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Abstract

Apart from being the world’s greatest consumer and producer of industrial

metals, China now also features the most actively traded industrial metal fu-

tures contracts worldwide. Using a sample of 29 futures contracts traded on

exchanges in the United States, the United Kingdom, India and China, we es-

timate VAR models and conduct variance decompositions, which are then vi-

sualized in the form of networks. The results indicate that China is, despite

its role as key actor in both real and financial industrial metal markets, a price

taker.
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1 Introduction

China’s rapid industrialization and rise as an economic power have been ac-

companied by a voracious appetite for natural resources. This is particularly

visible in the country’s demand for industrial metals. As the country continues

its process of urbanization and investment in infrastructure, China has evolved

into the world’s top consumer of refined aluminum, copper, nickel, steel and

zinc. In 1980, when the people’s republic’s policy of reform was just beginning,

the country’s share in the worldwide consumption of these metals ranged be-

tween three to four percent. Today, Chinese consumption makes up forty per-

cent of the world’s demand for lead and nickel and fifty percent of the world’s

demand for aluminum, copper and zinc (World Bank, 2018). Similarly, the

country has also developed into the top producer of these metals. In 2017,

roughly half of all steel, refined aluminium and zinc, and forty percent of re-

fined copper and lead were produced in China (World Bank, 2018).

However, China’s importance in the metal market is not limited to the real

side of the economy. Chinese commodity futures exchanges have over the years,

after a series of regulatory changes, evolved into the world’s largest futures

markets for numerous industrial metals. As documented by the Futures Indus-

try Association’s (FIA) 2017 volume survey, the seven most traded industrial

metal futures contracts are traded on Chinese exchanges (Acworth 2017). More-

over, the Shanghai Futures Exchange’s (SHFE) steel rebar futures contract has

grown into the most traded commodity futures contract worldwide.

In light of these developments, this paper investigates the role of Chinese

price leadership in industrial metals futures markets. We gather futures price

data on 29 industrial metal contracts traded on six exchanges in the United

States, the United Kingdom, India and China. To answer the question of whether

China has become a price leader in these markets, the network approach of
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Diebold & Yilmaz (2012, 2014) is used, which rests on variance decomposi-

tions of vector autoregressive (VAR) models’ forecast errors. Based on these

decompositions, so-called connectedness tables are compiled which summarize

how shocks to a specific futures price travel through the system of all prices of

this commodity. These connectedness tables are then visualized in the form of

graphical networks.

We obtain two main findings. Chinese metal contracts are strongly intercon-

nected with contracts traded on other exchanges. However, China is typically

a net receiver of price shocks. This suggests that China is, despite its role as

leading consumer, producer and trader of industrial metals, a price taker in the

corresponding futures markets. The remainder of this paper is structured as

follows. Section 2 summarizes important steps in the development of Chinese

commodity futures markets and earlier research on their role as price leader.

Thereafter, Section 3 explains the data used in this paper, while Section 4 intro-

duces the methodology. Section 5 then presents the key results and Section 6

analyzes the determinants of connectedness. Lastly, Section 7 concludes.

2 Institutional background and related literature

Today, Chinese futures trading occurs on five futures exchanges. The Dalian

Commodity Exchange (DCE) and the Zhengzhou Commodity Exchange (ZCE)

mainly focus on agricultural and chemical products, while the Shanghai Fu-

tures Exchange (SHFE) covers various metal contracts. Financial and crude oil

futures contracts are traded at the China Financial Futures Exchange (CFX) and

the Shanghai International Energy Exchange (INE).

Despite the fact that Chinese futures markets continue to be relatively closed

to foreign investors, who must generally rely on domestic intermediaries to
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conduct trades on their behalf 1, many Chinese futures contracts now outstrip

their Western counterparts in terms of trading volume. In international com-

parisons, Chinese metal futures contracts trade in remarkably high trading vol-

umes, which is not surprising given the stylized facts outlined in the intro-

duction. According to the FIA 2017 volume survey, the seven most traded in-

dustrial metal futures contracts are all traded on Chinese exchanges (Acworth

2017). Moreover, the Shanghai Futures Exchange (SHFE) steel rebar futures

contract has grown into the most traded commodity futures contract in the

world.

Against this backdrop, and given the fact that China has over the years

evolved into the largest consumer and producer of numerous industrial met-

als (World Bank Group 2018), a sizable body of literature has investigated the

role of Chinese futures exchanges as potential price leaders in industrial met-

als. Being among the oldest industrial metal futures contracts traded in China,

the SHFE’s copper contract has been analyzed in numerous studies. Fung et al.

