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Quantifying the phantom jam externality: The Case of an
Autobahn section in Germany

By Kathrin Goldmann* and Gernot Sieg⇤

When tra�c demand is high, tra�c jams can occur in the absence
of bottlenecks or demand peaks, simply because of the interaction
of vehicle drivers on the road; a phenomenon called phantom jam.
The probability of phantom jams occurring increases with tra�c
flow. Road users only consider their own time costs and not those
of other drivers, so that an unpriced phantom jam externality leads
to ine�cient road usage. We o↵er a method for quantifying the
phantom jam externality and apply the method to a specific high-
way section in Germany. Congestion charges calculated ignoring
phantom jam externalities may be up to 50 percent too low.
JEL: L91, R41
Keywords: hypercongestion, congestion costs, stochastic capacity,
phantom jams, external costs

I. Introduction

Tra�c congestion during the rush hour remains an observable phenomenon
worldwide. It results in significant travel time losses for commuters, additional
external environmental costs and a loss of attractiveness of the a↵ected areas.
Reasons for congestion on highways can be on the demand side (on-ramps with
high inflows or fluctuations in demand) and on the supply side (tra�c accidents,
construction sites, tunnels, inhomogeneous road design or simply insu�cient ca-
pacity).

Besides these deterministic reasons, Sugiyama et al. (2008), Nakayama et al.
(2009) and Tadaki et al. (2013) show that tra�c jams can also occur randomly due
to driving behavior. When tra�c density exceeds a critical value, phantom jams
may occur even in the absence of supply side reasons. Although density remains
constant in their experiment, tra�c is freely flowing initially, but breaks down
after a while. To make the initial free flow unstable, it is su�cient that drivers
on a highway merely interact with each other. For each phantom jam, there
may be a deterministic reason like tailgating, excessively fast driver reactions
to speed changes, slow overtaking by a truck, slow reactions because of drivers
inattentiveness or queue-jumping, but in the system, these driving errors occur
stochastically and may or may not culminate in a tra�c jam (Schönhof and
Helbing, 2007). The probability of their causing a tra�c jam increases with the
saturation of the highway. For this reason, capacity cannot be considered as a
fixed value, but seen rather as a stochastic concept (Elefteriadou et al., 1995;
Brilon et al., 2005).

Economic congestion models1 can be classified as bottleneck, bathtub and

⇤ Westfälische Wilhelms-Universität Münster, Institute of Transport Economics, Am Stadtgraben 9,
48143 Münster, Germany.
1 Whereas economists refer to the tra�c state represented by the upper branch in a speed-flow

diagram as congested, because this tra�c state already imposes marginal speed losses on other
drivers (externalities), other certain sciences consider this tra�c state as freely flowing tra�c. For
economists, only the small horizontal part of the upper branch is free flow, because there is no
externality. Given that, for our analysis, the section without externalities is negligibly small, we use

1
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speed-flow models. The bottleneck model (Vickrey, 1969; Arnott et al., 1990,
1993; Small, 2015; Xiao et al., 2015) allows for analyzing hypercongestion (jammed
tra�c), by considering queuing delays in front of a bottleneck with fixed or
stochastic capacity. Di↵erent tolling systems can be evaluated regarding their
ability to eliminate queuing in front of the bottleneck. The bathtub model
(Arnott, 2013; Fosgerau and Small, 2013; Fosgerau, 2015; Arnott et al., 2016)
analyzes urban hypercongestion at an aggregate level. In the morning rush hour,
cars enter the downtown urban center and when density is su�ciently large, tra�c
flow becomes ine�ciently low and the outflow of cars decreases, which makes hy-
percongestion more persistent. A time-varying toll or tra�c management systems
should therefore avoid hypercongestion. Some of the above mentioned models in-
volve simulations. Generally, simulations are also performed by engineers for
specific roads and road networks. For instance, He et al. (2016) optimize the sim-
ulation framework for an optimal time-varying pricing of toll roads. The results
enable, for example, the evaluation of toll adjustments regarding their impact on
changes in demand, length of peak periods or toll revenue.

