. After 10 time steps,
initially detected tax evaders may again switch from compliant to non-compliant behavior,
which leads to the observed small increase of pte before it reaches its saturation value of
pte ≈ 0.022. Note that the ’social temperature’ Ti = 2 is below the ordering temperature
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Tc = 2.269 of the two-dimensional Ising model. For zero audit probability the long-term
tax evasion would therefore also converge to a small value (pte ≈ 0.045), corresponding to
the fraction of ’minority spins’ at this particular temperature. The effect of a finite audit
probability is, therefore, just a further reduction from this small value.

In contrast, above the ordering temperature, the zero audit equilibrium state is of
course reached for an equal number of compliant and non-compliant tax payers, i.e. pte =
0.5. Finite audit probabilities then lead to a further reduction of this equilibrium value.
This situation is depicted in panels c and d of Fig. 3, which display the extent of tax
evasion for a system build up from agents who decide mainly autonomously, due to the
large ’social temperature’ T = 25 (i.e. much larger than the exchange energy). As a
consequence, already after two time steps approximately half of the agents become non-
compliant which in turn induces a reduction of pte due to the auditing. It is remarkable
that even for small audit probability pa = 0.05 (Fig. 3c) pte decreases by ≈ 20% before
it saturates at pte ≈ 0.39 after more than 10 time steps. Upon invoking a larger audit
probability, pa = 0.9, the number of autonomous agents decreases rapidly after the first
initial time steps and consequently pte decreases to almost zero within the first 10 time
steps. Half the fraction of those who have been detected at the first time step will then
select the possibility of non-compliance again, which leads to the oscillatory behavior of
pte. A stable situation is only reached at >> 150 time steps at pte ≈ 0.09.

Note that the results of Fig. 3, which we have discussed so far, correspond to those
presented by Zaklan et al. (2009) [Fig. 1 and Fig. 4]. In fact, our results represent the first
independent replication of results originally obtained from an agent-based econophysics
tax evasion model.

3.1.2 Finite Fields Results

We now follow the scheme proposed in Lima and Zaklan (2008) and discuss the case of
societies where the agents have an endogenous preference with regard to compliance or
non-compliance. This feature can be incorporated via the field parameter Bi in Eq. 3. A
value of Bi < 0 enhances the probability of Si = −1 values and, therefore, corresponds to
selfish agents, who try to maximize their payoff by non-compliant behavior. On the other
hand, a positive field Bi > 0 favors positive values Si = +1 and, therefore, can be used to
describe ethical agents who wish to be compliant, but may make occasional mistakes 2.
With regard to the Ising model Eq. 3, a dominant endogenous behavior further requires
|Bi| >> J in both cases. The results in the present section are obtained for a society of
identical agents, i.e. Bi ≡ B with |B|/T = 3 and J/T = 0.2.

The first case of endogenous non-compliant selfish agents (i.e. B/T = −3) is shown
in panels a and b of Fig. 4. At time step zero we correspondingly set the share of tax
evasion to pte = 1. For zero audit probability the equilibrium state would, therefore, yield

2Lima and Zaklan (2008) interpret a negative (positive) field as an agent’s low (high) confidence in
governmental institutions.
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Figure 3: Tax evasion dynamics for B = 0. Panels a and b display results for agents
with a social temperature of T = 2 and audit probabilities pa = 0.05 and pa = 0.9,
respectively. Panels c and d show the corresponding results for a social temperature of
T = 25. Reference energy scale is J ≡ 1. Tax audits enforce compliance over h = 10 time
steps.

a tax evasion rate close to one (pte ≈ 0.9995) due to rare spin flip events. However, a
small audit probability pa = 0.05 reduces tax evasion significantly because at each time
step five percent of the remaining non-compliant agents are forced to become compliant.
After h = 10 time steps the first detected agents can become non-compliant again, which
after a small increase leads to the stabilization of tax evasion at pte ≈ 0.67. A larger audit
probability pa = 0.9 (Fig. 4b) again drives tax evasion rapidly to zero and, in addition,
induces weaker peaks at those time steps (i.e. multiples of h + 1 = 11) when ’forced’
compliant agents have the possibility to be non-compliant again (cf. inset to Fig. 4b).
When the peak height is below some value (after ≈ 300 time steps), then the audit is
no longer able to reduce tax evasion to pte ∼ 0. However, the minimum value starts to
increase, leading again to an equilibrium state on very long time scales.