(2003) use data from 1995 to 2001 and conduct a bivariate GARCH analysis of

two copper futures contracts traded at the SHFE and the New York Commod-

ity Exchange (COMEX). They find that the American contract dominates the

information flow between the two markets. Liu & An (2011) study the same

contracts, but make use of a VECM-GARCH framework and a price discovery

metric developed by Lien & Shrestha (2009). The authors use data from 2004 to

2009 and conclude that the U.S. market generally leads its Chinese counterpart

and is also dominant in the price discovery process. Li & Zhang (2013) study

the case of copper on a broader basis by considering, in addition to the con-

tracts traded at the SHFE and the COMEX, also contracts traded at the London
1Exceptions pertain to the INE’s crude oil contract, the DCE’s iron ore contract and the ZCE’s
Purified Terephthalic Acid (PTA) contract, which, following a new directory by the China
Securities Regulatory Commission (2015), can be traded directly by qualified foreign brokerage
firms without the need for a domestic intermediary.
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Metal Exchange (LME) and the Multi Commodity Exchange (MCX) in Mum-

bai, India. Employing an SVAR model and data ranging from 2005 to 2011,

the authors’ results suggest that the LME contract is the key price maker. Con-

versely, the results of Rutledge et al. (2013), who use a VECM estimation and

Granger-causality tests based on data from 2006 to 2011, reveal no distinct lead-

ership pattern between the copper contracts traded at the SHFE, the LME and

the COMEX.

Studies featuring multiple metal contracts include that of Hua & Chen (2007),

who study the markets for copper and aluminum. Using data from 1998 to

2002, the authors consider contracts traded at the SHFE and the LME. They

employ Granger-causality tests and find that the LME contracts Granger-cause

those of the SHFE, which implies that the Chinese contracts are price followers.

Fung et al. (2010), who consider aluminum and copper contracts traded at the

SHFE and the COMEX, use data from 1999 to 2009 and employ a VECM which

accounts for structural breaks. They find that neither market dominates the in-

formation flow between them. Fung et al. (2013) investigate the case of Chinese

price leadership on an even broader basis by considering 16 different commodi-

ties including aluminum, copper and zinc contracts traded at the SHFE and the

LME. The authors’ data range from different starting dates for each contract un-

til 2011, and are analyzed using various regression techniques including error

correction and GARCH models. Again, no clear pattern is found, as mixed and

bidirectional results are obtained for the different industrial metal contracts.

Lastly, the study by Kang & Yoon (2016), which is closely related to our work,

uses the approach proposed by Diebold & Yilmaz (2012) to study the SHFE’s

and LME’s futures contracts for aluminum, copper and zinc. Using data from

2007 to 2016, the authors find that price shocks typically originate in the LME’s

contracts and then travel to those of the SHFE.2

2Other applications of variance decompositions or the network approach of Diebold & Yilmaz
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The present paper extends this earlier research in three important ways:

First, by analyzing 29 different contracts, some of which were launched as re-

cently as November 2015, it is the most comprehensive study of industrial metal

futures conducted to date. As our analysis covers futures contracts for cop-

per, lead, nickel, iron and several kinds of steel, we investigate a much larger

variety of commodities than earlier studies. Second, by conducting variance-

decompositions of the forecast errors of various systems of different futures

contracts, the network approach of Diebold & Yilmaz (2012, 2014) enables us

to graphically visualize the inter-dependencies between the different contracts.

Third, we go beyond reporting market connectedness to consider the potential

economic determinants of this phenomenon.

3 Data

To examine the role of Chinese price leadership in the market for industrial

metal futures, we gather data on 29 industrial metal contracts at daily frequency.

All price time series are retrieved from Thomson Reuters Datastream, whereby

continuous series are constructed by switching to the nearest contract on the

first day of each new trading month. Data availability dictates the span of the

data set. Table 1 lists the contracts used in the analysis and details the different

contract specifications such as notation and size.

[ Table 1 about here. ]

Our sample covers five aluminum contracts, one cobalt contract, four cop-

per contracts, one ferrosilicon contract, two iron ore contracts, three lead and

nickel contracts, one silicon manganese contracts, five steel contracts, one tin

(2012) to the case of Chinese commodity markets, include the studies of Yang & Leatham (1999)
and Zhang & Wang (2014) who consider the markets for wheat and crude oil.
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contract and three zinc contracts. The contracts are traded on six different ex-

changes, namely the New York Commodity Exchange (COMEX), the London

Metal Exchange (LME), the Multi Commodity Exchange (MCX) (in Mumbai,

India), the Shanghai Futures Exchange (SHFE), the Dalian Commodity Exchange

(DCE) and the Zhengzhou Commodity Exchange (ZCE).