Speed-flow models directly use the fundamental diagram to analyze congestion
and hypercongestion. However, Verhoef (1999) shows that in speed-flow models,
hypercongestion is dynamically infeasible when considering capacity as deter-
ministic. In order to depict hypercongestion in a static model with continuous
demand, inflows onto the road must have exceeded the maximum possible inflow
at some point in the past, which is inconsistent with the concept of maximum
deterministic capacity. Moreover, Verhoef (1999, 2005) shows that for roads with-
out a downstream bottleneck, the average cost curve is backward-bending, and
intersections with the demand curve yield multiple and unstable equilibria.2

In contrast, tra�c engineers still use speed-flow models to determine the capac-
ity of highways, for instance in Highway Capacity Manuals. To incorporate the
fact that road capacity is not a fixed value, Brilon et al. (2005) and Brilon et al.
(2007) and Brilon and Geistefeldt (2010) show how to implement the stochastic
nature of tra�c flow breakdowns.

We revisit speed-flow models by incorporating stochastic road capacity. We
calculate the expected costs of congested and hypercongested tra�c states. In
our application, we obtain a dynamically consistent average cost curve that is not
backward-bending. This is due to the fact that the probability of costly tra�c
hypercongestion occuring, increases with flow as well.

As we only consider congestion costs under prevailing tra�c-flow conditions, we
are not able to analyze demand reactions, because tra�c-flow cannot be equated
directly to demand. For this reason, we do not o↵er a complete economic model
that allows for analyzing welfare gains due to congestion charges. However, speed-
flow data o↵ers a very precise description of tra�c situations and is available for
various road sections in developed countries. We do not need to make assumptions

the two terms synonymously and refer to the upper branch as congested or as freely flowing tra�c.
Economists refer to the tra�c state represented by the lower branch as hypercongestion, whereas
other sciences call it congestion. To avoid confusion, we refer to the lower branch as hypercongested
or jammed tra�c.

2 Verhoef (2005) also shows that hypercongestion will occur as a dynamic equilibrium phenomenon,
either on a road with a queuing facility in front of its entrance, or on road segments with a down-
stream bottleneck. This applies provided demand is su�ciently large and that in this case, the
average cost curve is not backward-bending, but will eventually rise vertically. As these weaknesses
hamper a reasonable economic interpretation of hypercongested tra�c states of roads without a
downstream bottleneck, deterministic speed-flow models have no longer been considered in recent
economic research.
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about travel behavior, as our model can be applied directly to road sections for
which respective data is available.

A stochastic capacity approach enables us to establish a static model using the
speed-flow diagram. For some flow rates, there are two types of speed, congested
and hypercongested, and the probability as to which of the speeds prevail de-
pends on the flow. A driver entering the road to travel a certain distance faces a
stochastic travel time, depending on the number of other cars on the road. The
idea that the expected costs depend on two possible outcomes, congestion and hy-
percongestion, has been formalized by Goldmann and Sieg (2019) for the special
case of an (experimental) circuit on which density is constant. We augment the
existing model to handle real highway tra�c data and incorporate the capacity
drop.

Small and Chu (2003) argue, that hypercongestion is unstable, occurs as a tran-
sient response to demand spikes and should therefore be analyzed with dynamic
models. However, Sugiyama et al. (2008), Nakayama et al. (2009) and Tadaki
et al. (2013) show that tra�c jams can also occur when the number of cars is
constant and therefore demand is fixed. Furthermore, our model does not specify
a specific tra�c state as congested or hypercongested and therefore does not use
the average cost curve as supply curve. Because the capacity is stochastic, for
the calculation of the expected external costs, it is su�cient to know the prob-
abilities of the two tra�c states. At a specific tra�c flow q, the probability of
hypercongestion (a tra�c jam) occuring is p and the probability of congestion
(freely flowing tra�c) prevailing is 1 � p. Of course, transitions between tra�c
states cannot be analyzed in a static model. As we focus on determining expected
external costs, the static model does not limit the interpretation of our results.

Each driver only considers his own costs, but not the time losses imposed on
other drivers due to increased tra�c. We specifically calculate the external costs
imposed on other drivers, and we are able to di↵erentiate between congestion
costs and hypercongestion costs, where only the former can be calculated in de-
terministic speed-flow models. We show that the latter, which can be calculated
in a stochastic setting, increase total costs.

The remainder of the paper is structured as follows. The following section
describes our theoretical model, the third section applies the model to German
highway data and the fourth section concludes.

II. Stochastic Speed-Flow Model

Tra�c can either be congested at a (high) travel speed of vh or jammed at a low
travel speed of vl, both depending on the flow q of other cars using the highway
during the same time interval. The left side of Figure 1 shows vh as the upper
branch and vl as the lower branch of the speed-flow function. The probability p
that the tra�c is jammed also depends on the flow q. The right side of Figure
1 shows a possible distribution function for the probability p of a tra�c flow
breakdown. For small flows, the tra�c breakdown probability is usually small
and visually not distinguishable from zero.