Finally, the time evolution for ethical agents (i.e. B/T = 3) is rather obvious. Initial
tax evasion is set to pte = 0 and there is only a very small probability that one of the
agents becomes non-compliant. This probability is controlled by the ratio B/T = 3 and
would become zero in the limit B/T → ∞. Also, since ethical agents wish to minimize
tax evasion, the results are also almost independent of the audit probability. Hence, any
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Figure 4: Tax evasion dynamics for B 6= 0. Panels a and b display results for selfish
agents, i.e. endogenous non-compliant agents with a bias towards tax evasion B/T =
−3 and audit probabilities pa = 0.05 and pa = 0.9, respectively. The inset to panel
b displays the small time behavior to visualize the oszillations in pte. Panels c and d
show the corresponding results for ethical agents with a tax evasion bias B/T = +3
and audit probabilities pa = 0.05 and pa = 0.9, respectively. For all results the ratio
between interaction constant J and temperature T is set to J/T = 0.2. Tax audits
enforce compliance over h = 10 time steps.

positive audit probability would be inefficient in this case.

3.2 Heterogenous Agents Simulations within the Two-dimensional

Ising Model

It is now straightforward to generalize the results of the previous section in order to
describe societies which are characterized by behaviorally different types of agents. To
achieve this, we define a local temperature Ti at each site so that an ensemble of het-
erogeneous agents can be classified according to their ratios J/Ti and Bi/Ti. As already
outlined in the previous section the parameter J/Ti describes the exogenous conditioning
of agent i, whereas his or her endogenous (non-manipulable) code of conduct is measured
by the ratio Bi/Ti.

Following Hokamp and Pickhardt (2010), we introduce the following four types of
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Table 1: Parameter ranges for each group of agents. Note that T and B are measured in
units of J ≡ 1.

Agent-type temperature field

a Tac −|Bmax
a | < Ba < −|Bmin

a |
b Tmin

b < Tb < Tmax
b 0

c Tac |Bmin
c | < Bc < |Bmax

c |
d Tmin

d < Td < Tmax
d 0

Table 2: Parameter set for the results shown in Figs. 5 to 7. Note that T and B are
measured in units of J ≡ 1.

Tac Tmin
b Tmax

b Tmin
d Tmax

d Bmin
a Bmax

a Bmin
c Bmax

c

5 1 3 10 30 10 20 10 20

agents: (i) selfish a-type agents, which take advantage from non-compliance and, thus,
are characterized by Bi/Ti < 0 and |Bi| > J ; (ii) copying b-type agents, which copy tax
behavior of their social environment or neighborhood. This can be modelled by Bi << J
and Ji/Ti & 1; (iii) ethical c-type agents, who are practically always compliant and which
are parametrized by Bi/Ti > 0 and |Bi| > J ; (iv) random d-type agents, which act by
chance, within a certain range, due to some confusion caused by tax law complexity. We
implement this behavior by Bi << J and J/Ti << 1. Here and in the following all
parameters are measured with respect to J ≡ 1. Within these definitions the results
presented in the previous section correspond to homogeneous societies of b-type (Fig.
3a,b), d-type (Fig. 3c,d), a-type (Fig. 4a,b), and c-type agents (Fig. 4c,d). Note that by
introducing b-type and d-type agents, we extend the model of Lima and Zaklan (2008),
who consider just a-type and c-type agents.

3.2.1 Enforcement Regimes and Tax Evasion Dynamics

We now take the number of agents for each behavioral type as fixed, but introduce some
heterogeneity for each type. This is achieved by randomizing the parameters Ji/Ti and
Bi/Ti within a given range, which is specified in Table 1, and relevant parameters for the
following results are given in Table 2.