[ Figure 1 about here. ]

Figure 1 displays the futures prices time series of the commodity contracts

included in our analysis. All prices have been converted to USD per metric ton

(USD/mt). In accordance with the law of one price we observe relatively simi-

lar price movements among the different contracts for each type of commodity.

Nonetheless, Chinese prices are most of the time noticeably higher for all com-

modities. This could be due to barriers to trade concerning the Chinese market.

Regarding the steel market, we observe the greatest price differences within one

commodity. This is because of the different types of steel included in our sam-

ple, ranging from steel rebar to steel coils and steel scrap. The same holds for

the aluminum market, where one can see a large price difference between the

LME’s aluminum alloy contract and the other pure aluminum contracts. The

unusual behaviour of the COMEX’s aluminum price starting in late 2017 can be

explained by the exceptionally low trading volumes of this contract.

[ Table 2 about here. ]

Summary statistics of the daily logarithmic futures returns are displayed in

Table 2. The daily returns range from -0.32 percent to 0.33 percent. Standard

deviations range from 0.01 to 0.03. Roughly two thirds of all return series ex-

hibit a negative skewness, suggesting that severe price drops are more common

than large price increases. For all return series we observe kurtosis values well

in excess of 3, which is the reference kurtosis value of the normal distribution.
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This implies that none of the series follow a normal distribution, but feature fat

tails instead.

4 Methodology

To investigate the price leadership in the metal futures market, we follow the fi-

nancial market connectedness approach of Diebold & Yilmaz (2012, 2014). This

methodology suggests that the informational spillovers between different metal

futures contracts are studied using a network interpretation of a vector autore-

gressive (VAR) model’s variance decomposition. The starting point of this ap-

proach is estimating the following covariance stationary VAR(p) model:

rt =

p∑
i=1

Φi rt−i + εt , (1)

where the vector rt = (r1,t, r2,t, . . . , rn,t)
′ contains n logarithmic futures return

time series and εt is a n× 1 vector of white noise disturbances with covariance

matrix Ω.

4.1 Forecast error variance decomposition

The VAR model above can be represented as a vector moving average (VMA)

model of the form

rt =
∞∑
i=0

Ψi εt−i , (2)

where Ψi denote the n × n moving average coefficient matrices. These are de-

termined by Ψi = Φ1 Ψi−1 + Φ2 Ψi−2 + · · · + Φp Ψi−p for i > 0, while Ψ0 = In

and Ψi = 0 if i < 0. Based on the (VMA) model in equation (2), one can com-

pute the generalized H-step ahead forecast error variance decompositions dHij
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of Koop et al. (1996) and Pesaran & Shin (1998) as

dHij =

σ−1jj

H−1∑
h=0

(e′iΨhΩej)
2

H−1∑
h=0

(e′iΨhΩΦ′hei)

, (3)

where σjj is the standard deviation of εj,t, while ei is the n × 1 selection vector

consisting of zeros only except for its i-th element, which is equal to one. This

decomposition captures the contribution that shocks to variable j make to the

H-step-ahead error variance when forecasting variable i. In the case of i = j,

Diebold & Yilmaz (2012) refer to this as own variance share. Correspondingly, if

i 6= j, dHij is called cross variance share.

Note that this type of variance decomposition, unlike conventional variance

decompositions, does not make use of a Cholesky factorization of Ω and is thus

independent from the ordering of the time series in the system. However, as

the shocks to the model’s variables are not orthogonalized, a variable i’s differ-

ent variance shares due to shocks in variables j generally do not add up to one,

i.e.
∑n

j=1 d
H
ij 6= 1. Therefore, and to allow straightforward comparisons be-

tween the different shocks sent by a variable j to other variables i, the variance

decompositions are normalized and converted into percentages by computing

d̃Hij =
dHij
n∑

j=1

dHij

· 100 . (4)

Thus, it holds by construction that
∑n

j=1 d̃ij = 100 and that
∑n

i,j=1 d̃ij = n · 100.3

3An alternative forecast error variance decomposition is developed by Lanne & Nyberg (2016).
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4.2 Measuring connectedness

Following Diebold & Yilmaz (2014), the variance decomposition computed above

can be interpreted as a measure for the H-step ahead gross pairwise directional

connectedness from variable j to variable i, i.e.