We furthermore incorporate the fact that when the tra�c flow breaks down,
capacity drops (Hall and Agyemang-Duah, 1991; Yuan et al., 2017) from a flow
q to a jammed flow of qcd(q). A reduction in capacity means that 0  qcd(q)  q
must hold, and we later use a capacity drop function of qcd(q) = 0.9 q, implying
a capacity drop of 10 percent. To summarize, in our model, the travel speed



4 INSTITUTE OF TRANSPORT ECONOMICS MÜNSTER WORKING PAPER NO. 30
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Figure 1: Stochastic speed-flow model based on Brilon et al. (2005)
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Figure 1. : Stochastic speed-flow model based on Brilon et al. (2005)

depends on q and is either high (but congested) vh(q) with probability 1 � p(q)
or low (and jammed) vl(qcd) with probability p(q).

The expected travel speed can be written as

Ev(q) = p(q)vl(qcd(q)) + (1 � p(q))vh(q).(1)

The marginal speed losses that an additional driver imposes on subsequent drivers
can be written as

dEv

dq
=

dvh

dq
� dp

dq
(vh(q) � vl(qcd)) � p(q)

✓
dvh

dq
� dvl

dqcd

dqcd

dq

◆
.(2)

Equation 2 can be split into two parts. The first term is the normal speed loss
due to congestion (dvh/dq), while the second is the hypercongestion adjustment
that incorporates the probabilities of a tra�c jam. Travel time costs c depend
on the speed, which in turn depends on the number of vehicles per hour, and the
expected travel time costs C of a driver are

(3) C(q) = p(q)c(vl(qcd(q))) + (1 � p(q))c(vh(q)).

When we assume homogenous drivers, these costs are the average costs of all
vehicles. Social costs are SC = q · C(q) and marginal social costs are MSC =
C + q ·C 0. In this decision, q ·C 0 is the external e↵ect (on other drivers), which is
not taken into account by individual drivers. The marginal external travel time
costs are:

(4) q
dC

dq
= q


(1 � p) · dc

dv

dvh

dq
+ p · dc

dv

dvl

dqcd

dqcd

dq
+

dp

dq
(c(vl(qcd)) � c(vh(q)))

�
.

Considering a distance of a and a time value of t, c(v) = ta/v and dc/dv = �ta/v2,
equation 4 can be written as:

q
dC

dq
= q


(1 � p) · (�ta)

v2
h

dvh

dq
� p · ta

v2
l

dvl

dqcd

dqcd

dq
+

dp

dq

✓
ta

vl

� ta

vh

◆�
.(5)
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Rearranging Equation 5, yields the congestion and hypercongestion costs
(6)

q
dC

dq
= �qta


1

v2
h

dvh

dq

�

| {z }
Deterministic congestion costs

�qta


p

✓
1

v2
l

dvl

dqcd

dqcd

dq
� 1

v2
h

dvh

dq

◆
+

dp

dq

✓
1

vh

� 1

vl

◆�

| {z }
Stochastic hypercongestion adjustment

.

The first term of Equation 6 represents the congestion costs due to speed losses
on the upper branch of the speed-flow curve in a deterministic setting (Deter-
ministic congestion costs). The second term incorporates the probabilities that
come into play in a stochastic setting (Stochastic hypercongestion adjustment).
As congested tra�c only prevails with probability 1 � p, the congestion e↵ect is
overestimated in a deterministic setting, which the term (p · (....� 1/v2

h
· dvh/dq))

in the hypercongestion adjustment corrects. The term (1/v2
l
· dvl/dqcd · dqcd/dq)

in the hypercongestion adjustment displays the marginal costs in hypercongested
tra�c, and the last term (dp/dq · (1/vh � 1/vl)) shows the expected speed losses
due to phantom tra�c jams.

The part labeled stochastic hypercongestion adjustment therefore augments the
speed-flow model for hypercongested tra�c states and thus incorporates a tra�c
state that could not have been analyzed with the earlier deterministic speed-flow
models. If one wants to exclude the capacity drop, qcd can be set equal to q,
which eliminates the corresponding derivative in Equation 6.

Expected average travel time costs are increasing in q if dC/dq > 0 which
depends on the specific functions that describe the road sector, but is independent
of time costs and distance travelled.

