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Using weather forecast to forecast whether bikes are used

By Jan Wessel∗

Although several papers have shown that bike ridership is affected
by actual weather conditions, this is the first study to comprehen-
sively investigate the impact of forecasted weather conditions on
bike ridership. The results show that both actual and forecasted
weather conditions can be used as useful explanatory variables for
predicting bicycle usage. Even incorrect weather forecasts can im-
pact on bike ridership, which underlines the importance of weather
forecast effects for traffic planners; for example, forecasted rain
can reduce bike traffic by 3.6 % in periods that turn out to be rain-
free. Additionally, a digital image-processing method is used to
calculate the darkness of the cloud coverage displayed on weather
forecast maps. The results imply that bike ridership is significantly
smaller in regions with darker forecasted clouds. It is also shown
that weather forecasts have a stronger impact on recreational bike
traffic than on utilitarian traffic. Furthermore, various lagging
and leading effects of rain forecasts are outlined. Morning rain
forecasts can, for example, reduce bike ridership in midday and af-
ternoon hours that were predicted to be rain-free. To derive these
results, hourly bicycle counts from 188 automated counting sta-
tions in Germany are collected for the years 2017 and 2018. They
are linked to actual weather data from Germany’s National Me-
teorological Service and with historical weather forecasts that are
deduced from weather maps of Germany’s most-watched television
news program. Log-linear and negative binomial regression models
are then used to estimate the weather forecast effects.

JEL: R49.

Keywords: Cycling, bike ridership, automated counting stations,
weather conditions, weather forecasts, image processing.

I. Introduction

Traveling by bike can have many positive effects, both for oneself as well as
for others. It can not only provide substantial health benefits for the cyclist
(de Hartog et al., 2010), but also contribute to reducing pollution and congestion
(Krizek, 2007). Thus, the promotion of cycling is strongly recommended in order
to promote a healthier and less-polluted environment (Handy et al., 2002). One
important aspect that needs to be taken into consideration when designing policies
and infrastructure for increasing the share of bike trips, is the effect of weather on
biking. Several papers (e.g. Miranda-Moreno and Nosal, 2011) have shown that
poor weather conditions such as rain can significantly reduce bike ridership.

While several papers found that actual weather conditions have a significant im-
pact on bike ridership (e.g. Miranda-Moreno and Nosal, 2011; Nosal and Miranda-

∗ Westfälische Wilhelms-Universität Münster, Institute of Transport Economics, Am Stadtgraben 9,
48143 Münster, Germany.

The final publication in “Transportation Research Part A: Policy and Practice” is available online at:
https://doi.org/10.1016/j.tra.2020.06.006

1



2 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 32

Moreno, 2014), the effects of weather forecasts – and, more importantly, of wrong
weather forecasts – on bike ridership have so far been neglected in the literature.
Since using the bike has ramifications for many aspects of the daily schedule (e.g.
earlier wake-up times due to longer commuting times), the decision to use the
bike is often made, or even has to be made, the day before the actual trip. Conse-
quently, it is reasonable to assume that weather forecasts significantly affect bike
ridership.

Meng et al. (2016) conduct a survey to confirm this notion. They find that
66.5 % of their participants would change their travel behavior if rain was fore-
casted. Moreover, Kraemer et al. (2015) use rush-hour bicycle counts to show
that bike ridership increases with higher forecasted air temperatures and that
it decreases with a higher forecasted chance of rain. While these two papers
highlight the importance of weather forecasts for bicyclists, a more comprehen-
sive analysis of different weather forecast effects on bicycle ridership is provided
within this research article. Using data from automated bicycle counting stations
and a larger set of weather forecast variables, the weather impacts are estimated
(i) using only actual weather data, (ii) only forecasted weather data, and (iii)
using a combination of both actual and forecasted weather data. In the combined
regression model, we estimate effects of wrong weather forecasts, which have a
significant impact on bike ridership. Moreover, a novel digital image-processing
method is introduced to evaluate the effect of the cloud coverage displayed on
weather forecast maps. It is also shown that weather and weather forecast effects
depend crucially on the type of bike traffic (utilitarian, recreational, or mixed).
As recreational bike trips are often easier to postpone or cancel, they are more
affected by actual weather and weather forecast than utilitarian bike trips. Ad-
ditionally, lagging and leading effects of weather forecasts are estimated. The
analysis of these effects is important as, for example, rain forecasts for morning
hours can deter people from going to work by bike, subsequently also reducing
bike ridership in afternoon hours when these people would commute back home.

The novel results of this study underline that not only actual weather condi-
tions, but also weather forecasts should to be considered in order to correctly
predict bike traffic. Moreover, wrong weather forecasts can lead to suboptimal
levels of bike ridership. This is especially important for cases of wrongly forecasted
rain, because people are likely to switch to less healthy and less environmentally-
friendly modes of transport. The results are thus helpful for traffic planners and
policymakers who should consider these effects in planning and implementing
strategies to increase bike ridership.

The remainder of this paper is organized as follows. Section II reviews the
literature on the relationship between biking and weather conditions in general, as
well as the scarce literature on weather-forecast effects. The data and descriptive
statistics are outlined in Section III, and Section IV introduces the methodology.
The results are presented in Section V. Section VI discusses the results and
concludes.

II. Literature review

Within this section, we first review papers dealing with the impact of actual
weather conditions on bicycle ridership. These papers are divided into two groups,
based on the type of data that is used. For a more comprehensive review of papers
dealing with the impact of actual weather conditions on bicycle traffic and also
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on other modes, we refer to Böcker et al. (2013). In a second step, we look at
the few papers that touch at the subject of weather forecasts and their impact
on travel behavior. In a third step, gaps in research are derived and it is outlined
how they are addressed in this paper.

A. The impact of actual weather conditions (survey data and travel log data)

Hanson and Hanson (1977) use travel diary data from Uppsala (Sweden) and
find that air temperature has a positive impact on the share of trips made by
bicycle, whereas cloud coverage has a negative impact. They also show that
commuters are less sensitive to changes in air temperature than non-commuters
are. In accordance with these findings, Helbich et al. (2014) show for the Greater
Rotterdam area in the Netherlands that cycling trips are positively affected by
air temperature, and negatively by wind speed and precipitation. They also find
that the weather effects vary across different regions, and that weather conditions
have a smaller impact on bicycle trips in densely settled areas than in low-density
areas.
For Sweden, Liu et al. (2015) use survey data to show that the effect of weather
on bicycle ridership and also the subjective perceptions of weather conditions
are not constant, but can differ between regions and between seasons. They
show, for example, that people who live in generally colder regions are more
aware of seasonally unusual air temperature variations during spring and autumn
seasons than people who live in generally warmer regions. During winter seasons,
however, the people from colder regions are less aware of such air temperature
variations due to very low average air temperatures. For a similar setting, Liu
et al. (2014) analyze weather effects on non-commuter trips, and differentiate
between routine activities (e.g. daily shopping) and leisure activities (e.g. visiting
friends). They find that routine and leisure trips can be influenced differently by
weather conditions and that there are again regional differences in these effects.
They argue that it is important to account for regional idiosyncrasies, as weather
conditions can even have two opposing effects in two different regions.

Also, many papers find that social characteristics such as gender, age, biking
experience, or occupational status, have a significant impact on individual percep-
tions of weather conditions and their reactions to adverse conditions (Nankervis,
1999; Bergström and Magnusson, 2003; Winters et al., 2007; Heinen et al., 2011;
Saneinejad et al., 2012; Flynn et al., 2012; Ahmed et al., 2013; Motoaki and
Daziano, 2015, e.g.). Zhao et al. (2018b) show for Beijing that bicyclists not only
respond to weather conditions, but also to pollution. The generally negative ef-
fect of PM2.5 concentration appears to be higher for females and for individuals
with medium or high income, who would subsequently switch to other modes of
transport.

B. The impact of actual weather conditions (bicycle counting data and bike-share data)

In addition to papers using survey or travel log data, there are various papers
that analyze the impact of actual weather conditions on bicycle counts. Such bi-
cycle counts can be measured either by hand or automatically, and they provide
a good indicator of actual bike ridership at a specific location. Thomas et al.
(2013) use daily bicycle counts from 16 cycle paths in two cities in the Nether-
lands. They show that average daily air temperature and sunshine duration have
a positive impact on daily bicycle counts, whereas higher precipitation and wind
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velocity reduce daily bike ridership. Weather has a significantly larger impact on
recreational bike traffic than on utilitarian bike traffic. The authors also show
that 80 % of daily bicycle count variations are caused by weather conditions. Er-
magun et al. (2018) also analyze the effect of weather conditions on daily bicycle
counts. They include data from thirteen cities in the U.S. and find differences
relating to responses to weather, both within and across regions.

Miranda-Moreno and Nosal (2011) analyze bicycle counts per hour for five au-
tomated counting stations in Montreal (Canada). Using both an absolute and a
relative ridership regression model, they estimate the effects of air temperature,
precipitation, wind-speed, and relative humidity on hourly cycle volumes. They
find that absolute ridership increases by 4-5 % if the air temperature increases by
10 %, relative to the overall average air temperature. An increase in air tempera-
ture, however, can decrease bicycle counts if the air temperature is above 28C and
relative humidity above 60 %. Moderate or severe rain, in combination with fog,
drizzle, or freezing rain, reduces ridership by 19 %. There is also a negative effect
of lagging variables. Rain in the past three hours causes ridership to drop by 25
to 36 %, and rain in the morning reduces ridership in rain-free afternoon hours
by 13 to 15 % if all other factors are held constant. The relative ridership model
finds that a 1 % increase in average air temperature increases hourly ridership
by 2.5 %. The negative effect of humidity appears weaker in this analysis, but
is still significant. Nosal and Miranda-Moreno (2014) conduct a similar analysis
and include both recreational and utilitarian bicycle counting stations. They find
non-linear effects of air temperature and humidity, and also observe that recre-
ational bike traffic is more sensitive to weather conditions, as did Thomas et al.
(2013) for daily bicycle counts.

Zhao et al. (2018a) use data from two automated bicycle counters in Seattle
(USA) to show that the traffic measured on an on-road bike lane, which represents
a utilitarian cycling pattern, reacts differently to weather than traffic on an off-
road bike trail, which represents a recreational cycling pattern. The weather is
less likely to affect weekend cycling on the trail than weekend cycling on the
on-road bike lane, whereas the opposite is true for weekday cycling. Similar to
Miranda-Moreno and Nosal (2011), they also find that rain has a lagged negative
impact. Miranda-Moreno et al. (2013) state that local climate appears to influence
monthly ridership profiles across cities in North America, and Tin Tin et al. (2012)
also find that weather influences hour-to-hour and day-to-day variations in bicycle
ridership.

