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Some People Feel the Rain, Others Just Get Wet:
An Analysis of Regional Differences in the Effects of

Weather on Cycling

By Kathrin Goldmann* and Jan Wessel∗

Between cities and regions, not only cycling levels differ, but also
the reactions of cyclists to adverse weather conditions. Using data
from 122 automated bicycle counting stations in 30 German cities,
and a composite index of adverse weather conditions that consists
of air temperature, precipitation, wind speed, relative humidity,
and cloud coverage, we calculate city-specific weather elasticities of
the level of utilitarian cycling. The results show that these weather
elasticities vary significantly between cities. Our next step is to
analyze various determinants of weather elasticities, which reveals
that the share of young inhabitants and the density of the cycle
network have a positive impact on weather resilience. Based on
the notion that resilience to adverse weather conditions reflects a
revealed part of a city’s bicycle culture, the weather elasticities can
be used to create a ranking of bicycle cities. This ranking is posi-
tively correlated with a ranking based on the modal share of cycling,
as well as with other rankings based on stated preference surveys
or external conditions such as infrastructure or cycling safety.

JEL: R49.

Keywords: Bicycle, weather elasticities, Germany, regional het-
erogeneity, bicycle city ranking, cycling culture.

I. Introduction

Cycling is gaining more and more attention from public authorities as a means
of urban transport. For decades, cycling in most cities in Germany was regarded
essentially as a leisure time activity on sunny Sundays. However, the increase in
traffic congestion in connection with the related problem of air pollution in the
cities has shifted the manner in which this mode of transport is viewed.

Traffic congestion is increasingly problematic for cities all over the world, and
certainly also for Germany. In the larger German cities like Hamburg, Berlin,
Munich, Nuremberg, and Stuttgart, the congestion level is at 30 % or above,
implying that a trip takes on average at least 30 % longer than it would under free-
flow conditions (TomTom, 2019). Another analysis has found that the average
travel speed in the cities has decreased by 1.2 % per year between 2015 and 2018
(ADAC, 2019).

The environmental organization Deutsche Umwelthilfe (DUH) has sued several
cities in Germany for exceeding the limit of 40 µg NOx (nitrogen oxide) at the
metering stations. In order to avoid a ban of diesel cars, several cities were forced
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to take rapid action. However, the prohibition of car traffic on lanes close to
the metering stations and opening them to public transport and non-motorized
traffic turned out to be an easy but evasive solution, which failed to tackle the
real problem. Moreover, traffic control systems have been used to limit the inflow
of cars. Traffic jams outside the cities, however, have become even worse, as those
measures have reduced the road capacity for cars. Adequate alternative means of
transport could often not be established within a short timeframe.

As a consequence, the debate about traffic congestion and air pollution in Ger-
man cities has shifted its focus to transport modes with zero local emissions. A
very promising mode of transport, especially for short distances, is cycling, as it
also uses significantly less space than car transport. To date, however, the modal
share of cycling varies significantly between German cities.

We can see that there are a few cities where the modal share of cycling is already
quite high, while it remains lower for others. Germany’s national cycling asso-
ciation, the Allgemeiner Deutscher Fahrrad-Club (ADFC), conducts an annual
survey to evaluate the cycling conditions in various German cities. Participants
of the “ADFC-Fahrradklima-Test” (ADFC bicycle climate test) can rate their
satisfaction with regard to daily aspects of cycling, such as dedicated infrastruc-
ture, safety, or risk of theft. From this information, a final grade is calculated for
each city. Based on these grades, the cities are ranked and the one with the best
grade often claims the nickname “bicycle capital” for itself.

Following this train of thought, the bicycle capital is the city that offers the
best conditions for riding regularly and safely by bike. In this paper, however, we
propose a different approach to assigning the title of bicycle capital, which is not
based on the quality of infrastructure or political conditions within a city, but
rather attempts to capture how well established the usage of bicycles is within a
particular city. Specifically, the aim of this paper is threefold:

First, we propose a different approach to measuring whether a city is a bi-
cycle city or not. Our approach differs from others in that it does not require
stated preference survey data or detailed infrastructural information. Using reg-
ular traffic counter data and weather data, we can estimate city-specific weather
elasticities, which reflect the changes in bicycle traffic that are caused by ad-
verse weather conditions. Thereby, we can observe if some form of bicycle culture
has emerged within a city, so that the bicycle is even used frequently under bad
weather conditions, or if the bicycle is regarded more as a transport mode for
good weather only. Following this approach, the city in which bicyclists are least
sensitive to adverse weather conditions could be crowned as the bicycle capital,
because the people there use their bicycles regardless of the weather conditions.
Thus, cycling as a means of transport is already ingrained in their daily trips and
routines.

Second, we analyze factors that could influence these weather elasticities. We
can thereby obtain information on the factors that are associated with a high
resilience to bad weather conditions. The results can help city planners to assess
which factors could affect bicyclist resilience to adverse weather conditions – and
which factors are of lesser importance in this respect. Moreover, we argue that
there is an unobserved factor which plays an important role with regard to city
resilience to adverse weather conditions. This unobserved factor could best be
described as bicycle culture and reflects how “naturally” the bicycle is used as a
means of transport within a city.

Third, a city ranking based on weather elasticities is compared to city rankings
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based on other cycling indices. We show that our weather-elasticity approach
yields comparable results to alternative cycling indices based on stated prefer-
ence surveys or external factors such as infrastructure. Moreover, we discuss the
advantages and disadvantages of the different approaches.

In general, the resilience of cyclists to adverse weather conditions is very impor-
tant, as it implies a greater dedication to cycling. However, if people frequently
shift between cycling and other transport modes, it becomes more difficult for
urban planners to provide an appropriate level of infrastructure for each mode
of transport, as free spaces for new infrastructure are barely available in densely
populated areas. Moreover, flexible public transport ticket structures could help
in attracting cyclists to public transport if the weather is bad, instead of losing
them to the less environmentally-friendly car. Our results provide additional in-
sights into different urban cycling behaviors across cities, and thus help to directly
address the needs of cyclists.

The structure of the paper is as follows. Section II reviews the literature. The
weather elasticities of 30 German cities are calculated in Section III and in Section
IV, we analyze potential determinants of these weather elasticities. In Section V,
we compare the city ranking based on the weather elasticity index to other bicycle
indices. Section VI concludes.