III. Application to tra�c data of the highway A42

Similar to the U.S. Highway Capacity Manual, the German Highway Capacity
Manual (HBS) describes the design capacities of highways and provides stan-
dardized methodologies and values for evaluating the performance of highway
sections. Underlying research for the HBS comprises amongst others, the specifi-
cation of the functional forms describing the speed-flow relationships, as well as
the functional form of the distribution of the tra�c flow breakdown probability.
To calculate the e↵ects of Equation 6, we need to know those functional forms.
With this knowledge we are able to calculate the expected marginal speed losses
depending on the number of cars traversing the highway section. For this reason,
we apply the same methodology as in the HBS following Brilon et al. (2005),
Brilon and Geistefeldt (2009, 2010); Geistefeldt (2016).3

A. Data

We use tra�c data for the highway section 44092161 from Straßen.NRW for
the highway A42 which is located in the northern Ruhrgebiet in North Rhine-
Westphalia. The highway section lies in a metropolitan area and has two lanes
and the speed limit is 100 km/h. We employed data for 5-min intervals covering
the flow in veh/5 min, speed in km/h and the density in veh/km. Speed and flow

3 As we want to give an example how to use our theoretical model to calculate congestion costs, we
keep the calculation quite simple. We are aware of the fact, that more sophisticated methods are
available for example for the calculation of the breakdown probability.
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[I]42

Figure 2. : Location of highway and tra�c sensor [|]

are available separately for cars and trucks. Local speeds are converted into space
mean speeds following Brilon and Geistefeldt (2010).

As the highway capacity depends on weather conditions and the amount of
daylight, we match the tra�c data with weather and sunrise and sunset data.4

By doing so, we can exclude all intervals where road capacity was below the
maximum possible capacity. Rain, darkness and frost, for instance, influence
road capacity negatively. In addition, this information can also be used directly
to analyze the impact of weather conditions on external costs.5

B. Functional forms of speed-flow relationships

The fundamental relationship describes the relation between flow q, density k
and space mean speed v. Taylor et al. (2008) compare the performance of eight
di↵erent functional forms in modelling di↵erent tra�c regimes. They find that
each model has certain advantages in representing specific tra�c regimes, but fails
to represent others. Hranac et al. (2006) and Rakha (2009) compare Greenshield’s
single-regime, Pipe’s two-regime and Van Aerde’s single-regime model. They
demonstrate the shortcomings of Greenshield’s and Pipe’s models in capturing the
entire range of tra�c stream situations. They find that the four-parameter Van

4 Data on rainfall and temperatures are from the Deutscher Wetterdienst, Germany’s national me-
teorological service, and sunrise and sunset data are taken from the webpage: https://www.
timeanddate.de/sonne/deutschland/muenster?monat=1&year=2015.

5 A figure that shows how rain and darkness increase the marginal external costs is provided in the
appendix B.
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Aerde model is able to reflect di↵erent tra�c situations on di↵erent road types,
as it best approximates the field data. Van Aerde’s (1995) model describes the
speed-density relationship by means of the minimum distance headway between
consecutive vehicles. In a stable relationship between tra�c density, tra�c flow
and space mean speed, the Van Aerde model can be written as

q(v) =
v

c1 + c2/(v0 � v) + c3v
.(7)

where ci are parameters of the function and v0 is the speed at a flow or density
of zero. The Van Aerde function is backward-bending and each value of q can be
assigned to one speed of congested vh, as well as to one speed of hypercongested
vl tra�c. Brilon and Geistefeldt (2010) analyze tra�c flows on German highway
segments in order to revise the design capacities. They found that the Van Aerde
model provides the best fit for highway sections where hypercongestion occurs.6

For this reason, we calibrate the four parameters (c1, c2, c3, v0) of the Van Aerde
function, minimizing the squared errors with respect to speed, flow and density
following Brilon and Geistefeldt (2010). The parameters are displayed in Table 1
in the appendix. The model is also employed by Peer et al. (2012) to calculate
link-specific free flow travel times.