Besides data from bicycle counting stations, weather effects can also be esti-
mated with data from public bike-sharing programs. An et al. (2019) analyze data
from such a program in New York (USA) and show that weather has a stronger
impact on cycling rates than infrastructure, topography, or calendar events. For
Brisbane (Australia), Corcoran et al. (2014) show that windspeed and rainfall
exert a significant negative effect on the number of bike-sharing trips that are
made. Air temperature, on the other hand, has a positive, yet smaller effect on
bike-sharing trips. Moreover, Gebhart and Noland (2014) use bike-share data
from Washington, DC (USA) to show that not only the number of trips, but also
their duration decreases under adverse weather conditions such as low air tem-
peratures or rain. De Chardon et al. (2017) show, for regions with temperate
or continental climate, that the number of daily bicycle-sharing trips decreases
in winter months, whereas these reductions are less pronounced in regions with
warmer climates. In addition to these findings, the impact of climate change on
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bikeshare usage is analyzed by Heaney et al. (2019). In a first step, they estimate
the relationship between air temperature and bikeshare usage. They then pre-
dict future bikeshare usage, depending on long-term air temperature predictions
from different climate models. They conclude that the higher air temperatures
associated with climate change could increase bikeshare usage by up to 3.1 % by
2070.

C. The impact of weather forecasts

While there is a considerable literature on the effects of actual weather condi-
tions on bike ridership, the interplay between weather forecasts and bike ridership
has thus far been barely studied. Böcker et al. (2013, p. 86) point out that “a
detailed exploration of the role of expectations and weather forecasts for travel
or activity behavior is yet to be achieved”.

There are, however, a few papers that look explicitly at weather forecasts and
biking. The first is by Meng et al. (2016), who conduct a survey with 553 cyclists
in Singapore. Of the questionnaires, 223 were collected during wet weather and
330 during good weather. Among other questions, the survey participants were
specifically asked whether they had obtained weather forecast information before
the trip, and if so, where they obtained this information (e.g. internet, television,
smart phone apps, etc.). Moreover, the participants were asked whether they
would change their travel plan if the weather forecast predicted bad weather. The
results show that in Singapore, 28.2 % of survey participants acquired information
from weather forecasts before their trip. People under 30 years, male bicyclists,
and employed bicyclists appear most likely to acquire weather forecast information
before their trip. Moreover, if individuals are less certain how the weather will
unfold, they are more likely to acquire weather forecast information. Another
interesting result is that 66.5 % of all survey participants stated that they would
change their travel plan if rain were forecasted. For cyclists who checked weather
forecasts before the trip, this percentage is higher (69.3 %), while it is lower for
cyclists who did not check weather forecasts (34.1 %). Also, the analysis shows
that cyclists who traveled to work or school, would likely transfer to other modes
of transport if rain were forecasted, whereas leisure cyclists would postpone their
trip.

The second paper is by Kraemer et al. (2015), who counted the number of
bicycle commuters in Washington, DC (USA), in 96 hourly sessions during rush-
hour periods. As predictive variables, they included both actual and forecasted
weather conditions (predicted high air temperature, rain chance, actual rain).
They show that the predicted air temperature can increase bike ridership by
2.2 % per F. Furthermore, if the weather forecast predicts that the chance of rain
is above 50 %, the number of bicyclists will decrease by 40 %, and actual rain
will decreases the number of bicyclists by 28 %. They do not, however, elaborate
on whether there are interaction effects between the actual weather and weather
forecast.

Additional insights into the influence of weather forecasts on activity-travel be-
havior are provided by Cools and Creemers (2013), who conduct a stated adaption
experiment and show that the forecasted weather conditions have a significant ef-
fect on the likelihood of changing activity-travel behavior. Especially snow and
temperatures above 28C can trigger such changes. It is interesting to note that
the exposure to weather forecasts, the specific media source, or the perceived re-
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liability of the forecast have no significant effect on the probability of changing
activity-travel behavior.

Another paper that touches on the relationship between weather forecasts and
biking is from Dias et al. (2015). Although their paper focuses on the technical
prediction of the occupancy status of bicycle storing facilities in Barcelona, they
state that three-day weather forecasts can improve the quality of their predic-
tion models. This underlines the importance of further studying the relationship
between weather forecasts and bike ridership.

D. Gaps in research

While the aforementioned papers have analyzed selected relationships between
weather forecasts and cycling behavior, there are still some important gaps in
research.

First, the previous analyses have used only very few and rather crude forecast
variables. Kraemer et al. (2015), for example, use the daily predicted high air
temperature and the chance of rain as forecast variables. In our study, however,
we additionally estimate the impact of various other weather forecast variables
on bicycle ridership. Our set of weather forecast variables includes the fore-
casted air temperature as well as dummy variables on whether light clouds, dark
clouds, rain, thunderstorms, snow, or weather warnings are forecasted. Moreover,
a novel digital image-processing method is introduced to evaluate the impact of
the cloud coverage displayed on weather forecast maps. This extensive set of
weather forecast variables generates additional insights on how different weather
forecast variables can influence bike ridership.

Second, it has not been studied how wrong weather forecasts can influence
bike ridership. It can be assumed that the decision to use a bike is not always
made right before the trip, but already in advance. Thus, people might decide to
not use their bike for their next-day morning commute if there is a bad weather
forecast for that day. Consequently, they make arrangements to get to work with a
different means of transport (e.g. reserving a shared car or organizing a carpool).
If such arrangements are fixed, it would be more difficult to spontaneously change
their plans on the next morning in cases of actually good weather. Thus, wrong
rain forecasts could lead to a reduction in the number of bike trips on the next
day. In this paper, we estimate the impact of wrong rain forecasts, as well as the
impact of wrong good-weather forecasts on bicycle ridership to better understand
how wrong weather forecasts can influence actual bike trips.

Third, it is not studied in the literature if the effects of weather forecasts differ
between recreational and utilitarian bicycle traffic. It could be argued that recre-
ational bicycle trips are easier to postpone or to cancel than utilitarian bike trips,
and thus more sensitive to adverse weather forecasts. By comparing the effects of
different weather forecast variables on bike ridership at recreational, utilitarian,
and mixed bicycle counting stations, we can provide valuable information on how
different traffic types are affected by weather forecasts.

Fourth, the literature has not looked at lagging and leading effects of weather
forecasts. Commuters might, for example, resort to not use their bike if rain
is forecasted for either the morning or the afternoon commute. Therefore, a
rain forecast for morning hours could have a lagging impact on bike ridership
in afternoon hours, and a rain forecast for afternoon hours could have a leading
impact on bike ridership in morning hours. Such time-shifted effects are estimated
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with the help of various dummy variables and provide additional insights on how
the behavior of bicyclists can be influenced by weather forecasts.

III. Data and descriptive statistics

A. Data

Bicycle counter data

We acquired hourly bicycle count data from 188 bicycle counting stations from
37 different cities and regions all over Germany.1 140 of these 188 stations offer
hourly bicycle counts for the whole sample period, that is from 01.01.2017 to
31.12.2018, and 175 stations offer data for at least 365 consecutive days. On
average, a bicycle counting station of the sample offers hourly data for 668.2 days
(91.5 % of the total sample period). For our regressions, we use data from all 188
stations, as the missing observations appear to be randomly distributed over the
total sample period.

All bicycle counting stations in the sample were installed by Eco-Counter, a
company specialized in pedestrian and bicycle counting solutions. The raw data,
that is the number of bicycles per hour, are the property of the respective cities
and regions, but were provided to us by the (bicycle) traffic planners or other
contact persons. As the cities and regions decide where to install the counting
stations, they are distributed rather randomly across different locations (e.g. sep-
arated bicycle lanes, multi-use paths, bicycle tracks,. . . ). The accuracy of the
counting stations is around 95 %.

An overview of the regions and cities in the sample, their locations, and the
number of stations per city or region can be found in Figure 1.

Actual weather data

Various factors can impact on bicycle counts. Among the most important
of these is the actual weather. Hourly weather data is provided by Germany’s
National Meteorological Service (Deutscher Wetterdienst) and includes the air
temperature (measured at 2 m above ground, in C), precipitation amount (in
mm), relative humidity (in %), wind speed (measured at 10 m above the ground,
in m/s), and cloud coverage (in eights).

These actual weather variables are linked to the bicycle counter data. There-
fore, we always choose the weather station closest to the bicycle counting station
and then combine the data. The average distance between a bicycle counting
station and a weather station is 11.8 km. If we look only at the cities within
our sample and disregard the regions where bicycle counting stations are more
scattered, the average distance decreases to 9.4 km. As the weather stations are
not directly next to the bicycle counting stations, there might be small differences
between the weather conditions at weather stations and the weather conditions
at counting stations. For example, a rural weather station could observe lower

1 The cities and regions include: Augsburg, Berlin, Bochum, Bonn, Bremen, Dsseldorf, Erlangen, Es-
sen, Freiburg, Gttingen, Hamburg, Hannover, Heidelberg, Heilbronn, Herzogenaurach, Jena, Kiel,
Kirchheim unter Teck, Cologne, Leipzig, Lrrach, Ludwigsburg, Mannheim, Munich, Mnster, Nation-
alpark Mritz, Nuremberg, Oberhausen, Oldenburg, Rhein-Erft-Kreis, Rhein-Kreis-Neuss, Rhein-
Sieg-Kreis, Rostock, Stuttgart, Sauerland Radwelt, Tbingen, Wrzburg. All data belong to the
respective regions. It is greatly appreciated that the company Eco-Counter helped in acquiring the
data.
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Division	into	six	different	areas

City	

(Number	of	counter	stations)

Figure 1. : Cities and stations of the sample

temperatures than the city-located bicycle counting station. If such differences
are systematic, however, they can be largely accounted for by using station fixed
effects. Moreover, the high quality and comparability of the weather station data
from Germany’s National Meteorological Service is a considerable advantage over
including data from different weather data providers that might operate weather
stations which are slightly closer to the counting stations.
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Weather forecast data

Hourly bicycle ridership is not only determined by the actual weather condi-
tions, but also by weather forecasts. The decision to commute to work either by
bike or using a different mode of transport, is often not decided in the morning
right before leaving the house, but might have already been determined the pre-
vious evening when watching the weather forecasts. Therefore, we also include
different weather forecast variables in our model.