CH
i←j = d̃Hij . (5)

As CH
i←j will generally not be equal to CH

j←i, the net flow of shocks between

the two variables, or net pairwise directional connectedness from variable j to

variable i, is calculated as

CH
ij = d̃Hji − d̃Hij . (6)

To gauge a variable’s relative importance as sender or receiver of shocks in

the system, Diebold & Yilmaz (2014) compute two measures of total directional

connectedness. The first of these measures, CH
i←•, summarizes all those parts of

a variable i’s forecast error variance decomposition that are due to shocks from

other variables j. Hence, this measure is calculated as

CH
i←• =

n∑
j=1,
j 6=i

d̃Hij . (7)

Conversely, the second measure CH
•←j summarizes all the contributions that

variable i makes to the forecast error variance decompositions of other vari-

ables j. This measure is therefore given by

CH
•←j =

n∑
i=1,
i 6=j

d̃Hij . (8)

Lastly, to capture the system’s total connectedness, Diebold & Yilmaz (2014)

sum up all of the normalized cross variance shares. To allow comparing the
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total connectedness values of different variable systems, this measure CH is

also normalized by n:

CH =
1

n

n∑
i,j=1,
i 6=j

d̃Hij . (9)

It holds by construction that the system’s total connectedness is equal to the

(normalized) sum of all shocks sent or equivalently all shocks received.

Given these measures of connectedness, a connectedness table for the VAR

system of equation (1) is constructed as follows:

[Table 3 about here.]

The main diagonal elements, apart from CH , display how the variance of a

specific return series is driven by the series’s own shocks. The off-diagonal el-

ements, except those at the margin of the connectedness table, represent the

fraction of a return series’s variance that is due to shocks in the other return se-

ries. The bottom row elements summarize the total impact that the return series

have on the variance of the other return series, while the elements of the right-

most column summarize the total of shocks that the return series receive from

the other series in the system. Thus, the greater a futures return series’s total di-

rectional connectedness is, the greater its role in price leadership. Conversely,

if a return series features a large row sum, it features a high total directional

connectedness from others and is therefore a strong recipient of price signals

originating from other futures contracts.

As suggested by Diebold & Yilmaz (2014) the n × n variance decomposi-

tions matrix is essentially a network adjacency matrix. The nodes of this net-

work are the different variables of the VAR system, i.e. in our case the different

metal futures contracts, while the connections between the contracts are deter-

mined by the magnitudes of the different variance decompositions. The advan-

tage of interpreting the variance decompositions in this way, is that it allows
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straightforward visualizations of market inter-dependencies and information

flows, which are discussed below in greater detail.

5 Results of the network analysis

As the first part of the analysis, we consider the entire sample of industrial

metal futures contracts explained in the data section. The resulting system com-

prises 29 contracts across eleven different commodities traded on six futures

exchanges in four countries. The sample size is thereby limited by the con-

tracts with the most recent starting dates. These are the SHFE’s steel contracts,

which started trading in November 2015. The sample ends in October 2018. We

implement the variance decomposition procedure described above and, follow-

ing Diebold & Yilmaz (2014), we interpret the resulting connectedness table as

a network. As explained before, each node in the network resembles one of the

futures contracts.

Figure 2 visualizes this network based on the graph drawing algorithm de-

veloped by Fruchterman & Reingold (1991). This algorithm draws networks by

balancing attracting and repelling forces between its nodes. In our network two

nodes attract each other depending on their pairwise directional spillovers. The

net pairwise directional spillovers, i.e. the differences between the two shocks

flowing between two contracts, are shown as arrows between the nodes. They

point in the direction of the larger shock between the two contracts and are

the thicker the greater the net directional spillover. The nodes repel each other

depending on their size which is determined by the total directional connect-

edness to others. Consequently, strong net senders of shocks will feature large

nodes with numerous arrows pointing away from them. Conversely, strong re-

cipients have smaller nodes and many arrows pointing toward them. Lastly,

the nodes are highlighted in different colors depending on the contracts’ un-
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derlying commodities.

[Figure 2 about here.]

The network visualization reveals distinct clusters of contracts based on the

underlying commodity groups to which they belong. Copper contracts are lo-

cated close to other copper contracts, aluminum contracts close to other alu-

minum contracts and so on. Only the steel contracts (highlighted in orange)

are relatively spread out, but they still form a cluster. The steel cluster partly

surrounds the iron cluster (highlighted in cyan) reflecting the close relationship

between the two commodities. The center of the network is dominated by the

different copper contracts (highlighted in red). Apart from their placement in

the center of the network, the nodes of these contracts are also considerably

larger than those of other commodity groups underscoring their importance

for the network. This is in line with the fact that copper is one of the most

widely used industrial metals featuring applications in construction, electri-

cal and electronic products, transportation and consumer products. Therefore,

copper is by some commentators seen as an indicator for the state of the overall

economy.