C. Probability of tra�c flow breakdowns

In the fundamental diagram, coming from very low tra�c flows corresponding
to high speeds, the more cars use this highway section per hour, the greater the
probability that the tra�c will break down (Figure 1). It is widely accepted
in the literature that the breakdown flow/density has properties of a random
variable (Elefteriadou et al., 1995; Lorenz and Elefteriadou, 2000; Brilon et al.,
2005; Arnese and Hjelkrem, 2018). Focusing on highway capacity analysis, Brilon
et al. (2005) and Brilon and Geistefeldt (2010) use the non-parametric Product
Limit Method of Kaplan and Meier (1958) to calculate the breakdown probabil-
ities. The method builds on the idea that for high tra�c flows, it is possible
to observe either freely flowing/congested tra�c or hypercongested tra�c in the
next interval.7 For this reason, it is possible to calculate the number of intervals
with an observed tra�c volume of q which are not followed by tra�c breakdowns
(censored intervals), and the number of intervals with tra�c volume q that are
indeed followed by a tra�c flow breakdown in the next interval. Inserting this
information into the Product Limit Function, enables calculating the breakdown
probability. Applying the Product Limit Method to tra�c data requires defin-
ing a threshold speed, above which tra�c is congested/freely flowing, and below
which tra�c is hypercongested with stop-and-go patterns. Following Brilon et al.
(2005) and Tu et al. (2012), we employ a threshold speed of 70 km/h.

Brilon et al. (2005) found that the normal Weibull distribution best fits the non-
parametric distribution function of the investigated German motorway sections.

6 To obtain good estimates for the Van Aerde model, further data cleansing is necessary, such as re-
moving intervals with temporary obstacles. Moreover, all data points where the standard deviation
of the speed travelled in the 5-min intervals and in the corresponding 60-min interval exceeded a
value of 10, are removed for the estimation of the speed-flow relationship. The data cleansing is
described in both Brilon et al. (2005) and Brilon and Geistefeldt (2010).

7 We only include tra�c flow breakdowns at tra�c flows greater than 2,400 vehicles per hour. With
lesser flows, tra�c breakdowns are probably caused by bottlenecks.
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The distribution function of the Weibull distribution has the following form:

F (q) = 1 � e�(q/�)↵ ,(8)

where q is the tra�c volume, ↵ is the shape parameter and � is the scale param-
eter. We follow the approach of Brilon et al. (2005) to determine the distribution
of tra�c flow breakdowns.

As breakdowns of tra�c flows occur suddenly, only short time intervals are
appropriate for analyzing tra�c breakdowns. The time intervals employed in
the empirical literature vary between 1-minute (Calvert and Snelder, 2016) and
10-minute intervals (Tu et al., 2012). We follow Brilon et al. (2005) and Brilon
and Geistefeldt (2010), who use 5-min intervals to estimate the parameters of
the Weibull distribution. By assuming that the variance of the tra�c flow is
normally distributed over the interval, it is possible to convert the Weibull distri-
bution function to hourly intervals. The procedure is described in detail in Brilon
et al. (2005), and is necessary, as the capacity estimation with the Van Aerde
function and the calculation of time costs also builds on hourly data. The pa-
rameters are presented in Table 1 in the appendix. Figure 3 shows the speed-flow
relationship and the Weibull distribution functions. The breakdown probability
distribution function for hourly intervals is shifted inwards, as the probability that
tra�c flow will break down within the next hour is c.p. higher than the prob-
ability that the tra�c flow will break down within the next five minutes. The
displayed distribution functions were calculated including all weather and light
conditions. Breakdown probabilities would increase c.p. if only time intervals
with, for example, rainfall were considered for calculation.
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Figure 3. : Van Aerde Function and Weibull Distribution for the A42 (westbound)

Knowing the functional forms of the speed-flow relationships and the breakdown
probabilities, we are able to calculate the external costs. The functional form of
the Van Aerde function allows for calculating the marginal speed changes caused
by additional drivers on the road per hour (from q to q + 1). The distribution
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function of the breakdown probability yields the probability, of the tra�c states
of congestion or hypercongestion prevailing. More precisely, the breakdown prob-
ability measures the probability that the tra�c flow will break down in the next
interval given the tra�c flow in this interval. However, using this probability for
the tra�c state of hypercongestion is not entirely correct as at this tra�c state,
flow has already broken down in previous intervals. As the hypercongested inter-
vals are quite short in our data (approximately 14 minutes), the error we make
using the breakdown probability also for the state of hypercongestion is small.
Furthermore, each additional driver using the road per hour, marginally increases
the probability of a breakdown. For this reason, we also need to investigate the
changes in p for increases from q to q + 1.

D. Capacity drop

The capacity drop has received considerable attention in transportation science
literature. It describes the observation that the discharge rate of hypercongested
tra�c is lower than the maximum flow in congested but freely flowing tra�c (Hall
and Agyemang-Duah, 1991; Yuan et al., 2017). At a tra�c breakdown, in our
model, the tra�c state simply switches from the congested to the hypercongested
branch. The capacity drop renders the hypercongested tra�c state more persis-
tent, because, due to the lower tra�c flow, tra�c demand has to fall to a much
lower level to dissolve the tra�c jam (Treiber and Kesting, 2013).