II. Literature Review

A. General Cycling Differences Between Cities

The share of bicycle trips can vary significantly between different countries and
even between the cities of one country. In Australia, the United Kingdom, or the
USA, the bike is used only for roughly 1 % of all trips. In continental Europe,
however, the bicycle is used more frequently. In Finland (9 %), Sweden (9 %),
Germany (10 %), Denmark (18 %), and especially in the Netherlands (26 %), the
modal share of cycling is significantly higher (Pucher and Buehler, 2012). Rietveld
and Daniel (2004) outline a general framework of factors that can influence bicy-
cle usage. These factors include individual driver characteristics, the generalized
costs of cycling, the generalized costs of other transport modes, and local poli-
cies such as building high-quality and bicycle-dedicated infrastructure. Moreover,
these authors state that intangible factors like the status of biking seem to influ-
ence the share of bicycle trips. They test empirically whether the factors of their
explanatory framework indeed influence the share of bicycle trips, and find that
physical aspects (e.g. altitude differences), population characteristics (e.g. age
structure), ethnic composition, and policies such as those relating to the quality
of cycling infrastructure or cyclist safety can impact on the share of bicycle trips.
Other papers that have looked at various factors impacting on cycling shares or
cycling rates include Hull and O’Holleran (2014) on perceptions of safety and
comfort; Schoner et al. (2015) on infrastructure; Flynn et al. (2012), Böcker et al.
(2013), or An et al. (2019) on weather conditions; or Parkin et al. (2008) on to-
pography and socio-economic characteristics. For a more comprehensive review
of factors influencing the modal share, however, we refer readers to Santos et al.
(2013).

The differences in cycling shares can also, at least in part, be attributed to
the history and perception of cycling within each country. In countries such as
Australia, the bicycle is perceived mainly as a tool for recreational trips or sport
(Daley and Rissel, 2011). In European and Asian countries, however, cycling is
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an established transport mode and often used for daily activities such as com-
muting (Rietveld and Daniel, 2004). Carstensen and Ebert (2012) argue that
cycling cultures are influenced by political, social, and broader cultural aspects,
while also acknowledging that geographical conditions could contribute to the
formation of cycling cultures. In line with this, Cervero et al. (2019) argue that
intangible factors, captured through fixed effects in their own regression model,
can play an important role in determining the share of bike commuters. Possible
intangible factors include a pro-bicycle culture. In their study of British cities,
these intangible factors are still significant determinants of the share of bicycle
commuters, even after controlling for potential explanatory factors such as the
number of students, or educational levels of the general population within a city.
A case study for Copenhagen in Denmark analyzes why biking is especially pop-
ular in this city, and one reason for this is the city’s long history of biking and
the associated culture (Gössling, 2013).

According to Rietveld and Daniel (2004), the fate of cycling is determined by
more than just history, culture, topography, and climate. They outline that even
Germany, Denmark and the Netherlands observed decreasing shares of bicycle
trips from 1950 to 1975, a negative trend that could only be reversed through the
implementation of bike-friendly transport and urban planning policies. Lanzen-
dorf and Busch-Geertsema (2014) analyze changes in the modal share of bicycles
across four German cities. For three of these cities, namely Munich, Frankfurt,
and Berlin, they find a significant increase in the modal share of cycling between
2002 and 2008. They state that the greatest long-run benefits can be generated
by a combination of infrastructure investments and dedicated marketing cam-
paigns. A similar notion is also supported by Pucher et al. (2010) or Aldred and
Jungnickel (2014). Based on an analysis of Dutch, Danish and German cities,
Pucher and Buehler (2008) derive conditions that can help to promote cycling.
They show that the best way to do so is to build cycling infrastructure that is
separated from heavily travelled roads and intersections, as well as to establish
traffic-calming measures in residential neighborhoods.

For Germany, Goetzke and Rave (2011) show that personal and city characteris-
tics, as well as trip attributes, can influence cycling. Moreover, they demonstrate
that bicycle culture, which they approximate by social network effects, can have
a positive influence on cycling for shopping or recreational purposes, but it does
not affect cycling for school, work, or errand trips. Moreover, the modal share of
cycling for commuting trips appears not to be affected by policy variables, but
decreases with the trip distance, bad weather, and the existence of rail transit
alternatives. A flat topography can increase the bike share for school and work
trips.

B. The Different Effects of Adverse Weather Conditions on Cyclists of Different

Regions

There are several papers that estimate weather-condition effects on cycling (e.g.
Hanson and Hanson, 1977; Miranda-Moreno and Nosal, 2011; Thomas et al.,
2013). Moreover, it has been shown that there are effect differences between
utilitarian and recreational bicycle traffic (Nosal and Miranda-Moreno, 2014; Zhao
et al., 2018). Within this literature review, we focus on the papers that have
analyzed regional differences between weather-condition effects on cycling. For a
more detailed overview of the impact of weather conditions on cycling in general,
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we refer to Böcker et al. (2013).

While 90 % of frequent winter cyclists in Calgary, Canada, indicated that they
even feel comfortable riding their bike at −20C or below (Amiri and Sadeghpour,
2015), such high numbers are unthinkable for other regions. For Sweden, Liu
et al. (2015) show that perceptions of temperature variations differ significantly
between different regions and seasons, and can lead to different travel behaviors.

The differences in the impact of weather conditions on cycling are also analyzed
by Helbich et al. (2014), who look at the greater Rotterdam area. They find that
temperature has a positive effect, and that wind and precipitation have a negative
effect on the number of bicycles. Moreover, they find that the impact of weather
conditions varies across space, and that it is generally stronger in remote ar-
eas than in more central, densely-populated areas. Böcker et al. (2019) conduct a
comparison of weather-condition effects on mobility across four Dutch, Norwegian
and Swedish city regions. They find that the statistical significance, magnitude,
and sometimes even the direction of weather-condition effects can vary between
different cities. They show that the transport regime within a city can signifi-
cantly influence weather-condition effects. Good transport alternatives to cycling
could thus lead to weather-condition effects being more pronounced, as potential
cyclists can easily switch to transport means that are more comfortable under
adverse weather conditions. Moreover, an increased presence of adverse weather
conditions or cultural factors such as a pro-bicycle culture could strengthen the
resilience to bad weather conditions. Using bikeshare data, Gebhart and Noland
(2014) find out that trips starting from bikeshare stations close to a subway sta-
tion are affected more strongly by rain or cold temperatures than trips starting
from bikeshare stations that are not in vicinity of subway stations.