As no historical weather forecast data were available, we evaluated weather
forecasts from Germany’s oldest and most-watched television news program, “Die
Tagesschau” (Engl.: (Re)view of the Day). This program is broadcast daily at
8 p.m. on German TV Channel “Das Erste”, a publicly funded TV channel that
can be freely received by all German residents. On a daily average, 9.63 mil-
lion people watch Die Tagesschau (34.5 % market share).2 The weather fore-
casts of Die Tagesschau are also used in other programs of Das Erste and its
regional broadcasting corporations, as well as in some nightly programs of pub-
licly broadcasted radio stations. Moreover, the forecasts are used for the TV
Channel Tagesschau24, which is a publicly broadcast TV news channel, and as
content for online articles and in corresponding mobile applications. Thus, it can
reasonably be argued that the weather forecasts we evaluate are observed by a
large share of the German population. Moreover, Cools and Creemers (2013)
conducted an experiment to show that the media source of the consumed weather
forecast does not significantly affect the probability of changing activity-travel
behavior.

For 2017 and 2018, all broadcasts of the 8 p.m. Tagesschau can be accessed via
the official multimedia library ARD Mediathek of Das Erste.3 The Tagesschau
usually runs for 15 minutes and always ends with a roughly one-minute-long
weather forecast. This weather forecast consists of various animated weather
maps. On the first weather map, areas of high pressure and low pressure, as
well as cloud movements, are depicted for all of Europe. After this, an animated
weather map shows different weather conditions (cloud coverage and movement,
rain, snow, thunderstorms) for the next 24 hours in Germany, which is depicted in
Figures 2a, 2b, and 2c. Also, different types of weather warnings (wind, danger
of slipping, iciness, flood, and a generic warning symbol) are displayed in this
weather map. Next, nightly and daily air temperatures are shown (Figure 2d).
After this, weather forecasts for the three days after the main forecast are briefly
outlined.

In order to manually evaluate these weather maps, we divide Germany into
six different areas as displayed in Figure 1: northeast, mideast, southeast, south-
west, midwest, northwest. To generate static weather maps, we use the animated
weather map with the different weather conditions and extract the frames that
display the weather conditions at 8:00, 12:00 and 16:00 o’clock. Next, we use
the static 8:00 o’clock weather map to assign the depicted weather conditions to
morning hour observations between 6:00 and 10:00 for each of the six aforemen-
tioned regions. The possible weather condition classifications are as follows: clear
sky, light cloud cover, heavy cloud cover, rain, snow, thunderstorm. Furthermore,

2 Source: https://www.dwdl.de/zahlenzentrale/70389/tagesschau_verliert_zuschauer_aber_
bleibt_deutlich_vorne/.

3 Only for August 19th, 2018, is there no Tagesschau available. Therefore, we have to drop the next
day – the day for which the weather is forecasted – from our analysis.
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(a) Weather condition map 8:00 (b) Weather condition map 12:00

(c) Weather condition map 16:00 (d) Daily high air temperature map

Source: ARD/Hessischer Rundfunk.

Figure 2. : Weather conditions and daily high air temperature maps for July 4th,
2017

we assign the outlined weather warnings (wind, danger of slipping, iciness, flood,
and a generic warning symbol) to each of the six regions. Thus we obtain weather
forecast values for the morning hours of our dataset. For the midday hours from
11:00 to 13:00, as well as for the afternoon hours from 14:00 to 18:00, a similar
assignment procedure is conducted with the frames of the 12:00 and the 16:00
o’clock weather maps.

It should be noted that our six weather condition classifications are not as de-
tailed as the weather conditions provided by the Deutscher Wetterdienst (DWD),
and that the actual classification of the depicted weather conditions is, to a certain
degree, subjective. Moreover, as we assign only the most prominently depicted
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weather condition to each of the six areas, we do not account for differences
between cities within one region. These drawbacks make the procedure rather
crude, which is, however, exactly what we are looking for. That is, the outlined
procedure thus takes into account the imperfect information intake when watch-
ing weather forecasts. This information can be misleading for several reasons,
including not knowing where exactly the city of interest is located, incorrect in-
terpretation of weather symbols (e.g. dark clouds do not always imply rain), or
excessive deterrence that could be caused by prominently displayed weather warn-
ing symbols or flashing lightnings. Therefore, this procedure should constitute
a sound way to model how viewers of weather forecasts interpret the presented
information. Moreover, Liu et al. (2014) argue that deliberately subjective mea-
surements of weather could be helpful in understanding how individuals decide
between different travel options.

In addition to the aforementioned manual evaluation procedure which is sub-
jective by design, we also employ a computerized evaluation of the weather maps.
The main idea behind this more objective procedure is the following: The darker
the forecasted clouds around one’s home region on the weather map, the less
people will use their bike. This implies that the highest bike ridership would be
observed when no clouds are forecasted, and that the lowest bike ridership would
occur when very dark clouds are forecasted. To incorporate this notion into our
regressions model, we use a digital image-processing method to prepare the static
weather maps for a subsequent analysis of darkness values. Through digital image
processing, we first recolor green land areas and blue sea areas on the maps in
white4 and then, the weather maps are converted to grayscale. The city labels
are then removed from the map and the resulting empty areas are reconstructed
using image interpolation.5 This procedure is outlined for two different weather
maps in Figure 3. In the next step, the resulting grayscale map without city la-
bels is used to calculate the average darkness value (from 0 to 1) for the area that
surrounds a given city. For example, this area is displayed through the red rect-
angles in Figures 3b and 3d for the city Hanover and spans roughly 7,500 km2. In
this example, the calculated values are 0.522 for Figure 3b, and 0.327 for Figure
3d. Then, the so-called forecasted darkness values are linked with the analyzed
city and, depending on whether the 8:00, 12:00 or 16:00 o’clock weather map was
evaluated, with the corresponding hours of the observations as described above.

4 This is done, because there is a clear sky in green or blue areas, which should indicate the best
weather conditions for biking. The areas in green or blue, however, can have higher darkness values
than areas where there are lighter clouds. Thus, an analysis of darkness values for unprocessed
weather maps could indicate that areas with light clouds offer better biking conditions than areas
with a clear sky. In order to solve this problem, the green and blue areas are recolored in white,
which is the least dark color and therefore indicates the best weather conditions. It should also be
noted that the shades of the clouds are not explicitly accounted for, meaning that they are also
recolored if the shaded areas are too green (which is very often the case). From this follows also
that the computerized evaluation calculates darkness values based on where the clouds are printed,
not where their shadows might indicate their locations. This again reflects the main idea that
cyclists would be less willing to use their bike if the respective region appears darker on the weather
map. As clouds on the television weather forecast are moving objects, we further argue that it is
reasonable to assume that the viewers would also locate the clouds exactly where they are printed,
as the clouds themselves are much more visible and detectible than the clouds’ rather transparent
shadows.

5 To do this, we employ the inpaint command from R’s “imager” package. It uses a gaussian filter
to replace the missing areas with a weighted average of neighboring regions.
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(a) July 4th, 2017 – 8:00 (b) July 4th, 2017 – 8:00

(c) November 25th, 2017 – 16:00

Source: ARD/Hessischer Rundfunk.

(d) November 25th, 2017 – 16:00

Figure 3. : Original and processed weather maps for two sample days

Additional data sources

It is also important to account for official holidays, school holidays, and semester
breaks. As the impact on bicycle counts could differ for each of these days, three
separate dummy variables are included in the regression model.

The dummy variable official holidays indicates if a day is an official holiday in
the city’s state, and the dummy variable school holidays indicates if a day is a
school holiday in the city’s state. Moreover, the dummy variable semester break
indicates if a day lies in the semester break period of the largest university of the
city where the bicycle counting station is located. If the bicycle counting station
is located in a city or region with no university, the dummy variable always takes
on a value of 0 for this bicycle counting station.
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Preparation of the data

After linking the hourly count data with the corresponding weather information,
weather forecast information, and the additional data sources outlined above, we
restrict our sample to observations from 6:00 to 18:00 o’clock. This restriction
on daytime counts is common in the literature, and in our case, also due to the
information that we can derive from the historical weather forecast maps.

The dataset is scanned for implausible extreme values, which are subsequently
excluded from the regression analysis (similar to Miranda-Moreno et al., 2013).

B. Descriptive statistics

Bicycle counting stations and their classification

Given that we use data from 188 bicycle counting stations in 37 cities, it is
important to note that there are significant differences across cities and across
counting stations. A detailed overview of descriptive statistics for the different
cities in the sample can be found in Table 3 in Appendix A. This overview serves
as an orientation on the general usage of bicycles within the various cities. It
should be noted, however, that these bicycle counts depend on the actual location
of the counting stations, and that they can therefore only be used as indicator of
the average usage of bicycles within a city.

Besides differences at the city level, which can be seen in Table 3, there are
also differences across counting stations. While bicycle traffic at some counting
stations can be considered as mostly utilitarian, there are also stations in regions
where people cycle mainly for recreational purposes. There are also stations
where utilitarian and recreational bicycle traffic mix. Thus, we group the count-
ing stations into three different types: utilitarian, mixed, and recreational. For
this classification, which is inspired by Miranda-Moreno et al. (2013), we compare
bicycle counts during morning peak hours on weekdays (07:00 – 09:00) to counts
during noon hours on weekdays (11:00 – 13:00), as well as bicycle counts dur-
ing weekdays to bicycle counts during weekends. To be classified as a utilitarian
counting station, bicycle traffic at the considered station must satisfy two condi-
tions: (U1) traffic during morning peak hours > traffic during noon hours, and
(U2) traffic during weekdays > traffic during weekend days. To be classified as a
recreational counting station, the following two conditions must be satisfied: (R1)
traffic during morning peak hours < traffic during noon hours, and (R2) traffic
during weekdays < traffic during weekend days. All bicycle counting stations that
cannot be classified as either utilitarian or recreational, are subsequently assigned
to the mixed group.

The average bicycle traffic profiles for utilitarian, mixed, and recreational count-
ing stations can be found in Figure 4.