Research has tended to concentrate on the mechanism of the capacity drop
phenomenon at bottlenecks, taking into account various aspects like the impact
of driving behavior (Chen et al., 2014), the existence of lane-drops, on-ramps with
or without ramp controls (Chung et al., 2007; Srivastava and Geroliminis, 2013) or
the impact of di↵erent jam types like standing queues or stop-and-go waves, e.g.
(Yuan et al., 2017). The results of Yuan et al. (2017) indicate that the outflow of
stop-and-go waves is lower than those of standing queues. As stop-and-go waves
are especially relevant for phantom jams, their results indicate the importance of
this phenomenon in this context.

Estimates of the capacity drop range between 3% and 18%, with Chung et al.
(2007) obtaining this entire range of estimates. Hall and Agyemang-Duah (1991)
and Srivastava and Geroliminis (2013) have estimates in the medium range of
6% and 15% respectively. The US Highway Capacity Manual (2016) recommends
7% as a default value. Ponzlet (1996) augments the Van Aerde Model by an
additional parameter, so as to take the capacity drop into account and applies it
to German highway data. He finds that capacity drops by 11% when the tra�c
flow breaks down.

Our estimates for the capacity drop on the highway section range from 3%
eastbound to 13% westbound. Extensive and more sophisticated research on the
extent of the capacity drop phenomenon, as performed in this paper, is presented
in the above mentioned papers. For this reason, we simply assume a medium value
of 10% in our calculations. Within the framework of our model, we assume that
the capacity drop only a↵ects hypercongested tra�c states. When tra�c breaks
down, we assume losing 10% of the flow and therefore, the shift from the upper
to the lower branch occurs diagonally, resulting in even greater speed losses. We
also assume that in the state of hypercongestion, the tra�c flow is 10 % lower,
so that the dissolution of tra�c jams is less e�cient.
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E. Travel time costs

Following the German guidelines for infrastructure planning, we di↵erentiate
between three di↵erent travel time cost categories. There are private trips (for
shopping, leisure activities or driving to the workplace and back), business trips
(during working hours) and trips of heavy-duty vehicles (trucks). The German
methodology handbook for the federal infrastructure plan di↵erentiates between
private and business time cost parameters, with both increasing in total trip
length (BMVI, 2016, pp. 97-101). The study “Mobility in Germany” contains
the average car trip lengths, as well as the trips broken down by purpose (Infas and
DLR, 2008, p. 28, p. 89). However, the results include all trips and not just those
on highways. For this reason, we made the assumption that the average private
trip length of approximately 18 km is somewhat greater for trips on highways (45
km). This assumption is necessary, because, as mentioned above, the time value
function is upward-sloping with the trip length. The corresponding time costs are
8.17 Euro/h. The average length of business trips on highways is assumed to be
100 km (time costs: 30 Euro/h) (BMVI, 2016, pp. 97-101).

There are basically two types of heavy-duty vehicles on the road: normal trucks
and semi-trailer trucks. Due to di↵erent trip lengths and vehicle specifications, the
drivers’ wages (17.64 and 20.14 Euro/h) and the capacity maintenance costs (5.81
and 9.34 Euro/h) di↵er (BMVI, 2016, pp. 133-134). Moreover, the methodology
handbook also o↵ers an average time value for transported goods of 6.88 Euro/h,
with an average loading factor of 0.7 (BMVI, 2016, p. 101). The total time costs
for normal trucks are therefore assumed to be 28.27 Euro/h and 34.30 Euro/h
for semi-trailer trucks. On this highway section, among heavy-duty vehicles, the
shares of normal trucks versus semi-trailer trucks are approximately 2/3 versus
1/3, which yields an average time cost value for heavy duty vehicles of 30.28
Euro/h.

The shares of trips by purpose are also from the Mobility in Germany study,
although the trip purposes, including routes on highways may di↵er from those
within urban centers. However, detailed data for highway trips is not available.
The same applies to the average rate of vehicle occupancy for cars, to which we
apply a value of rV O of 1.1 (BaSt, 2012, p. 8). The cost factors are weighted by
the share of private (wp), business (wb) and heavy duty vehicle (whd) trips.

It should be noted that the congestion e↵ect corresponding to the upper branch
of the speed-flow curve, barely a↵ects heavy-duty vehicles, as their maximum
permissible speed in Germany is 80 kilometers per hour. They do not incur
significant travel time prolongation in congested tra�c on the upper branch of
the speed-flow curve.8 The travel time cost parameter c1 is:

(9) ccon = wp · rV O · 8.17 e + wb · rV O · 30 e = 11.80 e,

where the weights are wp = 0.88 and wb = 0.12.