The nickel and zinc clusters (highlighted in green and yellow, respectively)

also feature relatively large nodes that are also placed toward the center of the

network. This mirrors their great importance in the real metal market, where

nickel and zinc are highly connected to other metals as they are used for the

galvanization and production of stainless steel and other ferro-alloys. The alu-

minum and lead clusters (highlighted in blue and gray, respectively) tend to-

ward the periphery of the network but are not as distant from the center as

the contracts for cobalt, ferrosilicon, silicon manganese and tin. In the net-

work, lead is closely connected to zinc, reflecting the fact that lead is a common

byproduct in the zinc mining process.
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Concerning the Chinese futures contracts, we find that these contracts are,

despite their large trading volumes, generally of minor importance to the net-

work as indicated by their relatively small node sizes and the high number of

arrows pointing toward them.

In a second step, we now consider the financial connectedness within the

different clusters of commodities observed above. In this regard, we examine

six clusters, namely those of aluminum, copper, lead, nickel, zinc and the com-

bined cluster of iron and steel. As before, the sample sizes are limited by the

youngest contract in each cluster.4 The resulting subnetworks are shown in

figure 3. The subnetworks confirm the earlier impression that the Chinese con-

tracts are price takers. In all of the six clusters, the Chinese contracts feature

the smallest nodes. Despite their placement often in the center of the networks,

they are major recipients of shocks from the others markets, as shown by the

net pairwise directional spillovers pointing toward them.

[Figure 3 about here.]

To study the subnetworks over time, we employ rolling window estima-

tions of the underlying VAR models with a window size of 250 trading days,

which is equal to one trading year. In each step, we follow the variance decom-

position procedure as before. Thereafter, we move the window ahead by one

day for the subsequent estimation. Consequently, we obtain for each day and

futures contract the total directional spillovers to others and from others. While

the former measure the amount of shocks sent by the different markets, the

latter capture the amount of shocks received by each of them. Computing the

differences between these two metrics yields the net total directional spillovers.

If a market’s net spillover is above zero, the market sends more shocks than

4The aluminum sample starts on 6 May 2014, the copper sample on 18 November 2004, the lead
sample on 24 March 2011, the nickel sample on 27 March 2015, the iron and steel sample on 23
November 2015, and the zinc sample on 26 March 2007. All samples end on 12 October 2018.
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it receives. Conversely, if the market’s net spillover is below zero, the market

is a net-receiver of price signals. Figure 4 displays these time-varying net total

directional spillovers of each futures contract.

[Figure 4 about here.]

The graphs show that for most of the commodity clusters the net spillovers

range between -60 and 30. However, the steel market exhibits far smaller net

spillovers ranging from only -20 to 10. This suggests that the iron and steel mar-

ket is less integrated than the other commodity groups, which is not surprising

given the different types of underlyings of these contracts (rebar, coils etc.). This

corresponds to what has been found in figure 2, where the steel and iron con-

tracts were relatively spread out. The net spillovers of Chinese contracts are

almost always below zero and relatively stable over time, which supports our

initial finding that the Chinese exchanges are net-receivers of shocks.

6 Determinants of connectedness

In this section we analyze which factors determine if a market is a sender or a re-

ceiver of price signals. Therefore, we regress the pairwise directional spillovers

C10
i←j,i6=j between contracts j and i on several exogenous variables. In particu-

lar we estimate for each of the commodity subnetworks the following dynamic

panel fixed effects regression:

C10
i←j,t = β0 + β1C

10
i←j,t−1 + β2V OLAj,t + β3ILLIQj,t +

β4SPMATj,t + β5IMij,t + β6EXij,t +

β7TEDj,t + β8V IXj,t + β9EPUj,t + εj,t .

(10)

Apart from the lagged spillover variable C10
i←j,t−1, we consider three groups
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of exogenous variables, namely financial variables, variables related to real eco-

nomic activity and variables measuring credit risk and market uncertainty. The

financial group includes the variables V OLAj,t and ILLIQj,t. V OLAj,t refers

to the relative market volatility of contract j, which is based on the conditional

volatility estimates of an AR(1)-GARCH(1,1) model of contract j’s returns. ILLIQj,t

is a proxy for market illiquidity proposed by Amihud (2002), which relates the

absolute value of a market’s return to its trading volume. High values of this ra-

tio indicate illiquid market environments, whereas low values of this measure

suggest high levels of liquidity. It is generally expected that liquidity increases

a market’s ability to process new information.