C. Indices for Bicycle Friendliness

To generate a suitable ranking for bicycle cities, various indicators can be used.
There are indicators that measure the overall bicycle friendliness of a city, the bi-
cycle infrastructure, or the satisfaction of the population with cycling conditions.
Within this literature review, we focus on two indicators that are discussed in the
scientific literature. This does not reflect negatively on other indicators – some
of which are relevant to the context of our study and thus briefly discussed in
Section V – that can generate valuable insights as well.

Winters et al. (2013) use GIS software to develop a “Bikeability Index”. For this
index, a composite indicator is formed from the five components of bicycle route
density, bicycle route separation, connectivity of bicycle-friendly roads (number
of intersections), topography, and the density of destinations (number of bike-
friendly destinations) is built. The authors show that their Bikeability Index has
a positive correlation with the modal share of bikes for commuting trips.

Zayed (2016) uses principal component analysis to highlight the attributes of the
built environment that help to make a city bicycle-friendly. He finds that a city’s
bicycle-friendliness, as measured through cycling rates, correlates strongly with
five different attributes of the built environment: city population, road network
length, city form, city area, and the motorized transport modal split (public vs.
private). This information is then used to calculate an index dubbed “Cycling
Readiness” for 42 Egyptian cities, which can be used as an indicator for the
readiness of Egyptian cities to become bike-friendly.
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D. Contribution to the Literature

Our paper then contributes to the literature in various ways.
We first propose an alternative way of ranking bicycle cities. While the existing

bicycle city rankings mostly rely on stated preferences from surveys (e.g. ADFC
bicycle climate index) or on external factors like infrastructure and safety (e.g.
Zayed (2016), Copenhagenize Index, COYA bicycle index), we use revealed pref-
erence data – that is, the resilience of bicyclists to adverse weather conditions
– to rank bicycle cities. Thus, the weather elasticity ranking is comparable to
modal-share based rankings, but we argue that it can better capture the inherent
dedication of cyclists to their mode of transport.

Second, we enrich the relatively scarce literature on regional differences in
weather-condition effects on cycling (as presented in Section II.B) by analyz-
ing weather effect differences for 30 German cities. The results allow us to assess
in which cities cycling is viewed as more than just a fair-weather mode of trans-
port – and which cities yield the largest share of fair-weather riders. Hence, the
results can enhance our understanding of the importance of cycling for the whole
transport system within a specific city.

Third, we do not look at the separate impact of selected weather conditions
(e.g. temperature or precipitation) on cycling, as it is done in the papers outlined
in Section II.B, but instead we estimate the impact of a single composite ad-
verse weather indicator, which condenses information from five separate weather
condition indicators. Due to the geometric aggregation of the five components,
the composite adverse weather indicator is less compensatory and thus reflects
the fact that extreme values in one weather condition component can outweigh
the influence of other components. We thereby implicitly account for interaction
effects between different weather conditions.

Fourth, by analyzing the relationship between weather elasticities and city char-
acteristics, our paper relates to the literature on determinants of modal share
differences (as presented in Section II.A) and determinants of weather condition
effect differences (as presented in Section II.B). In our paper, however, we use the
weather elasticities as a new dependent variable. Subsequently, we can determine
whether the relationships between city characteristics and the calculated weather
elasticities are similar to the relationships between city characteristics and modal
shares or selected weather-condition effects.

Fifth, we compare the city ranking based on weather elasticities with other
rankings based on stated preference surveys, or external factors such as infras-
tructure. The advantages and shortcomings of the weather elasticity ranking are
discussed. Moreover, we outline policy implications that can be derived from the
weather elasticity ranking, and we discuss what the ranking adds to the current
debate on bike-friendliness.

III. Weather Elasticity of Bicyclists

A. Data Sources

In order to calcule cities’ reactions to adverse weather conditions, we use hourly
bicycle counts from 122 automated bicycle counting stations from 30 regions and
cities within Germany. The sample period is 01.01.2017 to 31.12.2018. Given
that Cools et al. (2010) or Zhao et al. (2019) have shown that the trip type
influences the response to adverse weather conditions, we minimize the bias that
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might arise from measuring different types of bicycle traffic (e.g. utilitarian,
recreational, mixed) by restricting our sample to counting stations that measure
utilitarian bicycle traffic. Thus, our sample is basically a subsample of the one
used in Wessel (2020), in which the underlying counter classification procedure is
also described in more detail. The counting stations and cities that are considered
in this article are displayed in Figure 1.

The bicycle counting stations of the sample are installed by Eco-Counter, a
company that offers counting solutions for pedestrian and bicycle traffic flows.
The accuracy of the counting stations is around 95 %.1

Similar to Wessel (2020), Germany’s National Meteorological Service (Deutscher
Wetterdienst) provides hourly weather data for air temperature (measured at 2 m
above ground, in C), precipitation amount (in mm), wind speed (measured at
10 m above the ground, in m/s), relative humidity (in %), and cloud coverage (in
eights).

B. Creating a Composite Weather Indicator

In order to more accurately compare the weather effects across different cities,
we first condense multiple weather variables into a composite weather indicator
that reflects information about actual weather conditions. This indicator can
then be used to compare weather elasticities across different cities.

The composite indicator is calculated for each possible combination of city, day,
and hour of the sample. It contains information from the variables temperature,
precipitation, windspeed, relativehumidty, and cloudiness. Since these variables
have different units of measurement, they are standardized to z-scores (Nardo
et al., 2008). The standardized temperature variable is then multiplied by (−1),
so that positive values imply colder and thus worse weather conditions for cycling.
For the other four weather variables, higher values – and subsequently positive
values after standardization – already imply worse weather conditions (Böcker
et al., 2013). Next, the five weather variables are aggregated using the geometric
aggregation method with equal weights. The geometric aggregation method is less
compensatory than the linear aggregation method and hence, it is more difficult
to compensate for extreme weather conditions in one indicator through the other
indicators (Greco et al., 2019). We argue that this is an important feature for
weather data, because very heavy rain or extreme cold could easily prevent people
from biking, even if all other weather conditions are normal.