In order to interpret the tax evasion dynamics for the heterogeneous agents society,
we report in Table 3 the spin probabilities [cf. Eq. (4)] for each type of agent within the
boundaries set by the values given in Tables 1 and 2. Essentially, an a-type agent has a
large tendency to display non-compliant behavior, independent of its neighbors. As noted,
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Table 3: Dependence of spin probabilities pi(Si) [cf. Eq. (4)] for different agent types in
a specific neighborhood

∑
j Sj, where j denotes nearest neighbors of i. S = ±1 specifies

whether the corresponding agent is compliant or not and we report minimal / maximal
pi according to the boundaries of the parameter distribution reported in tables 1 and 2.

∑
j Sj

a-types b-types c-types d-types
S=-1 S=+1 S=-1 S=+1 S=-1 S=+1 S=-1 S=+1

-4 99.6/100 0 / 0.4 69/93.5 6.5/31 0.2/8.3 91.7/99.8 56.6/69 31/43.4
-2 99.2/100 0/0.8 59.9/79.1 20.9/40.1 0.1/3.9 96.1/99.9 53.3/59.9 40.1/46.7
0 98.2/100 0/1.8 50/50 50/50 0/1.8 98.2/100 50/50 50/50
2 96.1/99.9 0.1/3.9 20.9/40.1 59.9/79.1 0/0.8 99.2/100 40.1/46.7 53.3/59.9
4 91.7/99.8 0.2/8.3 6.5/31 69/93.5 0/0.4 99.6/100 31/43.4 56.6/69

b-type agents copy the behavior of neighbors and consequently compliant b-type agents
have a small probability in a non-compliant neighborhood and vice versa. Ethical c-type
agents have a large probability to be compliant independent of the neighborhood. Finally,
d-type agents have spin probabilities around 50%, which more or less weakly depend on
the behavior within their neighborhood and their own individual behavior pattern.

In the results displayed in Fig. 5 we fix the percentage of b- and d-type agents to
nb = 35% and nd = 15%, respectively (see Hokamp and Pickhardt, 2010) and vary the
ratio of a- and c-type agents for two audit probabilities pa = 0.05 (panel a) and pa = 0.2
(panel b). The initial tax evasion is set to the fraction of a-type agents, i.e. pte = na.

Let us first discuss the case of a small audit probability and na = 0 (first curve from
below in Fig. 5a). Here the society consists of copying b-types (35%), ethical c-types
(50%) and random d-type agents (15%). The time evolution thus is similar to a mixture
of the homogeneous agent systems shown in Figs. 3a,c and 4c, i.e. the stationary state
for large time steps is determined by non-compliant b- and d-type agents, the number of
which is limited by the audit. Note, however, that the difference to the homogeneous cases
lies in the fact that now the copying b-type agents are embedded in a ’matrix’ of ethical
c-type agents, which almost never change their behavior. One observes that the stationary
value is not reduced significantly with respect to the limit without audit (indicated by the
dotted horizontal lines), since the audit can essentially detect only non-compliant d-type
agents.

The other limiting case is that for na = 50% (first curve from above in Fig. 5a), where
half of the society consists of tax evading a-type agents. During the first time step most
b-type agents copy non-compliant behavior so that pte rises slightly above 80%. Moreover,
a comparison of the stationary states with and without audit, ∆pte, reveals a significant
reduction, because a-, b- and d-type agents may be forced to be compliant over a period
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Figure 5: Tax evasion dynamics for an ensemble of heterogeneous a- to d-type agents.
The percentage of b- and d-type agents is fixed to b = 35 percent and d = 15 percent,
respectively. The percentage of a- and c-type agents is varied according to the labels and
the order within each label corresponds to the solid lines shown in each panel. Audit
probability (a) pa = 5%, (b) pa = 20% and h = 4. The horizontal dotted line marks the
stationary tax evasion value without audit and the vertical arrows indicate the difference
to the stationary value with audit.