The second group of variables, which capture economic activity, comprise

the regressors SPMATj,t, IMij,t, and EXij,t. To control for regional supply and

demand shocks, we consider the S&P 500 Materials SPMATj,t for the US, Eu-

rope, India and China. IMij,t and EXij,t refer to the imports and exports flow-

ing between country i and country j, whereby IMij,t represents the amount of

the underlying commodity that country j imports from i, while EXij,t denotes

exports from j to i. Another important economic variable is the exchange rate.

We consider the dollar exchange rate of the currency the contract is denomi-

nated in. If a contract is denominated in dollar, which is the case for contracts

traded at the COMEX and the LME, we use the inverse of the trade-weighted

US dollar index, called the broad index.

However, given the interdependencies between exports, imports and the

exchange rate and the resulting endogeneity problem, we do not consider the

exchange rate in the main regression. Instead we follow an instrumental vari-

ables approach using a two-stage least square estimation. In the first stage we

regress imports and exports on the lagged values of imports, exports and the

exchange rate. The fitted values of this first stage regressions are then used to

estimate equation (10).
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The third group comprises the variables TEDj,t, V IXj,t and EPUj,t. The

TED-spread TEDj,t is a measure for credit risk and is calculated as the differ-

ence between the benchmark interbank lending rates and the interest rates of

the corresponding government securities. The volatility index V IXj,t captures

the volatility of the countries’ major stock exchange indices and is a common

proxy for market uncertainty. The variable EPUj,t is an index measuring the

economic policy uncertainty of the country in which contract j is traded. Lastly,

β0 denotes a constant and εj,t the error term.

We obtain data from three sources. Price and volume data are taken from

Thomson Reuters Datastream to compute V OLAj,t and ILLIQj,t. Similarly, in-

terest rate data for the TEDj,t as well as the V IXj,t, and data for the SPMATj,t

and the exchange rates are all retrieved from Thomson Reuters Datastream.

Lastly, the economic policy uncertainty indices EPUj,t are developed by Baker

et al. (2016)5, while IMij,t and EXij,t are obtained from the International Trade

Centre (ITC).

[Table 4 about here.]

The results of the regressions are presented in table 4. The lagged spillovers

are significantly positive in all subnetworks. The relative volatility has a signif-

icantly negative impact for copper, lead and zinc. This indicates that contracts

with higher volatility send less information to other contracts than contracts

with lower levels of volatility. The Amihud-ratio, which captures market illiq-

uidity, is associated with a significantly negative sign in the lead market, which

implies that liquidity improves this market’s ability to transmit information.

Concerning the other real economy variables, we find that imports are never

significant. Exports, however, show a significantly positive influence in the

5Data for the economic policy uncertainty indices by Baker et al. (2016) are available at
www.PolicyUncertainty.com.
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copper and zinc markets. The impact of the S&P 500 Materials index is signif-

icantly positive in the iron and steel network. The results regarding the VIX

indices are inconclusive as coefficients with differing signs are obtained for the

different subnetworks. The EPU indices exhibit a significantly positive influ-

ence in the copper and iron and steel networks, while the TED-spread is only

significantly positive in the zinc network.

7 Conclusion

In the past two decades, China has become the greatest consumer and producer

of numerous industrial metals. Moreover, China has recently launched a num-

ber of futures contracts for these metals and these have become some of the

most traded futures contracts worldwide. This paper investigates the question

of whether these new markets are important in the formation of international

prices. We follow the network approach by Diebold & Yilmaz (2012, 2014) and

consider 29 metal contracts, traded on six exchanges in the United States, the

United Kingdom, India and China. However, despite their large trading vol-

umes, our results indicate that these Chinese futures contracts are not price

leaders.

Our analysis comprised three steps. First, we analyzed the overall network

structure across all industrial metal futures contracts included in our sample.

Unsurprisingly, futures contracts of the same underlying commodities were

grouped closely together. Of these clusters, the copper and zinc clusters were

found to be the most important ones regarding the transmission of price sig-

nals. Furthermore, the Chinese contracts appeared to play a minor role within

the different commodity clusters. In the second step, we repeated the earlier

analysis, but for each of the different commodity clusters separately. The results

of this step confirmed those of the first one: Chinese contracts were again found
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to be net-recipients of price shocks. Next, we conducted time-varying network

analyses to study how China’s role of price leadership varies over time. The

results implied that China’s passive role in the price discovery process is rela-

tively stable over time. Lastly, we used a dynamic fixed effects panel regression

to study the determinants of connectedness. Apart from lagged spillovers, rel-

ative volatility seemed to be the strongest determinant of connectedness.