For a more meaningful interpretation of the composite indicator, we normal-
ize it with the min-max method, so that all values lie between 0 (best weather
conditions) and 1 (worst weather conditions) (Nardo et al., 2008).2

C. Estimating Cities’ Reactions to Adverse Weather Conditions

To estimate the impact of the composite weather indicator on bicycle ridership,
we set up a log-linear regression model with the logarithm of the hourly bicycle
counts as the dependent variable. Similar to the literature, observations with
zero bicycle counts are changed to one, in order to calculate the logarithm; this

1 All counting data are owned by the cities and regions of the sample. We greatly appreciate the
provision of the data by these cities and regions, and that Eco-Counter helped with data collection.

2 Due to extreme values caused by the geometric aggregation, we winsorize the variable ci actual weather
at the 0.998 quantile before the min-max transformation, in order to improve interpretability of the
regression coefficients. In our case, this does not change the ranking of effect magnitudes.
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City	
(Number	of	counter	stations)

Figure 1. : Cities and Stations of the Sample
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amounts to 1.39 % of all count observations. The composite weather indicator
variable, which is the explanatory variable in which we are most interested, is
included in the regression model by interacting it with the city dummies for
each considered city. Thus, we can estimate the weather effects for each city
separately. Similarly, the control variables accounting for general holidays, school
holidays, and semester breaks, are also interacted with the city dummies, which
allows for the impact of these holidays to vary across cities as well. In addition
to these variables, we include bicycle-counting-station fixed effects, hour-of-day
fixed effects (which are interacted with the city dummies to allow for different
cycling patterns between cities), as well as fixed effects for the day of the week,
month of the year, and year.

The estimated regression coefficients reflect the impact of a change in the com-
posite weather indicator from 0 (best overall weather conditions in the sample)
to 1 (worst overall weather conditions in the sample). Due to the extreme nature
of such a weather change, we scale the coefficients to increase interpretability. In
order to do so, we take the Q1 (25th percentile) and the Q3 (75th percentile) value
of the composite weather indicator to model a more realistic weather change. The
transformation of the original regression coefficients β is as follows:

(1)
weather elasticity = (eβ·(weatherQ3−weatherQ1) − 1) · 100

= (eβ·(0.262406−0.209567) − 1) · 100.

The resulting city-specific weather elasticities of cyclists, as well as the corre-
sponding 95 % confidence intervals, are presented in Figure 2. The point esti-
mates reflect the change in bicyclist levels if the weather conditions change from
the Q1 value of the composite weather indicator to the Q3 value of the com-
posite weather indicator. That is, very roughly speaking, we deal with a change
from relatively good weather to rather bad weather. The final ranking as well as
the point estimates of the weather elasticities are also outlined in Table 2 in the
Appendix.

The scaled weather elasticities enable us to rank the cities with respect to
their resilience to bad weather conditions. In Oldenburg, a city with roughly
170,000 inhabitants, the regression coefficient of the composite weather indicator
is not significantly different from zero at the 95 % confidence level. This finding
thus indicates that bicyclists in Oldenburg react the least to adverse weather
conditions. Münster and Göttingen, two cities where students roughly make
up 20 % of the population, also yield a very low sensitivity to adverse weather
conditions. All three cities have been labelled as “bicycle capital” in the past.

At the other end of the ranking spectrum, the city with the strongest reduction
in bicycle traffic during bad weather is Würzburg, with Stuttgart and Herzoge-
naurach as runners-up.

As a sensitivity analysis, the weather elasticities were calculated only for week-
day observations between 6 and 9 a.m. Although we have already excluded all
bicycle counting stations that measure mainly recreational or mixed bicycle traf-
fic from our sample in order to focus on utilitarian traffic, it is still possible that
recreational bicyclists are measured as well. Additionally restricting the sample
to observations of weekday morning peak hours should help us to further ex-
clude recreational bicyclists from the sample. In the Appendix, these elasticities
are presented in Figure 6, and Figure 7 compares the ranking based on all-day



10 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 33
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Figure 2. : Cities’ Different Reactions to Bad Weather by City

bicycle counts to that based on weekday morning peak bicycle counts.

IV. Determinants of Weather Elasticities in Different Cities

As we have seen in the previous section, the weather elasticity of cyclists differs
significantly between cities. To explain these differences, there are many natu-
ral candidate variables that can be used as explanatory variables in a regression
model, which are indeed often employed to explain the modal share of cycling
(Santos et al., 2013). One drawback of the bicycle count data is that we cannot
determine the impact of the generalized costs of transport (including the distance
travelled) on weather elasticities, because such trip characteristics cannot be cap-
tured by the counting station data. To analyze their impact, other types of data
(e.g. travel diaries, GPS data of bicycle trips) would be necessary and should
thus provide an interesting direction for future research. In this paper, however,
we focus on other important determinants that can impact on cycling behavior.
In particular, we include the following variables at the municipal level.3

• Population density: In more densely populated areas, the density of po-
tential destinations is also higher and, consequently, the distances between
starting points and potential destinations are smaller (Winters et al., 2013).
As the bicycle is used more for shorter distances (<10 km), more locations
can be reached by bicycle in densely populated areas. Moreover, shorter trip
lengths imply shorter trip times, and thus a reduced exposure to adverse
weather conditions. Therefore, it can be assumed that people are more likely

3 Data sources for the variables employed in this analysis are given in Table 3 in the Appendix.
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to use their bicycle under adverse weather conditions if the surrounding area
is more densely populated.

• Number of accidents: The number of accidents per 1,000 inhabitants in-
cludes all those that occurred in the respective municipality in 2017. The
reasoning for including this variable is the fact that pedestrians and cyclists
are the most vulnerable participants in (urban) traffic and are more exposed
to severe traffic accidents. If people do not feel safe cycling to work or to the
supermarket, they will use their bicycle less. Adverse weather can increase
the risk of accidents and should thus be considered as an explanatory vari-
able for weather elasticities. A detailed discussion of actual and perceived
safety on cycling behavior is conducted by Hull and O’Holleran (2014).

• Share of population younger than 18 years: The extent to which people use
their bicycle for daily trips depends on the available alternatives. People
who are not old enough to drive legally cannot switch to car if the weather is
bad (Rietveld and Daniel, 2004). In Germany, young people can obtain their
drivers license when they are 17 years old, but have to be accompanied by
someone older than 30 who has a driving license. People aged 18 and older
are allowed to drive a car alone. Consequently, the share of people that are
younger than 18 could explain weather elasticity differences between cities.

• Share of population between 18 and 25 years: For this variable, a similar
reasoning as for the previous variable applies. Although all people in this
group are formally allowed to drive, they are less likely to own a car or have
one at their disposal, especially if they are students.