The hypercongestion externality is relevant for all vehicles on the highway,
including heavy-duty vehicles. For this reason, the weights are somewhat di↵erent

8 As the apex of the Van Aerde function is at a speed of 70 km/h (eastbound) and 80 km/h (west-
bound), we accept a small error with the assumption that heavy duty vehicles are not a↵ected by
travel time prolongation on the upper branch. However, we believe that the error is small and that
travel time losses in congested tra�c are primarily an issue for cars.
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at wp = 0.77, wb = 0.10 and whd = 0.13.

(10) chyper = wp · rV O · 8.17 e + wb · rV O · 30 e + whd · 30.28 e = 14.12 e

Evaluating the travel time losses due to the normal congestion e↵ect and those
due to hypercongestion with the cost parameters, enables us to calculate external
congestion costs that depend on the current tra�c flow situation.

F. Results

Figure 4 shows the total expected private, marginal and social travel time costs
(without and with capacity drop) that have been calculated with the above men-
tioned time cost parameters.
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Figure 4. : Cost functions

The expected average costs curve (blue line) is upward-sloping. However, com-
pared to the external costs, the slope is quite moderate, underlining the impor-
tance of internalizing the external costs in order to obtain socially acceptable
quantities.

Figure 5 shows the marginal external cost functions for the highway section
with and without capacity drop (indicated with CD). The e↵ects are split as in
Equation 6 in the deterministic congestion e↵ect (blue - dotted) and the stochastic
hypercongestion adjustment (red - striped). As the cost functions display the
expected costs of a specific tra�c volume q, they increase monotonously in q.

The upward-sloping cost curve and the surge at very high tra�c flows are driven
by three factors:

1) The more vehicles that want to use the road at the same time, the more
other vehicles are a↵ected by travel time losses. If marginal e↵ects were
constant over the entire tra�c flow range, this would result in a linearly
increasing cost function.

2) However marginal e↵ects of additional drivers are not constant over the
entire tra�c flow range, as the slope of the Van Aerde function at the apex
is much steeper than at low tra�c flows.

3) The probability that the tra�c flow breaks down increases with flow, and
therefore, the costs of the shift from congested to hypercongested tra�c
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Figure 5. : Marginal external costs without (left) and with (right) capacity drop

become more relevant at higher tra�c flows. This overcompensates for the
fact that the absolute speed losses due to breakdowns decrease with q.

These marginal cost functions enable us to assign corresponding costs to each
tra�c flow observed on the highway. Our next step is thus to use the observed
tra�c flow for an average Thursday (public and school holidays excluded) at this
highway section of the A42 (Figure 6).
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Figure 6. : Tra�c flow on an average Thursday

Figure 7 shows the external congestion costs (blue - dotted), as well as the
hypercongestion adjustment (red - striped). It is evident that at peak times, due
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to the increase in probability of a tra�c breakdown, the costs of hypercongestion
become more pronounced, whereas in o↵-peak times, these costs equal zero. More
precisely, when the flow exceeds approx. 65% of design capacity flow (striped line
in Figure 6), the hypercongestion costs start to increase. This e↵ect becomes
especially relevant when the capacity drop is taken into account as well (Figure
7 b and d).
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Figure 7. : External congestion costs (blue) and hypercongestion adjustment (red)

In o↵-peak periods, the probability of a random breakdown is close to zero, as
driver errors, except for those causing accidents and thereby bottlenecks, do not
a↵ect the stability of the tra�c flow up to a certain saturation level and therefore,
the hypercongestion externality is zero as well. Tra�c breakdowns at low tra�c
flows are caused by bottlenecks and should therefore be analyzed with bottleneck
models.

In Figure 8 in appendix B we use the information on di↵erent weather and
daylight conditions to show that this information influences tra�c flow conditions
and thus also congestion costs. Using only time intervals without daylight and
with rainfall, the breakdown probability function shifts inwards and thus the
undesired tra�c state of hypercongestion becomes more likely. This increases
the marginal costs by approximately 7 cents in the afternoon peak on the A42
eastbound compared to Figure 7b. Contrarily, if only favorable weather and light
conditions are included in the calculation, external costs would be lower compared
to the baseline case.