of h time steps. This reduction obviously increases for larger audit probabilities, as can
be deduced from Fig. 5b. Naturally, a small audit probability mostly affects a-, and b-
type agents because d-type agents essentially act randomly and, thus, the d-type specific
reduction is only of the order 0.5∗nd∗pa (i.e. ≈ 0.4% for pa = 0.05 and 1.5% for pa = 0.2).
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Fig. 6 reports the reduction ∆pte with respect to the stationary state without audit p0

te
3. This quantity, thus, measures by which percentage points tax evasion is reduced by
the audit as compared to the non-audited society. It is obviously an increasing function
of the audit probability pa and, as anticipated, also increases with the percentage of a-
type agents. An interesting feature of the curves shown in Fig. 6 is the slope, which
decreases with increasing pa. We find that for small audit probabilities the percentage of
detected tax evadors increases more strongly than for large pa. Therefore, increasing the
audit probability becomes more and more inefficient in increasing the number of detected
tax evadors. A natural criterion for an efficient audit probability range is set by the
requirement that the slope of the curves in Fig. 6 is larger than ’one’. This critical value
(indicated by the circles in Fig. 6) is reached at pa ≈ 0.17 for 0% a-type agents and at
pa ≈ 0.23 for 50% a-type agents. Hence, subject to the aforementioned specifications an
audit would in general be efficient for audit probabilities pa . 0.23.

0 0.2 0.4 0.6 0.8
p

a

0

0.2

0.4

0.6

0.8

1

∆p
te

 / 
p te0

50% a-type
40% a-type
30% a-type
20% a-type
10% a-type
0% a-type

Figure 6: Difference in tax evasion (stationary state) between zero (p0

te) and finite audit
probability ∆pte normalized to p0

te for different percentages of a-type agents. The circles
indicate the point where the slope of the curves equals ’one’.

Whereas our previous measure of efficiency is related to the effort which has to be
put in an audit, efficiency can also be defined with regard to the success of an audit. In

3Note that these values have been determined as an average over 50 time steps (steps 50 → 100) in
the stationary state.
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Fig. 7 we plot again the difference of stationary tax evasion values ∆pte with and without
an audit, now as a function of the percentage of a-type agents. For example, given the
percentage of a-type agents as na = 50% we can read from Fig. 7 that tax evasion
is reduced by ∆pte ≈ 0.2. As discussed above this reduction distributes approximately
equal between the a- and b-type agents whereas the reduction of tax evading d-type agents
is at most some few percentage points. If we define an audit as efficient when it can at
least detect the percentage of a-type agents, then we see from Fig. 7 that this criterion is
almost fulfilled for pa = 0.2, but not for small audit probability pa = 0.05. In fact, let us
consider the specific case of na = 50% and audit probability pa = 0.2. Then we can read
from Fig. 5b that the percentage of tax evasion is reduced from ∼ 91% to ∼ 44%, i.e.
∆pa ≈ 0.47. This reduction is composed of an audit induced reduction for a-type agents
from ∼ 48% to ∼ 25% and for b-type agents from ∼ 31% to ∼ 10%, while d-type agents
contribute with a reduction from ∼ 8% to ∼ 5%. Efficiency, in the sense defined here,
thus means that the audit detects at least the number of tax evadors which corresponds
to the fraction of inherently non-compliant tax payers (i.e. a-type agents). Yet, it does
not mean that all the detected tax evadors are a-type agents because from the example
above it is obvious that the reduction involves to approximately equal parts a- and b-type
agents.

0 0.1 0.2 0.3 0.4 0.5
fraction of a-type agents
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p
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Figure 7: Difference in tax evasion (stationary state) between zero and finite audit prob-
ability for audit probabilities pa = 0.05, 0.2 (see Fig. 5) and pa = 0.4.

Comparing these results with the results for the previously introduced definition of
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efficiency it turns out that an audit is efficient with regard to effort for pa . 0.23, whereas,
on the other hand, with regard to success an audit is efficient for pa & 0.2. Hence, for
the society under consideration the optimal audit probability pa would be in the range of
0.2 . pa . 0.23, corresponding to the boundaries of both, otherwise disjunct, efficiency
ranges.