• Overall congestion level: Commuting by car becomes less attractive if a city
is faced with higher automobile congestion. Travel time gains from commut-
ing by car instead of commuting by bike decline, so that cycling becomes
relatively more attractive. The index used to approximate congestion levels
has been created by taking the minimum and maximum travel times pro-
vided by Google Maps for an average Thursday at 7:30 a.m.4 For each city,
the Google Maps travel times and lengths were calculated for eight poten-
tial routes crossing the city center (north ↔ south, east ↔ west, north-east
↔ south-west, north-west ↔ south-east). Dividing the minimum free-flow
speed by the congested speed yields the final index used in the regression
model. A greater difference between average free-flow and congested speed
would imply worse traffic conditions for car commuting, and thus result in
a higher value for our congestion index. An index of 1.5, for example, would
signify that a trip during peak hours takes 50 % longer than the same trip
without congestion.

Due to data unavailability, the above variables have to be collected at the city
level. The following three variables are, however, collected at the less aggregated
bicycle counting station level. They are based on GIS data on topography, cycle
routes, and public transport stops. For the construction of these variables, a two
kilometer radius is drawn around each bicycle counting station and the variance
in altitude, density of cycle routes, and density of public transport stops are

4 The day chosen for this analysis is May 14th, 2020, which was lying in the future at the time when
the data was collected (from May 4th to May 8th, 2020)



12 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 33

calculated for each circle area. For the subsequent analysis, the data at the
counting station level have to be aggregated at the city level.

• Elevation: The topography was identified as an important determinant of
utilitarian cycling in the past. Utilitarian bicycle mobility is traditionally
more present in regions with a relatively flat topography, as it is very dif-
ficult to comfortably climb steep hills (Rietveld and Daniel, 2004). The
increasing market share of pedelecs has, however, decreased the influence of
topography on cycling. Nevertheless, most people still use non-motorized
bikes, and steeper slopes imply, on average, longer travel times and thus
longer exposure to adverse weather conditions.

• Cycle route density: A good cycling infrastructure can be a strong incentive
for people to use their bikes (Pucher and Buehler, 2008). Bicycle lanes could,
however, also serve as a magnet, and only attract people who already use
their bikes. Hence, new infrastructure could merely lead to route shifts by
cyclists (Schoner et al., 2015). However, route shifts can still lead to shorter
or more comfortable cycling and thus alleviate the discomfort caused by
adverse weather conditions.

• Density of public transport stops: Good public transport provides an alter-
native to utilitarian cycling and can thus reduce bicycle ridership. Moreover,
better alternatives make it easier to switch from bicycle to public transport
in the event of bad weather. We use the average number of public transport
stops (including bus, train, tram, etc.) in the two kilometer radius around
each bicycle counting station for a given city. At larger public transport
hubs such as main railway stations, each platform is counted as one stop.
This gives larger public transport hubs a higher weight, which seems rea-
sonable, as public transport quality at a main station is likely to be better
than at a rural bus stop.

The variables described above are now used to explain the weather elasticities.
Most explanatory variables are transformed to logarithms. Because the depen-
dent variable is an elasticity, the corresponding regression coefficients have to be
interpreted as follows. If the explanatory variable changes by 1 %, the weather
elasticity changes by β percentage points. The two variables that represent the
share of young people in the total population are not transformed to logarithms,
so that they can be interpreted as follows. If the share of young people increases
by 1 percentage point, the weather elasticity changes by β percentage points. Ta-
ble 1 summarizes the results of two different regression models. In Column (1),
the weather elasticities for all-day traffic at utilitarian bicycle counting stations
are used as the dependent variable; in Column (2), the weather elasticities for
only the morning-peak traffic at utilitarian bicycle counting stations are used as
the dependent variable.

In regression models (1) and (2), the weather elasticities are not influenced sig-
nificantly by either the population density, number of accidents, car possession,
number of public transport stops, or the congestion index. However, the pop-
ulation density has the expected sign, as a higher density reduces the weather
elasticity. This result corresponds to Helbich et al. (2014).

However, the share of people who are younger than 18 years old impacts posi-
tively on the weather elasticity. This group is not allowed to drive a car. Thus,
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a 1 percentage point increase in the share of people younger than 18 years old
corresponds to an increase in the weather elasticity of 3.5 percentage points in
model (1) and of 2.3 percentage points in model (2). In model (2), an increase in
the share of people between 18 and 25 of one percentage point corresponds to an
increase in the weather elasticity of 0.9 percentage points. Note that the weather
elasticity is, in general, a negative value and for this reason, a positive regres-
sion coefficient leads to a less negative weather elasticity and thus to a higher
resilience to adverse weather conditions. It appears that in cities with a younger
population, fewer people are able to switch to alternative transport modes during
bad weather, because the option of traveling by car is less likely to be available.

Table 1—: Determinants of Weather Elasticities

Weather Elasticity Weather Elasticity
[All-day Traffic] [Weekday Traffic, 6-9 a.m.]

(1) (2)

ln population density −0.328 −0.068
(2.465) (1.559)

ln accidents 5.714 −0.406
(6.089) (3.851)

ln cars −9.929 −4.672
(6.478) (4.097)

population below 18 3.504∗ 2.329∗

(1.774) (1.122)
population 18 to 25 1.043 0.914∗∗

(0.606) (0.383)
ln elevation −1.154 −1.732∗

(1.558) (0.985)
ln cycle routes 7.188∗∗ 4.004∗∗

(2.975) (1.881)
ln public transport −1.275 −0.483

(0.971) (0.614)
ln congestion −1.166 −5.925

(8.559) (5.413)
Constant −69.769 −40.985

(53.770) (34.004)

Observations 30 30
Adjusted R2 0.268 0.291
Residual Std. Error (df = 20) 4.956 3.134
F Statistic (df = 9; 20) 2.177∗ 2.323∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.

The regression coefficient for the elevation variable is only significant in model
(2). This seems plausible, because elevation is more serious for daily commuting
trips where people are particularly keen to avoid perspiration. If altitude differ-
ences increase by 1 %, the weather elasticity decreases by 1.7 percentage points.
Thus, a topography with steeper slopes corresponds to people switching more
quickly from bike to other modes of transport.
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The cycle route variable has positive regression coefficients in both models.
Thus, a higher density of cycle routes corresponds to less weather elastic cyclists.
A good bicycle route network can lead to more trip alternatives for cyclists, so
that they might be able to choose shorter or more sheltered routes. This result
is in line with those of Lanzendorf and Busch-Geertsema (2014), Aldred and
Jungnickel (2014) and Pucher and Buehler (2008), who find that more and better
cycling infrastructure does indeed promote cycling.