In total, we identify a currently non-internalized congestion externality for this
highway section of a maximum of about 34 cents per vehicle and kilometer. The
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average externality ranges between 1.4 and 4.0 Euro cents, when costs are spread
equally over all intervals. More precisely, the average externality in the eastbound
direction lies between 3.3 and 4.0 Euro cents without and with capacity drop re-
spectively. On the westbound section the average externality, ranging within 1.4
and 1.8 Euro cents, is lower due to fewer hours of tra�c congestion. The values
may be on average large enough to justify a congestion charge, when considering
the costs of the charging technology of arguably 2.5 Euro cents per kilometer.
If this is not the case yet, as the values of the westbound direction might sug-
gest, decreasing costs of the charging technology and increasing congestion will
probably make congestion charges profitable in future.

The absolute size of the external costs we obtained cannot be taken as a refer-
ence value for other highway sections, because they are very specific to respective
tra�c situations. The results depend on the estimated speed-flow relation and the
breakdown probability, and these can be very di↵erent among di↵erent highways
and highway sections. Therefore, the extent of congestion and hypercongestion
costs are highly specific as well, so that future research should include an analysis
of more highway sections with di↵erent characteristics regarding the number of
lanes or the speed limit, so as to determine which aspects a↵ect external costs.
These calculations can also be extended to the entire highway 42 because, for
instance, tra�c detectors are located every 2.5 kilometers on this highway.

IV. Conclusion

Especially in metropolitan areas, highways are congested during the rush hour.
Travel times increase significantly due to congestion, and the resulting additional
time and environmental costs place a large burden on economies. There are
several possible reasons for congestion at a specific site, but one that is relatively
independent of a specific location or road design, is the driving behavior. Driving
behavior is, however, the main reason for phantom tra�c jams.

Following Sugiyama et al. (2008), we also assume that there are random traf-
fic jam formations that are not caused by bottlenecks. Departing from tra�c
experiments with stochastic tra�c flow breakdowns, we set up a model for cal-
culating their external costs. We show that considering capacity as deterministic
ignores parts of the externality, which we refer to as stochastic hypercongestion
adjustment.

Directly using the speed-flow data, we calculate external congestion and hyper-
congestion costs for a German highway section. By incorporating the probabilities
in the speed-flow model, we obtain a cost function that increases monotonously
with flow and is not backward-bending, as in deterministic speed-flow models.
For this reason, a unique cost value can be assigned to each level of tra�c flow.

Our results indicate that the stochastic hypercongestion adjustment is not neg-
ligible, especially when considering the capacity drop due to tra�c flow break-
downs. We show that the costs caused by stochastic tra�c flow breakdowns can
increase the deterministic congestion costs by up to 50%.

To improve welfare, external costs should be internalized. The congestion and
hypercongestion externalities calculated in this paper can only be considered as
congestion charges, if demand is inelastic, but in this case congestion charges were
redundant and no welfare gains can therefore be expected. Because demand is
elastic, for calculating congestion charges, our approach has to be combined with
a demand model. Because in our application the cost function is increasing, a
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unique equilibrium should exist. In this congestion (and hypercongestion) charge
equilibrium, congestion externalities will be reduced and our maximum values (of
about 0.34 Euro per km) could be considered as an upper bound of the equilibrium
congestion charge. But, because users adapt their departure times rather than
stopping driving, it can be expected that the peak period will grow. Therefore,
in some periods, the equilibrium charge may be higher than our values.

In our model, we also assume that all drivers a equal. Trucks, however, are
longer, slower, and heavier, and therefore warrant special treatment and impose
higher external congestion costs (Verhoef et al., 1999). Based on Coifman (2015),
who finds that many of the critical parameters of the flow-density relationship
depend on vehicle length, future research should separate the external e↵ects
of trucks and cars on travel times, so as to determine vehicle-type-dependent
external costs that could, in a next step, be used to calculate congestion and
hypercongestion charges.

Appendices

A. Calibrated parameters

Table 1—: Parameters and values used for application

Parameters of van Aerde Model
parameter A42 A42

eastbound westbound
c1 0.007521 0.004880
c2 0.475520 0.092570
c3 0.000001 0.000163
v0 114.1 110.0
Weibull-distribution - 60-min intervals, baseline case
↵ 13.82 16.55
� 4377 4388
Weibull-distribution - 60-min intervals, rain and darkness
↵ 16.07 18.49
� 4162 4331
Travel time cost parameters in Euroa

E↵ects involving the congested branch 11.80
E↵ects involving the hypercongested branch 14.12
a Own calculations based on Infas and DLR (2008) and BMVI (2016).
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B. Additional costs caused by rain and darkness
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