Here, the hourly profiles are displayed in Figure 4a for weekdays, and in Figure
4b for weekends. Daily profiles can be found in Figure 4c. Of the 188 bicycle
counting stations, 122 can be classified as utilitarian, 34 as mixed, and 32 as
recreational.

Weather variables

According to data from Beck et al. (2018), Germany has no dry seasons and a
warm summer. While western and northern regions can be classified as temperate,
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(a) Hourly profile for a weekday
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(b) Hourly profile for a weekend day
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(c) Daily profile

Figure 4. : Hourly and daily counter profiles

eastern and southern regions are rather cold. Following the Kppen-Geiger climate
classification, the former regions thus can be classified as having a temperate
oceanic climate (Cfb), while the latter regions can be classified as having a warm-
summer humid continental climate (Dfb).

The average monthly air temperature, as well as the monthly precipitation for
the whole sample period, can be seen in Figure 5. Generally, 2018 was a very hot
year for Germany, with much less precipitation than usual.

Additional descriptive statistics of the actual weather variables and the weather
forecast variables can be found in Table 4 in Appendix B.

IV. Methodology

Bicycle counts are a positively skewed count variable. In the literature, both
log-linear and negative binomial regression models have been shown to provide a
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Figure 5. : Monthly weather profile

good fit for bicycle count data. They are used, for example, by Miranda-Moreno
and Nosal (2011) or Nosal and Miranda-Moreno (2014). Moreover, Nordback
(2012) compares the fit of different regression model types and shows that log-
linear and negative binomial models provide the best fit for bicycle count data.
Consequently, a log-linear regression model and a negative binomial regression
model are estimated.

To analyze the different impacts of actual and forecasted weather variables,
three different types of regression models are compared. The first only includes
actual weather variables, and the second regression model only includes forecasted
weather variables. The third regression model allows for a simultaneous inclusion
of actual and forecasted weather variables.

For each type of regression model, different combinations of variables were
tested in order to find the specification with the best fit for the regression model.
The evaluation and comparison of different specifications was conducted using R̄2

or the AIC. As the third regression model features both actual and forecasted
weather variables, we also ensure avoiding multicollinearity by evaluating the
variance inflation factors (VIFs) for different specifications. As a criterion, we
use VIF < 5. This is also the reason why, for example, only the actual and not
the forecasted air temperature is included in the third regression model.

Not only linear, but also quadratic terms were tested in various specifications.
However, only the variables actual air temperature, forecasted air temperature, as
well as the precipitation level appeared to have a non-linear impact. Similar to
Miranda-Moreno and Nosal (2011), we check whether one or more precipitation
dummies would offer a better fit than the continuous precipitation variable. As
it turns out, the best fit can be achieved by including six dummy variables in-
dicating light drizzle (precipitation < 0.5mm/h), strong drizzle (0.5mm/h ≤
precipitation < 1mm/h), light rain (1mm/h ≤ precipitation < 2mm/h), mod-
erate rain (2mm/h ≤ precipitation < 5mm/h), heavy rain (5mm/h ≤ precipi-
tation < 10mm/h), and very heavy rain (10mm/h ≤ precipitation). This scale
is adapted from the rain intensity scale presented by Tokay and Short (1996),
which is representative, according to Dunkerley (2008). The minor change to the
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original scale provides a better fit with the actual precipitation data of Germany.
The reference category is zero precipitation. Moreover, another dummy variable
is used in the regression model to control for actual snowfall. It takes the value 1
if we have precipitation and sub-zero air temperatures, and otherwise 0.

We also include fixed effects for the bicycle counting station, hour of day, day
of week, month of year, and year. Thereby, we account for all observable and
unobservable effects that are constant for a given bicycle station, a given hour of
the day, a given day of the week, a given month of the year, and for the year.
It should be noted that these fixed effects, in general, have high explanatory
power. Standard errors are clustered at the level of the bicycle counting stations,
so that error terms from different bicycle counting stations are assumed to be
independent.

Observations with missing values appear to be evenly distributed across all
bicycle counting stations and are consequently excluded from the regressions
(Miranda-Moreno and Nosal, 2011). Since we use the logarithm of bicycle counts
as our dependent variable in the log-linear regression model, we have to change
observations with non-missing zeros to 1. For the whole sample, this amounts
to 3.7 % of observations (1.4 % for utilitarian stations; 1.8 % for mixed stations;
14.5 % for recreational stations). The adjusted count variable will be denomi-
nated as log(bicycle counts adj). For the negative binomial regression models,
the dependent variable is not log-transformed, so that zero counts can be used in
the regression.

For a better interpretation of the results, exact semi-elasticities for dummy and
linear continuous variables are calculated as 100× [exp(β)−1] (Wooldridge, 2012,
p. 192). Semi-elasticities for quadratic terms are calculated as 100× [β+ 2 ·β · X̄],
with X̄ as the mean of variable X (Wooldridge, 2012, p. 196 ff.).

V. Analysis

A. Regression analysis with either actual or forecasted weather conditions

In Section II.D, it was outlined that the existing literature offers no compre-
hensive analysis of the effects that various forecasted weather variables can have
on bike ridership. Related to this, the results of a regression model using only
actual weather variables, as well as the results of two regression models using only
forecasted weather variables are outlined in Table 1.

The results of the log-linear regression that features only actual weather vari-
ables are presented in Regression (1) of Table 1.

The actual air temperature has a nonlinear effect and the semi-elasticity at the
mean is 3.04. Bike ridership increases with rising air temperatures and peaks at
around 29.5C. If the air temperature increases even further, bike ridership begins
to decrease.

As expected, the rain dummy variables are negative and a higher precipitation
intensity leads to stronger decreases in bicycle counts. For heavy and very heavy
rain, however, the negative impact weakens.6 If it rained in the last three hours,

6 This might seem counterintuitive, but rainfall intensity is higher for short-lived rain events and a
large share of the total precipitation in a rainfall event tends to fall in a small fraction of the event
duration (Dunkerley, 2008). Since precipitation is measured hourly in our sample, it could thus be
that in hours with heavy or very heavy rain, there are also longer periods without rain, compared
to hours with moderate, but ongoing falling rain. Moreover, heavy rain only occurs in 0.12 % of the
sample hours, and very heavy rain only in 0.04 %.
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Table 1—: Separate effects of actual and forecasted weather variables (log-linear regression)

Actual weather Forecasted weather

Manual evaluation Computerized evaluation
(1) (2) (3)

actual air temperature 0.053∗∗∗

(0.002)
actual air temperature2 −0.001∗∗∗

(0.0001)
actual rain light drizzle −0.109∗∗∗

(0.006)
actual rain strong drizzle −0.169∗∗∗

(0.008)
actual rain light rain −0.245∗∗∗

(0.010)
actual rain moderate rain −0.291∗∗∗

(0.014)
actual rain heavy rain −0.254∗∗∗

(0.025)
actual rain very heavy rain −0.067∗∗

(0.033)
actual rain in last 3 hours −0.277∗∗∗

(0.010)
actual relative humidity −0.006∗∗∗

(0.0005)
actual windspeed −0.033∗∗∗

(0.002)
actual cloudiness −0.011∗∗∗

(0.002)
actual snow −0.034

(0.028)
forecasted air temperature 0.048∗∗∗ 0.049∗∗∗

(0.002) (0.002)
forecasted air temperature2 −0.0004∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001)
forecasted light clouds −0.114∗∗∗

(0.006)
forecasted dark clouds −0.209∗∗∗

(0.010)
forecasted darkness −0.538∗∗∗

(0.020)
forecasted rain −0.382∗∗∗ −0.125∗∗∗

(0.015) (0.006)
forecasted thunderstorm −0.365∗∗∗ −0.185∗∗∗

(0.020) (0.013)
forecasted snow −0.314∗∗∗ −0.040∗∗∗

(0.013) (0.013)
forecasted warning −0.131∗∗∗ −0.136∗∗∗

(0.006) (0.007)
official holidays −0.783∗∗∗ −0.751∗∗∗ −0.769∗∗∗

(0.045) (0.046) (0.046)
school holidays −0.192∗∗∗ −0.196∗∗∗ −0.195∗∗∗

(0.010) (0.010) (0.010)
semester break −0.155∗∗∗ −0.165∗∗∗ −0.162∗∗∗

(0.014) (0.013) (0.013)

Observations 1,576,348 1,599,738 1,599,738
Adjusted R2 0.785 0.776 0.777
Residual Std. Error 0.780 (df = 1576114) 0.795 (df = 1599509) 0.793 (df = 1599510)

* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Note: Dependent variable: log(bicycle counts adj). Fixed effects for the bicycle counting station, hour of
day, day of week, month of year, and year are included at all times. Standard errors are clustered at
the level of the bicycle counting stations.
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bike ridership decreases by 24.2 %. Relative humidity, windspeed, and cloudiness
all have negative impacts on hourly bike ridership. Actual snow, however, appears
to have no significant impact in this regression model. Official holidays decrease
bike counts by 54.3 %, school holidays have a negative impact of 17.5 %, and
semester breaks a negative impact of 14.4 % on hourly bike ridership. It should
be noted that the effects of holidays and semester breaks are similar for all three
regressions in Table 1.

The results of the regressions with forecasted variables are presented in Re-
gressions (2) and (3) of Table 1. Both regression specifications use variables
derived from Tagesschau forecasts, with the difference that (2) only uses the
manual evaluation of the weather forecasts (variables forecasted light clouds and
forecasted dark clouds), whereas (3) uses the computerized evaluation of the fore-
casted cloud coverage (variable forecasted darkness) as outlined in Section III.A.
The forecasted air temperature has a positive, non-linear effect in both speci-
fications, and the semi-elasticities at the mean are 3.45 and 3.46, respectively.
In contrast to the actual air temperature, bike ridership increases monotonically
over the relevant forecasted air temperature values. Since a region’s forecasted
day highest air temperature is constant over all hours of one day, it appears plau-
sible that the curvature for the actual air temperature, which varies throughout
one day, is higher than for the forecasted air temperature.