The relatively low adjusted R2 and the fact that there appear to be only a
few significant explanatory variables for the weather elasticities could indicate
the existence of other unobserved explanatory factors. As the city ranking based
on weather elasticities is comparable and positively correlated to other bicycle
rankings (more on this in Section V), the validity of the weather elasticity ranking
is convincing. We argue that one unobserved factor reflects bicycle culture, which
could lead to a greater acceptance and willingness to use the bicycle, even if the
circumstances are not ideal. Capturing this deep dedication to cycling is among
the most important features of the weather elasticity ranking.

Although both regressions provide intuitively sound results, the regressions have
clear limitations. Firstly, the number of observations is relatively low, as is the
adjusted R2. However, including more cities in the analysis could definitely im-
prove the model fit and reliability of the estimated coefficients. As cities set up
more and more bicycle counting stations, especially on utilitarian routes, this
problem could be alleviated in the future.

Another drawback of this approach for approximating a revealed part of the
bicycle culture in different cities is the potentially biasing placement of the au-
tomated bicycle counting stations. The exact location of the counting stations
can influence what type of bicycle traffic is measured (utilitarian, recreational, or
mixed) and, consequently, how strongly the measured bicycle ridership is affected
by bad weather (e.g. Nosal and Miranda-Moreno, 2014). We attempt to circum-
vent this problem by including only bicycle counting stations that are classified
as utilitarian. Moreover, we restrict the observations to peak hours in regression
model (2), thus sharpening the focus on utilitarian traffic. Nevertheless, there
might still be minor differences across utilitarian bicycle traffic flows of different
counting stations. A higher number of automated bicycle counting stations at
utilitarian locations per city could help to even out these differences and thus
improve the overall reliability of such a bicycle climate index.

Moreover, this analysis, and most of the modal share analyses mentioned in
Section 2.1 have in common that it is difficult to determine causality. We can
state that a denser network of cycling routes corresponds to less weather-sensitive
cyclists, but we cannot conclude that more cycling routes also cause cyclists to be
less sensitive to adverse weather conditions. Although it is more likely that the
causality rather goes this way than the reverse, we cannot rule out that regressors
might be endogenous (Krizek et al., 2009; Schoner et al., 2015).

In general, it should also be noted that attitudes towards cycling can also
differ significantly between countries (Pucher and Buehler, 2012). Therefore, the
determinants of weather elasticities can also vary across countries and regions,
thereby reducing the comparability of our study with studies from countries where
cycling has a different standing in everyday life.
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V. Comparison of Bicycle Indices

Several bicycle indices have been created to measure the cycling conditions in
cities. In this section, we compare different bicycle city rankings with our city
ranking based on weather elasticities.

The Copenhagenize Index was created by the Copenhagenize Design Company,
which specializes in advising municipalities on bicycle-related city and transport
planning. The index is based on a score card with three categories (streetscape
parameters, culture parameters, ambition parameters). While criteria are based
mainly on the quality and quantity of bicycle infrastructure for the first category,
the second category covers softer factors like modal share, safety, and cycling
image. The third category focuses on the ambitions of political and public au-
thorities to improve cycling conditions. The three categories are weighted equally
for the overall index. Copenhagen, as in the name of the index, is ranked first
in the 2019 edition of the ranking. The first German city is Bremen at rank 11,
followed by Berlin at 15, and Hamburg at 20. The Copenhagenize Index only
considers larger cities, which prevents a meaningful comparison with the weather
elasticity ranking. The order of the three German cities, however, is similar for
both rankings.

Another bicycle index is created by COYA, a German insurance company which,
among other things, offers bicycle insurance. Their bicycle city index is a weighted
index of 16 external factors impacting on bike ridership.5 The index is calculated
for 50 different cities in Germany. As 21 of these cities are also included in
our analysis, we can analyze how these 21 cities rank in the COYA ranking,
compared to the weather elasticity ranking. The visualization of this comparison
is displayed in Figure 3. For the weather elasticity ranking and the COYA ranking,
Spearman’s rank correlation rho is 0.82. It is significantly different from zero at
the 1 % level (p-value: 0.000004).

The ADFC Bicycle Climate Index is (to a large degree) based on a stated
preference survey in German cities and towns. Anyone can participate in the
online survey and answer questions about the quality of bicycle infrastructure,
cycling safety, comfort, as well as softer factors like the role of cycling, the extent
the bicycle is used for trips, and the promotion of cycling. It should be noted
that the survey is not representative of the actual population within cities. All
cities from our analysis are also covered by the ADFC Bicycle Climate Index,
thus simplifying the comparison.6 The visual comparison is provided in Figure
4. We estimate Spearman’s rank correlation rho, which is 0.48 for the weather
elasticity ranking and the ADFC ranking. It is significantly different from zero
at the 1 % level (p-value: 0.007).

Another indicator of bicycle utilization in a city or town is the modal share.
The calculation of the modal share, however, requires extensive data about the
mobility of people in a specific area. It would reveal the extent to which the
bicycle is used as a means of transport, but does not include information from

5 Index scores of the COYA bicycle city index include weather, bicycle theft, investment and infrastruc-
ture quality, sharing, bicycle usage, safety, infrastructure, ”no car day”, fatalities, number of bicycle
shops, number of bicycle sharing and rental stations, critical mass score, accidents, specialised roads
and road quality score, number of shared bicycles, event score.

