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Abstract

We analyze an economy with two heterogeneous Epstein-Zin investors. Our focus
is on the long-run evolution of their respective (expected) consumption shares and
on the conditions under which heterogeneity prevails over long time horizons such
that both investors exhibit a substantial consumption share. A small investor can
survive by either saving or speculating her way out of extinction, i.e., by either
saving more than her counterpart, or by investing into a riskier portfolio with a
higher expected rate of return. The first strategy is followed by the investor with
the higher elasticity of intertemporal substitution, while the second is applied by the
investor with the lower risk aversion. For the case of i.i.d consumption growth we can
analytically decide which of the two investors (or both) survive in the infinite horizon
limit. With Epstein-Zin preferences there is a whole region of preference parameter
combinations for which both investors can survive, as opposed to CRRA, where
this is only a knife-edge case. For the case of long-run risk our simulation analysis
shows that the region where both investors retain a non-negligible consumption
share is larger than in the i.i.d. case. On the other hand, when the investors are less
heterogeneous with respect to risk aversion, this region is smaller, both in the i.i.d.
and in the long-run risk case.

Keywords: Epstein-Zin utility, long-run risk, preference heterogeneity, consumpo-
tion shares
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1 Introduction and Motivation

Recently models which combine Epstein-Zin (EZ) type preferences and investor hetero-

geneity have moved to the center of attention in theoretical asset pricing, see, e.g., the

papers by Borovička (2015), Gârleanu and Panageas (2014), and Roche (2011).1 The use

of alternative preferences and the deviation from the homogeneity paradigm represent two

major steps in the development of this area of research.

In this paper we analyze a long-run risk model with EZ utility and two heteroge-

neous investors and investigate whether and, if so, under which conditions both investors

can retain a non-negligible (average) consumption share in the long run. We show that

introducing a stochastic growth rate of aggregate consumption as a state variable has a

significant impact on investor survival. There are two basic economic mechanisms at work

here. An investor with a currently small consumption share can either choose relatively

aggressive asset positions to earn a high risk premium (speculation channel) or save rel-

atively more than her counterpart (savings channel). Intuitively the former will happen

when the small investor’s risk aversion is smaller than that of her counterpart, while the

latter will be triggered by a higher elasticity of intertemporal substitution.

The main reason for the popularity of EZ preferences compared to classical constant

relative risk aversion (CRRA) utility functions is that models with the former can solve a

number of asset pricing puzzles in a parsimonious way due to the separability of the level

of risk aversion and the elasticity of intertemporal substitution (EIS), which are inverses

of each other in the CRRA framework. Furthermore, with EZ preferences there are non-

zero premia for state variables, like a stochastic consumption growth rate or stochastic

volatility. Overall, this makes it possible to generate much more plausible asset pricing

implications with EZ than with CRRA.2

1An early paper which mainly describes a mathematical approach to the problem of finding an equi-

librium in an economy with heterogeneous EZ investors is Dumas, Uppal, and Wang (2000).
2See e.g. Bansal and Yaron (2004), Eraker and Shaliastovich (2008), Bansal and Shaliastovich (2011),

Drechsler (2013), Zhou and Zhu (2009), Bansal and Shaliastovich (2010), Drechsler and Yaron (2011),
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At the same time researchers have become interested in investor heterogeneity, where

this term can relate to a number of investor characteristics, most notably beliefs and

preference parameters like risk aversion or the subjective rate of time preference. Investor

heterogeneity can, similar to alternative preferences like EZ, contribute to a solution of

asset pricing puzzles, e.g. by offering at least a partial explanation for the excess volatility

of prices relative to fundamentals. Furthermore, it can explain trading between investors,

which would not exist in a model with a homogeneous representative investor.3

Heterogeneous investors will make different consumption and investment decisions

through time. This implies that in general there is a certain probability that some groups

of investors will become extinct in the long run, i.e., that their consumption share goes

to zero as the time horizon in the model goes to infinity. Especially in the most popular

variant of heterogeneous investor models with only two types of agents extinction of one

type is obviously a very important issue. If one of the two investors vanishes the model

becomes trivial, since the initially heterogeneous economy will then become equivalent to

a one investor setup.

This problem already exists in the simplest possible setup with i.i.d. consumption

growth and CRRA preferences. For the case of identical beliefs Bhamra and Uppal (2014)

show that both investors only survive if a very special condition holds which relates the

difference in the two investors’ time preference rates to the difference in risk aversion. If

this ’knife edge condition’ is not satisfied, the consumption share of one type of investors

goes to zero, i.e., she faces extinction. To make sure that all implications of heterogeneity

carry over to the infinite-horizon case it is thus of importance to identify those parameter

sets which guarantee that both investor types remain present in the economy.