Also, the forecasted cloud coverage has a significant negative impact. This holds
for the manual, as well as for the computerized evaluation of the Tagesschau
weather maps. In Regression (2), the presence of light clouds in the region of
the bicycle counting station decreases hourly bicycle ridership by 10.8 %, and
dark clouds lead to a decrease of 18.9 %. For the computerized evaluation of the
weather forecasts in Regression (3), the variable forecasted darkness indicates the
darkness of the area around the counting station on the weather forecast map. It
takes the value of 0 for no cloud cover, and 1 for pitch-black clouds. Thus, the
regression coefficient of −0.538 implies that if pitch-black clouds were forecasted,
bike ridership would decrease by 41.6 % in comparison to a forecasted clear sky.
A decrease from the Q1 value of forecasted darkness to the Q3 value, that is
from a darkness value of 0.00321 to 0.35224, would cause bike ridership to drop
by 14.5 %. Therefore, it can be concluded that the forecasted cloud coverage
significantly impacts on people’s bike riding behaviour.

In addition to cloud coverage, forecasted rain, thunderstorms, and snow also
have significant negative impacts on hourly bike ridership. These effects are
stronger for Regression (2) than for Regression (3), which plausibly suggests that
the variable forecasted darkness already captures some of the rain, thunderstorm,
and snow effects, as these three weather conditions are usually connected with
darker cloud coverage on weather maps. If a weather warning symbol is displayed
for the region of the counting station, hourly bike ridership decreases by roughly
12.5 %.

Additionally, a negative binomial regression model is used. In contrast to the
poisson regression model, it does not assume that the mean and the variance are
equal and thus it allows for overdispersion, which is present in the data according
to a likelihood ratio test that compares the likelihood of the poisson model to
the likelihood of the negative binomial model. The results of the negative bino-
mial regressions (8) to (10), which are presented in Table 5 in Appendix C, are
very similar and confirm the results of the log-linear regressions. One notable
difference, however, is that actual snowfall has a significant negative impact in
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the negative binomial regression model.

B. Regression analysis with both actual and forecasted weather conditions

From Table 1, it becomes evident that both actual weather conditions and fore-
casted weather conditions significantly impact on hourly bike ridership. Thus,
these variables are important when it comes to predicting hourly bicycle rider-
ship. It is, however, not reasonable to assume that bike ridership is influenced
by either only actual, or only forecasted weather conditions. More realistically,
bicyclists decide to use their bike based on both forecasted, as well as actual
weather conditions. This is reflected in the combined regression model presented
as Regression (4) in Table 2. With the help of the combined regression model,
we can also analyze the impact of wrong weather forecasts, which was outlined
as the second research gap in Section II.D.

Table 2—: Weather effects by counter type (log-linear regression)

Overall by counter type

Utilitarian Mixed Recreational
(4) (5) (6) (7)

actual air temperature 0.055∗∗∗ 0.051∗∗∗ 0.049∗∗∗ 0.081∗∗∗

(0.002) (0.002) (0.004) (0.005)
actual air temperature2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0002)
actual rain light drizzle −0.158∗∗∗ −0.136∗∗∗ −0.177∗∗∗ −0.194∗∗∗

(0.008) (0.008) (0.016) (0.021)
actual rain strong drizzle −0.199∗∗∗ −0.191∗∗∗ −0.226∗∗∗ −0.202∗∗∗

(0.009) (0.010) (0.020) (0.027)
actual rain light rain −0.264∗∗∗ −0.258∗∗∗ −0.298∗∗∗ −0.234∗∗∗

(0.012) (0.014) (0.022) (0.029)
actual rain moderate rain −0.303∗∗∗ −0.315∗∗∗ −0.330∗∗∗ −0.254∗∗∗

(0.015) (0.015) (0.032) (0.032)
actual rain heavy rain −0.285∗∗∗ −0.256∗∗∗ −0.330∗∗∗ −0.303∗∗∗

(0.025) (0.027) (0.047) (0.054)
actual rain very heavy rain −0.095∗∗∗ −0.123∗∗∗ −0.197∗∗ −0.163∗

(0.033) (0.035) (0.097) (0.084)
actual rain in last 3 hours −0.241∗∗∗ −0.199∗∗∗ −0.221∗∗∗ −0.362∗∗∗

(0.009) (0.007) (0.016) (0.021)
wrong rain forecast −0.037∗∗∗ −0.018∗∗∗ −0.049∗∗∗ −0.082∗∗∗

(0.005) (0.005) (0.008) (0.010)
wrong dry forecast 0.109∗∗∗ 0.101∗∗∗ 0.110∗∗∗ 0.136∗∗∗

(0.008) (0.010) (0.018) (0.013)
forecasted thunderstorm −0.034∗∗∗ −0.011 −0.008 −0.098∗∗∗

(0.009) (0.011) (0.019) (0.021)
forecasted warning −0.060∗∗∗ −0.079∗∗∗ −0.072∗∗∗ −0.001

(0.006) (0.005) (0.011) (0.015)
actual cloudiness −0.005∗∗∗ −0.003∗∗∗ −0.0003 −0.016∗∗∗

(0.001) (0.001) (0.002) (0.004)
forecasted darkness −0.268∗∗∗ −0.236∗∗∗ −0.223∗∗∗ −0.468∗∗∗

(0.015) (0.013) (0.033) (0.033)
actual relative humidity −0.005∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.009∗∗∗

(0.0005) (0.0004) (0.001) (0.001)
actual windspeed −0.028∗∗∗ −0.022∗∗∗ −0.025∗∗∗ −0.044∗∗∗

(0.002) (0.001) (0.003) (0.006)
official holidays −0.789∗∗∗ −1.018∗∗∗ −0.990∗∗∗ 0.271∗∗∗

(0.045) (0.031) (0.091) (0.054)
school holidays −0.190∗∗∗ −0.243∗∗∗ −0.154∗∗∗ −0.083∗∗∗

(0.010) (0.011) (0.015) (0.015)
semester break −0.156∗∗∗ −0.131∗∗∗ −0.169∗∗∗ 0.054

(0.014) (0.013) (0.038) (0.055)

Observations 1,576,348 1,029,717 272,669 273,962
Adjusted R2 0.786 0.721 0.829 0.739
Residual Std. Error 0.778 (df = 1576110) 0.711 (df = 1029545) 0.664 (df = 272585) 0.813 (df = 273880)

* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Note: Dependent variable: log(bicycle counts adj). Fixed effects for the bicycle counting station, hour of day, day of week,
month of year, and year are included at all times. Standard errors are clustered at the level of the bicycle counting stations.

The actual air temperature has, similar to Regression (1), a positive, but non-



20 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 32

linear effect on hourly bike ridership. Due to high VIF values, the forecasted air
temperature is excluded from the regression in order to avoid multicollinearity
issues. The negative effects for different rain categories are comparable to Re-
gression (1), yet slightly higher. If it rained in the previous three hours, bicycle
traffic decreases by 21.4 %.

Forecasted rain is not included directly in the regression model, but we test
whether wrong rain forecasts impact actual bike ridership. The regression co-
efficient for the variable wrong rain forecast gives the percentage change in bike
ridership if rain is forecasted, but it then does not rain in reality. The regression
coefficient for the variable wrong dry forecast gives the percentage change in bike
ridership if no rain is forecasted, but it actually does rain. The regression results
imply that falsely forecasted rain can reduce bike ridership by 3.6 %. On the other
hand, bike ridership in rainy hours will be 11.5 % higher if no rain is forecasted,
compared to the case if rain was correctly forecasted. These findings suggest that
bicyclists base their travel decisions not only on the actual weather conditions,
but also on information from weather forecasts – and, more importantly, some
bicyclists appear to stick to these decisions even if the actual weather conditions
are different from the forecasts.

Similar to the regression models with only forecasted weather conditions, the
effects of forecasted thunderstorms and forecasted weather warnings are also neg-
ative and significant in this combined regression model.

Also, Regression (4) shows that the actual cloudiness, measured on a scale from
0 (clear sky) to 8 (8/8 of the sky are covered by clouds), decreases bike ridership by
0.5 % per eighth of the sky that is covered by clouds. Thus, bike ridership under
a clear sky would be 4 % higher than under a fully covered sky. In addition to the
rather moderate effect of actual cloudiness, the darkness of forecasted clouds on
the weather map can decrease bike ridership by 23.5 % if the forecasted weather
map shows a pitch-black cloud cover instead of a clear sky. An increase from the
Q1 value of forecasted darkness to the Q3 value would cause bike ridership to
drop by 8.2 %.

The effects of actual relative humidity and actual windspeed are similar to
those in Regression (1). The same holds for the effects of official holidays, school
holidays, and semester breaks.

The results of the corresponding negative binomial regression, which is pre-
sented as Regression (11) in Table 6 in Appendix C, are mostly similar to the
log-linear regression. Two notable differences are, however, that very heavy rain
now has no significant negative impact on hourly bike ridership and that the
positive effect of falsely predicted dry weather is slightly smaller.

C. Regression analysis for different counter types

To test the robustness of Regression (4), we estimate if weather effects are
constant over different counter types and, thus, provide additional insights into
the third research gap of Section II.D. As outlined in Section III.B, the 188 bicycle
counting stations of our sample can be classified as either utilitarian, recreational,
or mixed. Figure 4 showed that these three types of counting stations differ
with respect to their hourly and daily profiles. Thus, it can be expected that
the counting stations also differ with respect to the estimated weather effects.
Regression (5) shows the estimated coefficients for utilitarian counters, (6) for
mixed counters, and (7) for recreational counters.
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Here, it is interesting to observe that hourly bicycle ridership at recreational
counting stations is more strongly affected by air temperature increases than util-
itarian and mixed bike traffic (semi-elasticity of 5.63 % at the mean, compared to
2.88 % and 2.84 %). Moreover, bicycle ridership at recreational counting stations
decreases by 30.4 % if it rained in the previous three hours, but only 18.0 % at util-
itarian stations. The effect of falsely forecasted rain is only −1.8 % at utilitarian
stations, but −4.8 % at mixed stations and even −7.9 % at recreational stations.
Moreover, the negative impacts of forecasted thunderstorms, actual cloudiness,
and of the darkness of the respective regions on the weather forecast maps are
much more pronounced for recreational stations than for utilitarian and mixed
ones. Thus, the results of this sensitivity analysis suggest that recreational bike
traffic is more sensitive to actual and forecasted weather, especially to air tem-
peratures, rain in previous hours, falsely forecasted rain, and the darkness of the
weather forecast maps.