6 It should be noted that we take values from the 2018 edition of the ADFC bicycle climate index. For
Herzogenaurach, we take a value from to the 2016 edition as Herzogenaurach is not considered in the
2018 edition. For the Rhein-Erft-Kreis, which is a German county, we take the average values over all
cities of the Rhein-Erft-Kreis that are considered in the ADFC bicycle climate index.
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Figure 3. : Ranking Comparison (Weather Elasticities vs. COYA)
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Figure 4. : Ranking Comparison (Weather Elasticities vs. ADFC)
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stated preference surveys or external factors. In this respect, the modal share can
be compared to weather elasticities. The city-rank comparison of the modal share
and the weather elasticities is illustrated in Figure 5. Spearman’s rank correlation
rho is 0.51 for these two rankings and significantly different from zero at the 1 %
level (p-value = 0.004).
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Figure 5. : Ranking Comparison (Weather Elasticities vs. Modal Share)

The three external indices listed in this section provide valuable insights for
researchers, municipalities, and transport planners, but they also require a lot
of data. The ADFC bicycle climate index is (mostly) based on a survey and
reflects stated preferences. The COYA bicycle index requires objective data on
municipal infrastructure, policy, and surrounding circumstances, as well as an
adequate weighting scheme for the components. For the calculation of the bicycle
modal share, a representative travel survey is needed. For all three rankings,
data collection is a time-consuming and often expensive process. For the weather
elasticity ranking, on the other hand, only two sources of data are needed, namely
weather and bicycle counts. It could thus be argued that the data collection and
preparation process for the weather elasticity ranking is less complex and quicker –
provided that bicycle counting and weather stations are available, which, however,
is indeed the case for many cities.

While the ADFC ranking is (mostly) based on stated preferences, the modal
share ranking and the weather elasticity ranking are based on revealed preferences.
Thus, they measure actual behavior and are less exposed to response bias. When
comparing the modal share ranking to the weather elasticity ranking, it can be
argued that the weather elasticity index can even more effectively capture the
inherent dedication to cycling. As shown in Table 4 in the Appendix, both the
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ADFC and the modal share index can be better explained by the observable
factors outlined in Section IV. The weather elasticity ranking, on the other hand,
can help to reveal the existence of an unobserved bicycle culture within different
cities. Therefore, the weather elasticity ranking can serve as a valuable addition
to the literature, as well as to other bicycle rankings.

In line with the general evidence on cycling, our results indicate that the pres-
ence of more and better cycling routes increases the modal share of cycling, i.e.
in our analysis, decreases the weather elasticity of cyclists. Consequently, policy
makers should focus on the provision of a sufficient and good cycling infrastruc-
ture in order to promote cycling. As outlined in the introduction, infrastructure
provision in cities is very difficult because of limited space. Our index yields
information on how cyclists are affected by bad weather and thus to what ex-
tent the utilization of cycling infrastructure is reduced on days with bad weather.
With regard to the discussion about so-called “environmental lanes” in German
cities, the information from the weather elasticity index can be valuable to policy
makers for their short-run planning when cycling infrastructure is rather fixed.
To improve air quality in cities, the lanes of some highly frequented roads have
been closed to regular cars and opened up to high-occupancy vehicles and cyclists
in order to reduce emissions. However, closing one lane for the majority of car
commuters reduces road capacity and could thus even increase congestion, if no
alternatives to private motor vehicles are provided. If this lane, which can now be
used by high-occupancy vehicles and cyclists, remains empty in bad weather sit-
uations due to cyclists’ low resilience to bad weather, the measure would neither
be effective, nor politically accepted. As the weather elasticity index reveals the
cities in which cyclists are most affected by bad weather, a flexible provision of
such environmental lanes could be a possible solution for these cities. Especially
in winter months, when weather conditions are often not ideal, the environmental
lane could rather be returned again to car drivers. This is also reasonable, as
rain and darkness hours in the winter affect the driving behavior of cars and thus
reduces road capacity even further (Brilon et al., 2005). Our index provides a
valuable piece of information for determining for which German city this might
be a viable option.

Furthermore, insights from the weather elasticity index could be used for public
transport pricing. In cities where cyclists are not particularly resilient to adverse
weather conditions, the bicycle will quickly be substituted by car or public trans-
port if the weather is bad. The pricing structure of public transport, however,
is often not very flexible and does not offer an attractive ticket option for such
transport mode switchers. Many people commuting by public transport in Ger-
many have a subscription for a monthly flat-rate ticket. As long as people use
the ticket for all their commuting trips, the price is attractive. However, if people
regularly switch between transport modes, these monthly flat-rate tickets become
less attractive due to a higher price per trip. Buying single tickets each time the
weather is bad might not be a viable option, as these tickets are often relatively
expensive. Thus, a more flexible ticket type such as a reduced contingent ticket
or a flat-rate ticket that is only valid in bad weather could be attractive. This
option could be seasonal, such as in winter months, or even daily, if bad weather
is forecasted, which has been shown to reduce cyclist levels (Kraemer et al., 2015;
Wessel, 2020). If such flexible tickets were not available, more transport mode
switchers would resort to the car during bad weather, thus exacerbating environ-
mental problems. Of course, the analysis of mode choice behavior requires travel
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survey data and a different model setting in order to estimate cross-price elas-
ticities, for example. However, our weather elasticity index gives an indication
as to which German cities and towns it would be worthwhile for starting a pilot
project with new ticket options that suit the weather-sensitive group of cyclists.

VI. Conclusion

In this paper we present a new way to rank bicycle cities. The method is based
solely on bicycle counter and weather data, which are used to estimate the elas-
ticities of cyclists to adverse weather conditions for 30 German cities. The results
indicate that there are significant weather elasticity differences between cities. In
established bicycle cities like Münster, Oldenburg, and Göttingen, cyclists use
their bike regularly even if the weather is bad. In other cities, however, cycling
activity declines significantly under adverse weather conditions.

We show that cyclists are more resilient to adverse weather conditions in cities
with a higher share of young people, and in cities with a denser cycle route
network. The underlying regression is, however, limited by the relatively low
sample size of only 30 cities that provided data from utilitarian bicycle counting
stations. This problem could be reduced in the future when more cities are
equipped with bicycle counting stations.

An unobservable factor that is likely to influence weather resiliency is the pres-
ence of a bicycle culture within a city or region. A higher resilience to bad weather
reveals that cycling is already ingrained as an accepted and sometimes even indis-
pensable mode of transport for daily trips. Thus, the weather elasticities can (at
least in part) reveal the extent to which such thinking is already present within
a city, and, consequently, the extent to which a bicycle culture prevails.

The city ranking based on the weather elasticity index is positively and signifi-
cantly correlated to other bicycle rankings like the COYA bicycle ranking, which
is based on external factors such as infrastructure, or the ADFC bicycle ranking,
which is (mostly) based on a stated preference survey. Consequently, the weather
elasticity ranking can adequately display differences in cycling behavior across
cities, and relies only on weather and bicycle count data which are often collected
anyway. Of course, the weather elasticity cannot replace other comprehensive
surveys for bicycle travel, infrastructure, or policies, but it provides a reasonable
and sound ranking of bicycle cities and provides valuable additional insights.