In conclusion, our results provide strong evidence that metal prices are cur-

rently not made in China. Over the past years, Chinese regulators have been

able to develop active futures markets for many different commodities includ-

ing various industrial metals. However, further steps have to be taken to strengthen

the role of Chinese markets in terms of price leadership. Most importantly, Chi-

nese markets must become more accessible to foreign investors. A first step in

this direction might be the opening of the DEC iron ore futures contract to over-

seas investors in May 2018. It remains to been seen whether such action will

strengthen the international position of Chinese futures contracts.
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Table 1: Industrial Metal Futures Contracts

Contract Exchange Notation Size

Aluminum COMEX USD/mt 25 mt
Aluminum LME USD/mt 25 mt
Aluminum Alloy LME USD/mt 20 mt
Aluminum MCX INR/kg 5 mt
Aluminum SHFE RMB/mt 5 mt
Cobalt LME USD/mt 1 mt
Copper COMEX USD/lbs 25000 lb
Copper LME USD/mt 25 mt
Copper MCX INR/kg 1 mt
Copper SHFE RMB/mt 5 mt
Ferrosilicon ZCE RMB/mt 5 mt
Iron Ore DCE RMB/mt 100 mt
Iron Ore COMEX USD/mt 500 mt
Lead LME USD/mt 25 mt
Lead MCX INR/kg 5 mt
Lead SHFE RMB/mt 5 mt
Nickel LME USD/mt 6 mt
Nickel MCX INR/kg 250 kg
Nickel SHFE RMB/mt 1 mt
Silicon Manganese ZCE RMB/mt 5 mt
Steel Scrap LME USD/mt 10 mt
Steel Rebar LME USD/mt 10 mt
Steel Coils COMEX USD/st 20 st
Steel Rebar SHFE RMB/mt 10 mt
Steel Coils SHFE RMB/mt 10 mt
Tin LME USD/mt 5 mt
Zinc LME USD/mt 25 mt
Zinc MCX INR/kg 5 mt
Zinc SHFE RMB/mt 5 mt

Note: The exchange abbreviations "COMEX", "LME", "MCX", "SHFE",
"DCE" and "ZCE" refer to the New York Commodity Exchange, the Lon-
don Metal Exchange, the Multi Commodity Exchange (Mumbai, India),
the Shanghai Futures Exchange, the Dalian Commodity Exchange and the
Zhengzhou Commodity Exchange. The currency abbreviations "USD",
"RMB" and "INR" refer to the U.S. dollar, the Chinese renminbi and the
Indian rupee. Contract sizes are reported in "mt","kg" and "st","lb" refer-
ring to metric tons and kilograms, and short tons (equivalent to roughly
0.907 metric tons) and pounds (equivalent to 0.453 kilograms).
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Table 2: Summary Statistics of Returns

Contract Exchange Min Mean Max St.dev. Skew. Kurt.

Aluminum COMEX -0.04 0.00 0.04 0.01 0.06 4.74
Aluminum LME -0.08 0.00 0.05 0.01 0.18 5.93
Aluminum Alloy LME -0.07 -0.00 0.06 0.01 -0.17 11.23
Aluminum MCX -0.10 0.00 0.07 0.01 0.15 10.00
Aluminum SHFE -0.04 -0.00 0.04 0.01 0.18 5.54
Cobalt LME -0.13 0.00 0.12 0.02 0.19 19.86
Copper COMEX -0.12 0.00 0.12 0.02 -0.13 7.06
Copper LME -0.10 0.00 0.12 0.02 -0.01 7.30
Copper MCX -0.12 0.00 0.10 0.02 -0.16 7.35
Copper SHFE -0.07 0.00 0.06 0.01 -0.28 6.07
Ferrosilicon ZCE -0.28 0.00 0.20 0.02 -2.86 53.71
Iron Ore DCE -0.32 -0.00 0.10 0.03 -3.18 35.00
Iron Ore COMEX -0.09 -0.00 0.16 0.02 0.28 7.46
Lead LME -0.08 -0.00 0.08 0.02 -0.01 5.27
Lead MCX -0.09 -0.00 0.08 0.01 -0.04 5.64
Lead SHFE -0.05 -0.00 0.05 0.01 -0.15 7.53
Nickel LME -0.09 -0.00 0.07 0.02 -0.23 4.43
Nickel MCX -0.08 -0.00 0.07 0.02 -0.02 4.42
Nickel SHFE -0.06 -0.00 0.06 0.01 -0.10 5.21
Silicon Manganese ZCE -0.28 0.00 0.33 0.03 0.49 65.58
Steel Scrap LME -0.08 0.00 0.10 0.02 -0.29 7.21
Steel Rebar LME -0.04 0.00 0.05 0.01 0.19 6.04
Steel Coils COMEX -0.06 0.00 0.11 0.01 1.81 20.48
Steel Rebar SHFE -0.09 0.00 0.08 0.02 -0.24 6.15
Steel Coils SHFE -0.08 0.00 0.08 0.02 0.02 7.20
Tin LME -0.04 0.00 0.04 0.01 -0.10 4.59
Zinc LME -0.11 -0.00 0.10 0.02 -0.06 5.40
Zinc MCX -0.09 -0.00 0.10 0.02 -0.12 5.50
Zinc SHFE -0.06 -0.00 0.05 0.01 -0.40 5.64