Besides weather effects, the three types of counting stations also differ with re-
spect to the impact of holidays and semester breaks. While utilitarian and mixed
bicycle traffic decrease substantially on official holidays (−63.9 % and −62.8 %),
hourly bike ridership at recreational counting stations increases by 31.1 %. More-
over, the negative impact of school holidays is stronger for utilitarian than for
recreational counting stations, and while semester breaks decrease utilitarian and
mixed bicycle traffic, they seem to have no significant impact on recreational sta-
tions. Here, it should be noted that some of the recreational bicycle stations are
located in regions where there are no large universities, so that the semester break
dummy is constantly zero for these stations. All in all, the results of these sensi-
tivity analyses for the three different types of bicycle counting stations are mostly
plausible and intuitive. Consequently, they validate the overall regression setup
and also the differentiation between the three types of counting stations.

Again, the results of the negative binomial sensitivity analysis are mostly simi-
lar. These results are presented as Regressions (12) to (14) of Table 6 in Appendix
C.

D. Lagging and leading effects of weather forecasts

As of now, we have analyzed the impact that weather forecasts have on the
number of bicyclists in the hours for which the weather conditions were forecasted.
It might be possible, however, that weather forecasts also have a lagging and/or
a leading effect on bike ridership. For example, if rain was forecasted for the
morning hours, commuters might decide to not use their bike for their morning
commute. Subsequently, they would not be able to use their bike on their way
back from work, thus also reducing bicycle ridership in afternoon hours. A more
extensive analysis of these effects is presented in Table 7 in Appendix D. These
results help to provide answers to the fourth research gap of Section II.D.

In Regression (15), we test if the impact of rain forecasts on bike ridership
is restricted to the hours for which the rain is forecasted, or if, for example,
forecasted morning rain has an effect on all-day bike ridership. To test this, the
variable forecasted morning rain takes on the value 1 if rain is forecasted for only
the morning hours of that day, and otherwise 0. Its regression coefficient implies
that if rain is forecasted for morning hours only, the bike ridership for the whole
day will be 9.2 % lower. Also, rain forecasts for midday hours only have negative
effects on bike ridership over the whole day, but to a lesser degree (−5.2 %). If
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rain is forecasted for only the afternoon hours, then bike ridership for the whole
day will not significantly decrease. Thus, it can be concluded that rain forecasts
for morning and midday hours can influence bike ridership over the whole day,
whereas rain forecasts for afternoon hours have no significant impact on all-day
bike ridership.

This notion is further analyzed with Regression (16), which estimates the effects
that rain forecasts can have on the hours for which the rain is forecasted, and also
for other hours of the day that were predicted to be rain-free. Here, the variable
forecasted morning rain on morning traffic captures the effect that a rain forecast
for the morning hours has on bike ridership in the morning hours. It takes on the
value 1 for morning hour observations for which rain is forecasted, and otherwise
0. The variable forecasted morning rain on midday traffic captures the effect that
morning rain forecasts have on bike ridership in midday hours for which no rain
was forecasted. It takes on the value 1 for midday hour observations of days for
which rain is forecasted for the morning hours, but not for the midday hours;
otherwise, it takes on the value 0. The other direct and time-shifted weather
forecast effect variables are created similarly. The results indicate that if rain is
forecasted for the morning hours, bike ridership in morning hours is 25.6 % lower
compared to a rain-free weather forecast. The results also show that rain forecasts
for the morning hours reduce not only bike ridership during this time, but also
during midday and afternoon hours that were predicted to be rain-free. This
lagging effect is strong and lies around −14.7 % for midday hours and −12.6 %
for afternoon hours. If rain is forecasted for the midday hours, it reduces bike
ridership in midday hours by 33.5 %. Furthermore, midday rain forecasts also
reduce bike ridership in morning hours that were predicted to be rain-free by
1.5 %, and they reduce bike ridership in afternoon hours that were predicted to
be rain-free by 9.6 %. Rain forecasts for afternoon hours have a strong effect on
bike ridership in afternoon hours (−30.4 %), but they do not significantly affect
bike ridership in morning hours that were predicted to be rain-free. However,
bike ridership in midday hours that were predicted to be rain-free is slightly
reduced by afternoon rain forecasts (−1.4 %). The results of Regression (16)
thus show that we have a pronounced lagging effect of rain forecasts. Especially
rain forecasts for the morning hours can significantly reduce bike ridership in
subsequent hours. One explanation could be that if commuters expect to get
wet on their morning commute, they avoid using their bike for this trip and
subsequently cannot use it on their home commute or on later trips that start
from their workplace. For actual rain, such a lagging effect was already found in
other studies (e.g. Miranda-Moreno and Nosal, 2011) and also confirmed in this
study by the variable actual rain in last 3 hours. However, the aforementioned
results underline that the lagging effect is not only existent for actual rain, but
also for forecasted rain. Besides this lagging effect, we can also see less pronounced
leading effects of midday rain forecasts on morning bike ridership and of afternoon
rain forecasts on midday bike ridership.

In Regression (17), we test if all-day rain forecasts reduce bike ridership stronger
than rain forecasts for just a few hours. For morning hours, the variable fore-
casted morning rain only on morning traffic takes on the value 1 if morning rain
is forecasted, and no midday or afternoon rain is forecasted as well. The variable
forecasted morning rain plus one on morning traffic takes on the value 1 if morn-
ing rain as well as either midday or afternoon rain for the same day is forecasted.
The variable forecasted all day rain on morning traffic takes on the value 1 if rain
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is forecasted for the whole day, that is for morning, midday, and afternoon hours.
The results show that midday and afternoon traffic is reduced if rain is forecasted
for the respective hours of the day (−26.3 % for midday hours; −20.9 % for af-
ternoon hours), but it is even stronger reduced if rain is also forecasted for some
other hours of the day (−29.1 %; −28.5 %). If rain is forecasted for the whole
day, the reduction in bike ridership is the most pronounced (−35.0 %; −33.6 %).
For morning hours, however, this effect is surprisingly reversed. If rain is only
forecasted for the morning hours, then bike ridership decreases by 26.8 %, but
it decreases by only 24 % if rain is forecasted for some additional hours of the
day. If rain is forecasted for the whole day, bike ridership in morning hours is
only reduced by 20.9 %. One potential explanation for this unexpected decrease
in effect magnitude might be that people who have to use their bikes for certain
midday or afternoon trips could reschedule these trips to the morning hours, as
they would expect to get wet anyway if rain was also forecasted for later parts
of the day. To verify this potential explanation, however, further research on the
decision-making process of bicyclists is needed.

Similar results can be obtained when using a negative binomial regression
model.7 It should also be noted that this subsection focuses on leading and
lagging effects of forecasted rain. For other forecasted weather conditions, the
leading and lagging effects on bike ridership could be less clear due to the high
discomfort that rain brings for bicyclists and its strong deterrence of cycling.
A comprehensive analysis of the leading and lagging effects of other forecasted
weather conditions, however, remains an interesting topic for further research.

E. Sensitivity analyses

Additional sensitivity analyses show that the main results are not significantly
different if we look separately at the years 2017 and 2018. There are, however,
differences if we look at summer and winter months separately. The results of this
sensitivity analysis show that the effects of wrong weather forecasts, as estimated
through the variables wrong rain forecast and wrong dry forecast, are stronger in
summer months than in winter months. This finding indicates that in winter
months, a higher share of the potential winter bicyclists use their bike regard-
less of actual and forecasted weather conditions, whereas in summer months, a
larger share of the potential summer bicyclists are only willing to use their bike if
weather conditions are generally more favorable. As good weather conditions are
important to these people, they tend to check weather forecasts more regularly
and are thus more sensitive to these forecasts.8

VI. Discussion and conclusions

A. Discussion of results and policy implications

First, we estimate the impact of several weather forecast variables on bike
ridership. The forecasted daily high air temperature has a positive effect on
bike ridership, whereas forecasted clouds, rain, snow, thunderstorms, or weather
warnings reduce bike usage. The effects of temperature and rain are in line with
Kraemer et al. (2015), whereas effects for other weather forecast variables have

7 The detailed results of this negative binomial regression model are available upon request.
8 Complete regression tables for these sensitivity analyses are available upon request.
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not yet been studied. It is interesting to see that the two regression models
with only forecasted weather variables have an adjusted R2 that is slightly lower,
yet still comparable to the one of the regression model with only actual weather
variables. This underscores that weather forecast variables can be used as valuable
predictors for bike ridership. Moreover, this finding is especially important for
traffic planners, who should account for actual weather conditions as well as for
forecasted conditions. Both are important determinants of bike ridership and,
consequently, impact on the whole traffic system.

Second, bicycle usage is influenced by wrong weather forecasts, that is if fore-
casted and actual weather conditions diverge. This underlines that weather fore-
casts can significantly influence the decision to use the bike or not. In accordance
with this, the adjusted R2 of the combined regression models is slightly higher
than for the regression models using either only actual or only forecasted weather
variables. The fact that bike ridership is lower in rain-free hours for which rain
was forecasted compared to rain-free hours that were predicted to be rain-free,
indicates that the decision to use the bike or not can lead to a “lock-in” effect. If
a potential bicyclists watches the evening weather forecast and, based on the poor
outlook, commits to driving with a shared car or with an arranged carpool on
the next day, it would be difficult to still change this decision the next morning.
In addition to this, the fact that next-day weather forecasts influence actual bike
ridership – irrespective of whether they are right or wrong – should be consid-
ered when attempting to promote cycling. Therefore, it should be emphasized
more that people should, if possible, not make their travel decisions based on
next-day weather forecast maps, but rather rely on information from more timely
forecast types such as rainfall radars. Otherwise, driving pleasure could easily
turn to discomfort and frustration if the weather conditions are different than ex-
pected, thereby inducing potential bicyclists to switch to more weather-sheltered
and reliable transport modes in the long-term.

Third, it is shown that the effects of actual and forecasted weather variables
are stronger for recreational counting stations than for utilitarian ones. Utilitar-
ian trips like daily commutes are often less flexible, implying that they cannot
easily be cancelled or rescheduled if the weather is bad. Recreational trips, on
the other hand, are more flexible and can be cancelled or postponed to a time
when the weather is likely to be better. Thus, utilitarian trips are less elastic
than recreational trips with regard to adverse weather conditions. This result is
important for traffic planners, who need to account for these effect differences in
order to allow for a smooth traffic system. Ignoring these effect differences – or
the impact of weather forecasts in general – could lead to wrong predictions of
actual traffic flows and thus reduce the efficiency of the traffic system. Moreover,
if policymakers want to promote cycling, they need to tailor their promotional
measurements to the type of traffic that is prevalent in their region. Otherwise,
promotional measurements could fail to achieve their goals, as the impact of such
measurements could differ for utilitarian and recreational traffic.