Of course, other parameter values may lead to different ranges for the optimal audit
probability. Moreover, in both cases audit efficiency is a pure quantity measure, whereas
in the real world costs and revenue aspects may distort the two quantity measures. This
notwithstanding, and subject to the model specifications, our results seem to indicate that
tax audit rates applied in many countries, e.g. less than one percent in the U.S. according
to Bloomquist (2006), may be suboptimally low. To this extent, our results also differ
from those of Zaklan et al. (2009) or Lima and Zaklan (2008), who find that even small
audit probabilities lead to tax compliance in the very long run.
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Figure 8: Time evolution of tax evasion for (a) scenario I of the agent-based model by
Hokamp and Pickhardt (2010) [dots]; (b) agent-based model by Hokamp and Pickhardt
(2010), but with fixed parameters [squares]; (c) Ising model on a square lattice with fixed
parameters [triangles]; (d) Ising model on a ringworld with fixed parameters [diamonds].
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3.2.2 Reproducing Results from an Agent-based Economics Model

Finally, we show in this section how the dynamics of the agent-based model by Hokamp
and Pickhardt (2010) can be captured within the present multi-agent Ising-model ap-
proach. Solid dots in Fig. 8 show the original dynamics in terms of percentage of tax
evasion obtained for the first scenario and the set of governmental tax policy parameter
changes used by Hokamp and Pickhardt (2010), Table 1, and Figure 1, first line from
below. These tax policy parameters are the audit probability, tax rate, penalty rate and
a parameter which specifies the complexity of the tax laws. Obviously, there is no direct
mapping of these parameters to our Ising type approach since, for example, a monetary
penalty rate presupposes the definition of a tax relevant income, whereas the Ising model
can only deal with compliant or non-compliant tax payers.

However, we will demonstrate in this section that both approaches lead to very similar
dynamics when the multi-agent Ising model is defined with appropriate field and temper-
ature parameters for individual agents. Therefore, we restrict to a constant parameter
set, i.e. the Hokamp and Pickhardt (2010), Table 1, tax policy parameters of the first tax
period. For this fixed parameter set, the original results of the Hokamp and Pickhardt
approach are displayed in Fig. 8 by the curve with square symbols. Interestingly, these
results are by and large in line with recent findings of Kleven et al. (2011, 669), who re-
port evidence from a large scale tax audit field experiment in Denmark and find a tax
evasion rate of 44.9% for self-employment income.

Yet, with respect to the replication it is worth noting that the Hokamp and Pickhardt
ring world model is constructed such that four neighbors to either the left or right of an
agent are taken into account. Unfortunately, this is not compatible with the symmetry
of the Ising model which requires Jij = Jji, as in Eq. 3. Thus, for definiteness we fit
the Hokamp and Pickhardt results with a one-dimensional Ising model (ring world with
two neighbors) and, in addition, show differences to the results obtained with the two-
dimensional Ising model (square lattice with four neighbors) and the same parameter
set.

The curves labeled with diamonds and triangles in Fig. 8 show our replication results.
The initial conditions are generated by just 50 percent a-types and 50 percent c-types.4

This is because in the first time step of the Hokamp and Pickhardt model b-types must
use their default option (i.e. full compliance) and d-types are on average also compliant,
so that the joint share of b-types and d-types is on average equivalent to a 50 percent
c-type share. A-type agents are specified by fields −3.8 < Bi < −1 and temperature
Ti = 7.4, whereas c-type agents have 6 < Bi < 12 and Ti = 5.5. As already noted, all
units are measured with respect to J = 1. Equilibrium is reached after 10 time steps so
that time step #11 corresponds to the first tax relevant time step or year shown in Fig.
8. As of the second tax relevant time step, we reduce the percentage of c-type agents to

4Note that the type distribution in Hokamp and Pickhardt (2010), for the case to be replicated, is 50
percent a-types, 35 percent b-types, no c-types and 15 percent d-types.
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15 percent (i.e. the d-type share in Hokamp and Pickhardt)5 and introduce instead a 35
percent share of b-types, which are characterized by B = 0 and T = 0.1. Hence, the ratio
J/T is large for b-types so that they copy the behavior of others in their neighborhood.
The number of a-type agents remains unchanged. Thus, in the present multi-agent Ising-
based model, a-type, b-type and c-type behavior patterns are reproduced with different
local fields and temperatures, whereas d-type behavior is approximated on average by an
equivalent percentage of c-type agents.