Moreover, the weather elasticity index can provide helpful insights to policy
makers. Especially in cities where cyclists are highly weather-sensitive, new tariff
structures for public transport that are more flexible and better suited to the needs
of fair-weather cyclists could help in attracting these cyclists to public transport
instead of leading them to use their own car if the weather is bad. Furthermore,
a flexible provision of infrastructure, like giving more road capacity to cyclists on
good days and more road capacity to cars on cold and rainy days, can be a good
option.

In the future, the weather elasticity index could be calculated for additional
cities, as more and more cities employ automated bicycle counting stations for
traffic analysis. Subsequently, the sample size for analyzing the determinants
of weather elasticities would rise, thereby improving the reliability of results.
Additionally, an analysis of weather elasticities across cities in different countries
could provide additional insights into the behavior of cyclists and the existence
of local or national cycling cultures.
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An interesting direction for future research would be to not only use automated
bicycle counting data when estimating weather elasticities, but also to include
other types of data in the estimation. For this purpose, GPS trip data or data
from bike-sharing companies like Nextbike could be used, as they might provide
additional information about users profiles and (approximated) routes. Thereby,
we could differentiate more precisely between utilitarian and recreational traffic
flows.
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Appendices

A. Appendix

Table 2—: Final Weather Elasticity Ranking

Rank City ID City Weather Elasticities

All Day Traffic Traffic from 6 to 9 a.m.
(Default) (Sensitivity)

1 OLD Oldenburg 3.61 5.19
2 MUE Münster −2.18 0.32
3 GOE Göttingen −3.24 −1.47
4 HDB Heidelberg −6.27 −2.91
5 FRE Freiburg −6.39 −2.67
6 MAN Mannheim −7.13 −5.09
7 BRE Bremen −8.64 −4.32
8 LUD Ludwigsburg −8.71 −7.86
9 HEI Heilbronn −9.37 −8.47
10 ERL Erlangen −9.38 −4.32
11 LOE Lörrach −9.70 −6.21
12 ROS Rostock −9.87 −5.24
13 ESS Essen −9.96 −4.39
14 LEI Leipzig −11.28 −7.39
15 BER Berlin −11.95 −6.83
16 KIE Kiel −11.99 −4.56
17 HAN Hanover −12.29 −5.57
18 BON Bonn −12.36 −4.48
19 AUG Augsburg −12.50 −7.23
20 DUE Düsseldorf −12.68 −5.66
21 NUE Nuremberg −12.78 −7.57
22 KOE Cologne −13.12 −5.67
23 JEN Jena −15.92 −6.42
24 MUC Munich −17.70 −8.97
25 HAM Hamburg −17.76 −9.15
26 REK Rhein-Erft-Kreis −18.33 −8.32
27 TUE Tübingen −18.80 −8.49
28 HER Herzogenaurach −19.79 −7.89
29 STU Stuttgart −20.27 −13.44
30 WUE Würzburg −23.03 −14.68

The ranking is based on the all-day bicycle counts (default). As described in Section III.C, the weather

elasticities are scaled to reflect the change in bicycle ridership that occurs if the weather conditions

change from the Q1 value of the composite weather indicator to the Q3 value. It should also be noted

that the positive values for Oldenburg and Münster are not significantly different from zero at the 95 %

confidence level.
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Table 3—: Variable Description

Variablea Description Source

population
density

municipalities’ area in
km2

Destatis data series 11111-01-01-5-B
(Time: 31.12.2017)

municipalities’
inhabitants

Destatis data series 12411-01-01-5-B
(Time: 31.12.2017)

accidentsa Statistic of road
accidents

Destatis data series 46241-01-03-5-B
(Year 2017)

car
ownershipa

stock of motorized
vehilces and trailers

Destatis data series 46251-01-02-4-B
(Time: 01.01.2018)

population
by age

population by gender
and 17 age groupsb

Destatis data series 12411-02-03-5-B
(Time: 31.12.2017)

congestion Distance, minimum
and maximum time of
serveral urban routes

Google maps 2020

elevation The standard deviation
of the altitude within a
2 km radius around
each bicycle counting
station.c

QGIS-Calculation based on raster
elevation data from the Shuttle Radar
Topography Mission (SRTM).

cycle route
density

The length of the cycle
route network within a
2 km radius around
each bicycle counting
station.c

QGIS-Calculation based on
OpenStreetMap data.

public
transport
stop density

The number of public
transport stops (bus,
train, tram, etc.)
within a 2 km radius
around each bicycle
counting station.c

QGIS-Calculation based on
OpenStreetMap data.

Coya-Index Bicycle Cities Index
2019

https://www.coya.com/bike/fahrrad-
index-2019

ADFC-
Ranking

cities overall school
marks from 1 very
good to 5 poor

ADFC bicycle climate survey 2018, Url:
https://www.fahrradklima-test.de

Modal Split The share of bicycle
trips in all trips.

Various: Mobility in Germany 2017
survey, municipal traffic concepts

a For both variables, the amount is set in relation to the total population of the municipality to control for
municipality size.

b Share of age group to total population calculated for each municipality.

c The variable is subsequently aggregated for the city level.
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Table 4—: Determinants of ADFC Bicycle Climate Index and
Modal Share

ADFC Modal Share
(3) (4)

ln population density 0.049 −0.196
(0.034) (0.127)

ln accidents 0.093 0.174
(0.084) (0.314)

ln cars 0.136 −0.834∗∗

(0.090) (0.334)
population below 18 −0.067∗∗ 0.275∗∗∗

(0.025) (0.092)
population 18 to 25 −0.029∗∗∗ 0.143∗∗∗

(0.008) (0.031)
ln elevation 0.039∗ −0.308∗∗∗

(0.022) (0.080)
ln cycle routes −0.091∗∗ 0.380∗∗

(0.041) (0.154)
ln public transport 0.044∗∗∗ −0.128∗∗

(0.013) (0.050)
ln congestion 0.009 −0.063

(0.119) (0.442)
Constant 1.597∗∗ 2.455

(0.746) (2.774)

Observations 30 30
Adjusted R2 0.516 0.670
Residual Std. Error (df = 20) 0.069 0.256
F Statistic (df = 9; 20) 4.435∗∗∗ 7.547∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in parentheses.
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Figure 6. : Cities’ Different Reactions to Bad Weather by City (Only Weekday
Traffic from 6 to 9 a.m.)
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