Fourth, it is shown that rain forecasts have various lagging and leading effects
on bike ridership. The strongest effect can be observed if rain is forecasted for the
morning hours, because this significantly reduces bike ridership in midday and
afternoon hours, even if they are predicted to be rain-free. It is understandable
that forecasted morning hour rain has the strongest lagging effect since the modal
choice for trips that are subsequent to the morning commute often depends on
whether a bike is available at the time of that trip, or if it is still at home. In
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order to mitigate this lagging effect of forecasted morning rain, it is of special
importance to reduce the discomfort of morning commutes in the rain. One way
to pursue this could be through faster changes from red to green-light phases at
intersections if it rains and cyclists are approaching the intersection (Jorna and
Zoer, 2012). Moreover, employers could provide showers and locker rooms to
allow employed bicyclists to change their clothes after getting wet on the way to
work. It is shown that the provision of showers can increase the attractiveness of
cycling (Hunt and Abraham, 2007). In combination with similar measures, the
outlook on morning commutes in the rain could become less discomforting for
cyclists and thus help to increase bike ridership as well as to decrease car traffic
in midday and afternoon hours.

In general, the results of the above analyses underline that not only actual
rain, but even the mere prospect of getting wet can lead people to not use their
bike. These results thus underline that if policymakers want to further promote
cycling, they should try to alleviate the discomfort caused by rain. This could
be achieved by reducing the exposure to rainfall. In addition to faster green-light
phases, cycleways could be planned in such a way that adjoining trees with larger
leaves could serve as a natural rain protection for cyclists. Tree canopies can have
different rainfall interception rates, depending on the leaf sizes of the respective
tree species (Yang et al., 2019).9 Another example would be to plan cycleways
as lanes that are separated from road traffic, so that the risk of splash water
from cars is reduced. Moreover, introducing programs to make bicycle rain gear
available at lower prices could increase the rain resilience of cyclists. These and
other measures could help to make cycling in the rain less unpleasant, and thus
help to mitigate the negative effects that rainy weather and rain forecasts have
on bike ridership.

B. Discussion of the used methods and further research directions

One potential drawback of the study is that, due to data availability, we had to
derive weather forecast data from historical weather maps that were broadcasted
by Germany’s most-watched television news program Die Tagesschau. Thus, we
evaluated only one of many potential sources from which people could access
weather forecast information. Due to the large reach of the Tagesschau, we nev-
ertheless believe that our weather forecast variables are a good approximation
of the general weather forecast information that people can access when mak-
ing their travel decisions. This notion is also supported by Cools and Creemers
(2013), who show that behavioral travel adaptions are independent of the manner
in which weather information is acquired (media source, exposure time, perceived
reliability).

Also, weather forecast maps are evaluated manually and might therefore be
prone to subjective bias. In Regression (3), however, the manual evaluation of
cloud coverage is substituted by a computerized evaluation using a digital image-
processing method. The results confirm that darker clouds have a negative effect

9 Although tree canopies can reduce exposure to immediate rainfall, they might also lead to cyclists
being exposed to fewer, but larger raindrops after the actual rainfall period. Providing cyclists
with a cycle lane network that allows them to choose between routes that are sheltered by tree
canopies and routes that are not sheltered by tree canopies might thus be ideal with respect to
cycling comfort on rainy days. Feasibility or efficiency of such a cycle lane network might, however,
not always be given. Thus, additional research on these aspects and the effects of tree canopies on
cyclists provide an interesting future research direction.
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on bike ridership – independent of whether cloud coverage was evaluated manually
or computerized.

As outlined earlier, the adjusted R2 of the combined regression models is slightly
higher than for the regression model types using either only actual or only fore-
casted weather variables. It should, however, be noted that the different regression
model types also account for slightly different weather conditions. For example,
the actual weather models do not account for weather warnings, whereas the fore-
casted weather models do not account for windspeed or relative humidty. These
differences in variable selection are mainly due to data availability, and it would
be interesting to analyze how the different regression model types would com-
pare to each other if the exact same weather conditions were accounted for in the
actual, the forecasted, as well as in the combined regression models.

By using automated bicycle count data, we can only estimate effects on the
number of bikes that drive by a certain point, which usually is the location of
the counting station. While our count data are a reliable data source and pro-
vide a reasonable approximation of actual bike ridership, they cannot be used to
estimate how the forecasted weather impacts on certain characteristics of a trip.
For example, forecasted rain or wind might not only lead to a decrease in bike
ridership, but also to a change in trip routes and trip lengths if bicyclists could
thereby reduce the exposure to adverse weather conditions. Using GPS data, or
data from surveys and travel logs could provide further insights into these effects.

Another important research direction could be to further study individuals
decision-making behavior based on the weather forecast data that they consume.
It is necessary to better understand how individuals perceive different weather
forecast types and how these perceptions lead to changes in their cycling trips.
Especially with regard to lagging and leading effects of weather forecasts, it would
be useful to extend our results, which are based on count data at a non-individual
level, by an analysis of individual cycling behavior, for example through the use
of GPS or travel log data. It would also be interesting to study how the subjective
perception of the weather is not only influenced by the actual weather conditions,
but also by (wrong) weather forecasts. Rain that was not forecasted could, for
example, be perceived as more discomforting than forecasted rain, because cy-
clists are surprised by the bad weather and thus not able to protect themselves
adequately.

Considering that rain often causes bicycle trips to be substituted by public
transport or by car (Sabir, 2011) and that bike ridership will decrease if rain is
forecasted, it could reasonably be assumed that rain forecasts cause comparable
substitution effects. Such effects would, of course, depend on the quality of public
transport and of the transport infrastructure. Nevertheless, it would be interest-
ing for future research to estimate the substitution effects of weather forecasts
and the ensuing environmental impacts.

C. Conclusions

This study uses hourly bicycle counts from 188 automated bicycle counting
stations in 37 cities of Germany. For 2017 and 2018, these counts are connected
to both actual and forecasted weather data.

The results show that both actual and forecasted weather conditions can be used
as valuable predictors of hourly bike ridership. The novel results for forecasted
weather conditions show that the forecasted air temperature has a positive effect
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on hourly bike ridership. Bicycle usage drops if clouds, rain, snow, thunderstorms,
or weather warnings are forecasted. Also, the darkness of the forecasted clouds
on weather forecast maps can reduce next-day bike ridership.

Bicycle usage is also influenced by wrong weather forecasts, that is if forecasted
and actual weather conditions diverge. The results indicate that rain forecasts
can reduce bike ridership in rain-free hours by 3.6 % and that forecasts of rain-free
weather can increase bike ridership in rainy hours by 11.5 %.

It is shown that the effects of actual and forecasted weather variables on hourly
bike ridership vary between utilitarian, recreational, and mixed counting stations.
In general, they are stronger for recreational counting stations than for utilitarian
ones.

Moreover, various lagging and leading effects of weather forecasts are outlined.
Morning rain forecasts, for example, have a lagging negative effect on bike rid-
ership in midday and afternoon hours, even if these hours were predicted to be
rain-free.
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Appendices

A. Descriptive statistics for bicycle counts in each city of the sample

Table 3—: Descriptive statistics of hourly bicycle counts by city

City Observations Mean Min Q1 Q2 Q3 Max

Augsburg 20722 120.2 0 55 103 173 510
Berlin 156640 195.9 0 55 123 262 1994
Bochum 4708 10.2 0 5 9 14 52
Bonn 141741 98.5 0 25 60 135 1059
Bremen 85090 222.1 0 104 186 305 1113
Cologne 103782 171.3 0 59 138 248 1237
Dsseldorf 100499 74.0 0 22 49 95 1200
Erlangen 12818 328.9 0 171 322 470 1478
Essen 5902 82.0 0 33 58 109 565
Freiburg 37831 328.2 0 116 213 499 1904
Gttingen 47307 169.0 0 74 147 235 1022
Hamburg 9464 376.9 2 158 306 513 1938
Hannover 82601 191.8 0 96 171 263 1147
Heidelberg 43316 240.7 0 103 206 338 1776
Heilbronn 18836 56.8 0 11 23 78 493
Herzogenaurach 5226 40.2 0 17 33 57 182
Jena 3874 81.1 0 24 56 112 486
Kiel 20982 47.2 0 20 38 65 398
Kirchheim unter Teck 9464 71.6 0 37 68 101 939
Leipzig 4732 239.3 0 114 224 341 758
Lrrach 10343 39.6 0 21 36 51 304
Ludwigsburg 4862 150.9 0 67 118 189 1065
Mannheim 28392 188.8 0 59 150 292 955
Munich 56784 110.6 0 23 68 153 1521
Mnster 73794 451.0 0 174 395 652 2919
Nationalpark Mritz 9464 12.5 0 0 1 15 171
Nuremberg 9464 128.1 1 69 118 174 462
Oberhausen 4940 31.3 0 12 23 44 499
Oldenburg 72373 130.3 0 40 87 156 1262
Rhein-Erft-Kreis 88678 25.8 0 4 11 33 426
Rhein-Kreis Neuss 46754 19.4 0 2 8 22 475
Rhein-Sieg-Kreis 94639 21.0 0 3 9 22 1151
Rostock 89726 58.0 0 11 35 76 1088
Sauerland Radwelt 38220 8.6 0 0 3 11 200
Stuttgart 9464 50.2 0 19 40 68 271
Tbingen 27378 218.6 0 45 149 349 1238
Wrzburg 18928 30.8 0 12 24 44 162

Overall 1599738 140.9 0 21 74 190 2919
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B. Descriptive statistics for weather variables