It turns out that during the first few time steps the Ising model multi-agent approach
yields a fairly good match with the Hokamp and Pickhardt results because the lines with
triangles, diamonds and squares (dots) closely match 6. However, in the large time limit
the latter leads to a saturation at slightly smaller values. This is essentially due to several
reasons with minor effects. In particular, differences in the stochastic processes, in the
c-type versus d-type modeling, in the individual extent of tax evasion, in the penalties
charged and in the lattice structures.

Moreover, it is worth noting that differences with the square lattice replication (trian-
gles in Fig. 8) are due to the fact that the b-type agents may copy the a-type behavior
much faster in the ringworld. As the (standard) Ising model is based on the assump-
tion that agents are influenced only by their direct neighbors, the one-dimensional Ising
model (ringworld) reduces the size of the social network to two agents, whereas the social
network size is four agents in both the two dimensional square lattice Ising model and
the Hokamp and Pickhardt ringworld model. Hence, given the parameter setting, in the
one-dimensional Ising ringworld it is more likely that b-type agents are influenced by their
a-type neighbors. Thus, in each time step, tax evasion is higher in the Ising ringworld
[diamonds] compared to the Ising square lattice world [triangles] (see Fig. 8), except in
the long run. Regarding the Hokamp and Pickhardt ringworld, copying of tax evasion
behavior is comparatively fast because the average tax evasion in the social network is
taken into account in every time step, which almost guarantees that tax evasion behavior
quickly spreads.

4 Concluding Remarks

In this paper we have independently reproduced results obtained from an agent-based
econophysics model on tax evasion. Next, we extended the standard econophysics model

5We use this procedure, instead of the d-type definition of section 3.2, because in the Hokamp and
Pickhardt model d-types may also randomly overpay their tax bill, which is not possible in our multi-agent
Ising model.

6Note that the parameter set for the one-dimensional Ising model (diamonds) have been fitted to
match the Hokamp and Pickhardt (2010) data (squares) over the first few time steps. Results for the
two-dimensional Ising model (triangles) are based on the same parameter set. Of course, by using
a different parameter set the two-dimensional Ising model results could be fitted to the Hokamp and
Pickhardt data as well.
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of tax evasion in such a way that different behavioral agent types can be included. This
represents another novelty because it extends previous work of Lima and Zaklan (2008)
towards a society which is build up from four different types of agents. We then used
the extended model for an analysis of audit efficiency. It turned out that under the given
circumstances substantially higher audit probabilities, in comparison to those that are
effectively applied in most countries, would be desirable to curb tax evasion. Further,
overall tax compliance of the extent displayed in Fig. 5 is achieved by a non-monetary
’penalty’, which consists of periods of enforced after-audit compliance. Hence, a non-
monetary ’penalty’ combined with copying behavior due to interactions among agents
may be an effective substitute for the standard approach of charging monetary penalties.
Moreover, the new feature moves econophysics models of tax evasion closer to agent-based
models of tax evasion that are found in the economics domain. Therefore, we were also
able to use our extended econophysics model for reproducing results originally obtained
from an agent-based tax evasion model of the economics domain. Again, this is the first
time that such a reproduction has been achieved with an econophysics model.

An important finding of this reproduction is that a micro foundation of individual
behavior, expressed in terms of individual utility or payoff functions in models of the
economics domain, is not needed for the aggregate results obtained by these models.
Put differently, rational individual utility maximizing behavior can be reproduced on the
aggregate level by so called zero intelligence agents, some stochastic changes in individual
behavior patterns, and a certain degree of direct agent interaction that is controlled by
the parameter ’temperature’, which influences all agents in a nonrival manner like a public
good (i.e. tax morale, massmedia, etc.).

Moreover, econophysics tax evasion models are based on a natural stochastic process
derived from the Ising model of ferromagnetism. This is one of their major advantages
in comparison with models from the economics domain in which either simple stochastic
processes are used or unrecognized attempts are made that essentially try to reproduce
elements of the Ising model. Hence, if econophysics models of tax evasion would be
complemented with a micro foundation they might well make a fundamental contribution
to the analysis of tax evasion. By extending the standard econophysics model of tax
evasion in a way that various behavioral agent types could be incorporated, we made a
first step towards a micro foundation of econophysics models. Of course, further steps are
required, but these tasks delineate a future research agenda.
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