Note: The exchange abbreviations "COMEX", "LME", "MCX", "SHFE", "DCE" and
"ZCE" refer to the New York Commodity Exchange, the London Metal Exchange,
the Multi Commodity Exchange (Mumbai, India), the Shanghai Futures Exchange,
the Dalian Commodity Exchange and the Zhengzhou Commodity Exchange.
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Figure 1: Futures Price Time Series

Note: COMEX contracts are highlighted in blue, LME contracts in red, MCX contracts
in green, SHFE contracts in orange, DCE contracts in cyan, ZCE contracts in purple.
Steel rebar, aluminum alloy and the silicon manganese contracts are depicted using
dashed lines. All prices have been converted to USD/mt.
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Table 3: Concept of Connectedness Tables

r1 r2 . . . rn From others

r1 CH
1←1 CH

1←2 . . . CH
1←n CH

1←•

r2 CH
2←1 CH

2←2 . . . CH
2←n CH

2←•
...

...
... . . . ...

...

rn CH
n←1 CH

n←2 . . . CH
n←n CH

n←•

To others CH
•←1 CH

•←2 . . . CH
•←1 CH

Note: Connectedness table as proposed by Diebold &
Yilmaz (2014).
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Figure 2: Network Representation of Return Spillovers

Note: Node size depends on total directional spillovers, arrow thickness and direction on net pairwise directional spillovers.
Node placement is based on the graph drawing algorithm of Fruchterman & Reingold (1991).
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Figure 3: Individual Commodity Networks

Note: Node size depends on total directional spillovers, arrow thickness and
direction on net pairwise directional spillovers. Node placement is based on
the graph drawing algorithm of Fruchterman & Reingold (1991).
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Figure 4: Time-Varying Net Spillovers

Note: The graphs show the time-varying net total directional spillovers of each
futures contract. Values above zero indicate that a contract sends more price
signals than it receives, whereas values below zero suggest the opposite.
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Figure 4 (cont.): Time-Varying Net Spillovers
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Table 4: Regression Results

Aluminum Copper Lead Iron & Steel Zinc

C10
i←j,t−1 1.044∗∗∗ 0.947∗∗∗ 0.922∗∗∗ 0.923∗∗∗ 0.929∗∗∗

(0.027) (0.011) (0.013) (0.013) (0.013)
V OLAj,t 0.007 −0.030∗∗∗ −0.023∗∗ 0.012 −0.032∗

(0.012) (0.007) (0.007) (0.008) (0.014)
ILLIQj,t 0.009 −1.076 −1.040∗∗∗ 0.000 −8.847

(0.006) (0.685) (0.122) (0.000) (7.750)
SPMATj,t −0.000 0.000 −0.000 0.001∗ −0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
IMij,t 0.002 0.001 0.017 0.004 −0.229

(0.007) (0.001) (0.085) (0.007) (1.204)
EXij,t −0.012 0.001∗∗ 0.021 0.002 0.017∗∗∗

(0.012) (0.000) (0.018) (0.002) (0.003)
TEDj,t 0.060 0.021 −0.063 0.350∗ −0.079

(0.191) (0.033) (0.074) (0.185) (0.053)
V IXj,t −0.004 −0.005 −0.034∗∗ −0.024 0.019∗∗

(0.014) (0.005) (0.010) (0.016) (0.006)
EPUj,t 0.000 0.000∗∗∗ 0.000 0.001∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)
Const. 0.039 1.917∗∗∗ 3.314∗∗∗ −0.673 2.987∗∗

(0.658) (0.452) (0.528) (0.451) (0.923)

Overall R2 0.993 0.997 0.995 0.962 0.994

Note: Standard errors in parentheses, p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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