Table 4—: Descriptive statistics for actual and forecasted weather variables

Variable Observations Mean Min Q1 Q2 Q3 Max

actual cloudiness 1607600 5.773 0.0 4.0 7.0 8.0 8.0
actual precipitation 1622946 0.077 0.0 0.0 0.0 0.0 48.8
actual rain light drizzle 1626784 0.058 (dummy variable)
actual rain strong drizzle 1626784 0.020 (dummy variable)
actual rain slight rain 1626784 0.014 (dummy variable)
actual rain moderate rain 1626784 0.007 (dummy variable)
actual rain strong rain 1626784 0.0012 (dummy variable)
actual rain heavy rain 1626784 0.0004 (dummy variable)
actual relative humidity 1621858 69.257 8.0 55.0 72.0 85.0 100.0
actual snow 1626784 0.003 (dummy variable)
actual air temperature 1622529 12.577 -16.6 5.9 12.4 19.1 37.3
actual windspeed 1621166 3.775 0.0 2.2 3.4 4.9 22.4
forecasted dark clouds 1626784 0.162 (dummy variable)
forecasted darkness 1626784 0.210 0.0 0.0 0.1 0.4 0.9
forecasted light clouds 1626784 0.260 (dummy variable)
forecasted rain 1626784 0.163 (dummy variable)
forecasted snow 1626784 0.014 (dummy variable)
forecasted air temperature 1626784 15.604 -9.0 8.0 16.0 23.0 38.0
forecasted thunderstorm 1626784 0.018 (dummy variable)
forecasted warning 1626784 0.065 (dummy variable)
official holidays 1626784 0.029 (dummy variable)
school holidays 1626784 0.239 (dummy variable)
semester break 1626784 0.371 (dummy variable)
wrong rain forecast 1626784 0.124 (dummy variable)
wrong dry forecast 1626784 0.045 (dummy variable)

Note: Descriptive statistics for the dummy variables that are used to estimate the lag-
ging and leading effects of rain forecasts in Section V.D are available upon requests.
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C. Negative binomial regressions

Table 5—: Separate effects of actual and forecasted weather variables (negative binomial regression)

Actual weather Forecasted weather

Manual evaluation Computerized evaluation
(8) (9) (10)

actual air temperature 0.046***
(0.002)

actual air temperature2 −0.0007***
(0.00006)

actual rain light drizzle −0.098***
(0.004)

actual rain strong drizzle −0.142***
(0.006)

actual rain slight rain −0.214***
(0.008)

actual rain moderate rain −0.253***
(0.013)

actual rain strong rain −0.207***
(0.028)

actual rain heavy rain 0.052*
(0.029)

actual rain in last 3 hours −0.259***
(0.009)

actual relative humidity −0.006***
(0.0005)

actual windspeed −0.031***
(0.001)

actual cloudiness −0.012***
(0.002)

actual snow −0.145***
(0.022)

forecasted air temperature 0.044*** 0.045***
(0.002) (0.002)

forecasted air temperature2 −0.0004*** −0.0004***
(0.00004) (0.00004)

forecasted light clouds −0.117***
(0.005)

forecasted dark clouds −0.207***
(0.010)

forecasted darkness −0.496***
(0.018)

forecasted rain −0.346*** −0.109***
(0.014) (0.005)

forecasted thunderstorm −0.323*** −0.166***
(0.017) (0.011)

forecasted snow −0.325*** −0.066***
(0.013) (0.010)

forecasted warning −0.105*** −0.110***
(0.005) (0.005)

official holidays −0.516*** −0.467*** −0.483***
(0.052) (0.054) (0.054)

school holidays −0.195*** −0.197*** −0.197***
(0.009) (0.008) (0.008)

semester break −0.152*** −0.164*** −0.162***
(0.012) (0.012) (0.012)

Observations 1,576,348 1,599,738 1,599,738
Squared Correlation 0.759 0.759 0.762

* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Note: Dependent variable: bicycle counts. Fixed effects for the bicycle counting station, hour
of day, day of week, month of year, and year are included at all times. Standard errors are
clustered at the level of the bicycle counting stations.
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Table 6—: Weather effects by counter type (negative binomial regression)

Overall by counter type

Utilitarian Mixed Recreational
(11) (12) (13) (14)

actual air temperature 0.049*** 0.045*** 0.042*** 0.113***
(0.002) (0.002) (0.004) (0.008)

actual air temperature2 −0.0007*** −0.0007*** −0.0006*** −0.002***
(0.00006) (0.00004) (0.00009) (0.0002)

actual rain light drizzle −0.138*** −0.127*** −0.146*** −0.278***
(0.006) (0.005) (0.014) (0.023)

actual rain strong drizzle −0.164*** −0.166*** −0.171*** −0.296***
(0.007) (0.007) (0.016) (0.026)

actual rain light rain −0.231*** −0.225*** −0.264*** −0.322***
(0.010) (0.010) (0.021) (0.030)

actual rain moderate rain −0.267*** −0.269*** −0.282*** −0.329***
(0.014) (0.013) (0.030) (0.038)

actual rain heavy rain −0.242*** −0.213*** −0.268*** −0.345***
(0.026) (0.025) (0.041) (0.056)

actual rain very heavy rain 0.018 −0.010 −0.104* −0.067
(0.029) (0.024) (0.061) (0.101)

actual rain in last 3 hours −0.225*** −0.190*** −0.203*** −0.446***
(0.008) (0.006) (0.015) (0.019)

wrong rain forecast −0.035*** −0.024*** −0.042*** −0.077***
(0.004) (0.004) (0.008) (0.013)

wrong dry forecast 0.084*** 0.087*** 0.080*** 0.149***
(0.007) (0.007) (0.015) (0.016)

forecasted thunderstorm −0.040*** −0.004 −0.020 −0.050**
(0.008) (0.007) (0.016) (0.020)

forecasted warning −0.053*** −0.071*** −0.060*** −0.069***
(0.005) (0.005) (0.011) (0.014)

actual cloudiness −0.006*** −0.004*** −0.002 −0.019***
(0.001) (0.001) (0.002) (0.004)

forecasted darkness −0.262*** −0.231*** −0.215*** −0.584***
(0.013) (0.010) (0.027) (0.031)

actual relative humidity −0.004*** −0.004*** −0.003*** −0.006***
(0.0004) (0.0003) (0.001) (0.001)

actual windspeed −0.026*** −0.021*** −0.022*** −0.047***
(0.001) (0.001) (0.002) (0.005)

official holidays −0.517*** −0.769*** −0.759*** 0.488***
(0.052) (0.037) (0.107) (0.056)

school holidays −0.193*** −0.228*** −0.152*** −0.094***
(0.009) (0.009) (0.013) (0.013)

semester break −0.154*** −0.121*** −0.175*** 0.072
(0.012) (0.010) (0.034) (0.059)

Observations 1,576,348 1,029,717 272,669 273,962
Squared Correlation 0.762 0.786 0.810 0.749

* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Note: Dependent variable: bicycle counts. Fixed effects for the bicycle counting station, hour of
day, day of week, month of year, and year are included at all times. Standard errors are clus-
tered at the level of the bicycle counting stations.
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D. Lagging and leading effects of weather forecasts

Table 7—: Lagging and leading weather forecast effects (log-linear regression)

Rain forecast effects for whole day Rain forecast effects for different daytimes

Single Effect Combined Effects
(15) (16) (17)

actual air temperature 0.054∗∗∗ 0.056∗∗∗ 0.054∗∗∗

(0.002) (0.002) (0.002)
actual air temperature2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001)
forecasted thunderstorm −0.090∗∗∗ −0.321∗∗∗ −0.339∗∗∗

(0.009) (0.014) (0.015)
forecasted warning −0.098∗∗∗ −0.077∗∗∗ −0.081∗∗∗

(0.006) (0.006) (0.006)
wrong rain forecast 0.021∗∗∗ 0.259∗∗∗ 0.248∗∗∗

(0.004) (0.009) (0.009)
wrong dry forecast −0.102∗∗∗ −0.161∗∗∗ −0.174∗∗∗

(0.007) (0.008) (0.009)
forecasted morning rain −0.096∗∗∗

(0.007)
forecasted midday rain −0.053∗∗∗

(0.008)
forecasted afternoon rain 0.012

(0.009)
forecasted morning rain on morning traffic −0.296∗∗∗

(0.012)
forecasted morning rain on midday traffic −0.159∗∗∗

(0.010)
forecasted morning rain on afternoon traffic −0.135∗∗∗

(0.009)
forecasted midday rain on morning traffic −0.015∗∗

(0.007)
forecasted midday rain on midday traffic −0.408∗∗∗

(0.017)
forecasted midday rain on afternoon traffic −0.101∗∗∗

(0.010)
forecasted afternoon rain on morning traffic −0.010

(0.009)
forecasted afternoon rain on midday traffic −0.014∗

(0.007)
forecasted afternoon rain on afternoon traffic −0.363∗∗∗

(0.015)
forecasted morning rain only on morning traffic −0.312∗∗∗

(0.013)
forecasted morning rain plus one on morning traffic −0.274∗∗∗

(0.012)
forecasted all day rain on morning traffic −0.235∗∗∗

(0.011)
forecasted midday rain only on midday traffic −0.305∗∗∗

(0.013)
forecasted midday rain plus one on midday traffic −0.344∗∗∗

(0.016)
forecasted all day rain on midday traffic −0.431∗∗∗

(0.016)
forecasted afternoon rain only on afternoon traffic −0.234∗∗∗

(0.013)
forecasted afternoon rain plus one on afternoon traffic −0.335∗∗∗

(0.013)
forecasted all day rain on afternoon traffic −0.410∗∗∗

(0.015)
actual cloudiness −0.003∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001)
forecasted darkness −0.455∗∗∗ −0.295∗∗∗ −0.313∗∗∗

(0.019) (0.015) (0.016)
actual relative humidity −0.008∗∗∗ −0.006∗∗∗ −0.006∗∗∗

(0.001) (0.001) (0.001)
actual windspeed −0.036∗∗∗ −0.032∗∗∗ −0.033∗∗∗

(0.002) (0.002) (0.002)
official holidays −0.780∗∗∗ −0.783∗∗∗ −0.783∗∗∗

(0.045) (0.045) (0.045)
school holidays −0.188∗∗∗ −0.188∗∗∗ −0.189∗∗∗

(0.010) (0.010) (0.010)
semester break −0.160∗∗∗ −0.159∗∗∗ −0.159∗∗∗

(0.014) (0.014) (0.014)

Observations 1,576,348 1,576,348 1,576,348
Adjusted R2 0.783 0.785 0.784
Residual Std. Error 0.782 (df = 1576114) 0.781 (df = 1576108) 0.781 (df = 1576108)

* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Note: Dependent variable: bicycle counts. Fixed effects for the bicycle counting station, hour of day, day of week, month of year, and year
are included at all times. Standard errors are clustered at the level of the bicycle counting stations. It should be noted that the regression
coefficients for wrong rain forecast and wrong dry forecast have both changed their sign. This is due to a change of the reference category,
which is “no rain” for Regressions (4) –(7) and (11)–(14), but it is “no forecasted rain” for Regressions (15)–(17).
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