In our paper we extend the analysis of economies with heterogeneous EZ investors

relative to each of the papers cited above in at least one dimension. Gârleanu and Panageas

Wachter (2013), and Benzoni, Collin-Dufresne, and Goldstein (2011).
3See e.g. Dumas (1989), Wang (1996), Dieckmann and Gallmeyer (2005), Longstaff and Wang (2012),

Yan (2008), Bhamra and Uppal (2014), Bhamra and Uppal (2009), and Kogan, Ross, Wang, and West-

erfield (2011).
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(2014) study a model with overlapping generations and i.i.d. consumption growth and

provide a detailed analysis of the impact of heterogeneous risk aversion and heterogeneous

EIS on asset pricing moments. We consider a more general model with time-varying

consumption growth as a long-run risk factor4 and furthermore allow the individual EIS

parameters to take on values above one. While in Gârleanu and Panageas (2014) the two

heterogeneous investor types will always be present by construction, we assume infinitely-

lived investors, so that long-run survival is no longer guaranteed as in the OLG-setup.

Borovička (2015) investigates the issue of survival in a heterogeneous agent economy

in which the two investors differ with respect to their beliefs, but are otherwise identical.

He shows that in contrast to the CRRA case also the investor with the more biased

beliefs can survive in the long run and interprets this as strong support for the use of

preferences where risk aversion is separable from EIS. Our model is more general due to

the inclusion of the long-run risk process, and we discuss the matter of investor survival

and the long-run evolution of average consumption shares in a setting without differences

in beliefs, but differences in preferences. Similar to Borovička (2015) we find that there

are parameter areas as opposed to the case of ’knife-edge’ parameter combinations (i.e.,

lines) where both investors can survive in the long run.

Compared to Roche (2011) we extend the model by relaxing the i.i.d. structure of

consumption growth and by enlarging the asset menu the agents can use to trade. By

allowing the investors to hold also a locally risk-free bond we are able to separate the

decision to save from the decision to take more risk. This separability is key to the main

result of our analysis, namely that the small investor can either speculate or save her way

out of extinction, so that with a limited asset choice as in Roche (2011) it is impossible

that both investors can survive.

With respect to the basic economic mechanisms there are two main types of invest-

4The inclusion of a different state variable like stochastic volatility would also be a possible choice to

move away from i.i.d. consumption growth. To introduce a stochastic growth rate first seems to us as the

natural way to go, following Bansal and Yaron (2004).
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ment and portfolio decisions which can help a small investor to retain a non-negligible

expected consumption share in the long run. As documented in Borovička (2015), she can

either save or speculate ’her way out of extinction’. The former happens when the small

investor’s wealth-consumption ratio is higher than the large investor’s, the latter means

that she will tend to hold the more aggressive portfolio earning the higher risk premium.

The main driving force behind a higher wealth-consumption ratio is a higher EIS.

On the other hand an investor will hold a portfolio with a higher risk premium when her

risk aversion is lower, so that the exposure of wealth to consumption risk and long run

growth risk, both of which have a positive market price of risk, will be larger. The most

important result is that both investors survive when their respective ’advantage’ with

respect to one preference parameter is not over-compensated by their ’disadvantage’ with

respect to the other. When investor 1 is less risk-averse and investor 2 has the higher EIS,

then investor 1 can speculate her way out of extinction when she is small (given that her

savings rate is not too low, i.e., that her EIS is not too low), while investor 2 can support

her survival as the small agent by saving more (given that the expected return on her

risky portfolio is not too low, i.e., that her degree of risk aversion is not too high).

An important contribution of our analysis concerns the impact of a state variable

on the long-run evolution of average consumption shares. With EZ preferences long-run

growth risk is priced and has a positive premium when investors have a preference for

early resolution of uncertainty. All else equal, the average consumption share for the less

risk-averse investor tends to increase over time, since she now benefits from the higher

expected return on her wealth due to the additional premium on growth risk. For the

more risk-averse agent the opposite is true, since she has a smaller exposure to growth

risk, resulting in a lower expected return on her wealth. To have her average consumption

share increase over time, she thus needs a higher EIS.

In the case of a stochastic expected consumption growth there is no longer a closed-

form condition for investor survival, so that the evolution of average consumption shares

has to be investigated by means of a Monte-Carlo simulation. The results show that
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the range of scenarios where the less risk-averse agent benefits from the higher expected

return on the risky portfolio is very wide. Although the other investor has to compensate

this with a higher EIS, the region of EIS-combinations where both investors’ average

consumption shares increase from initially small values nevertheless becomes larger than

in the case without a state variable.

An important implication of our analysis is therefore that in a ’full-fledged’ long-

run risk model with a number of state variables in addition to a stochastic growth rate

of consumption investor heterogeneity can be sustained for a wide variety of preference

parameter combinations.

The remainder of this paper is organized as follows. In Section 2, we introduce

the model setup. Section 3 contains a formal analysis of the equilibrium. In Section 4 we

present numerical results for our model without a state variable and with long-run growth

risk. Section 5 concludes.

2 Model Setup

2.1 Endowment

We assume that aggregate endowment C follows the stochastic process

dCt = µC(Xt)Ctdt+ σ′CCtdWt

dXt = −κXtdt+ σ′XdWt,

where µC(Xt) = µC + Xt. W is a two-dimensional Wiener process, and σC and σX are

volatility vectors in R2. X is a state variable (’long-run risk’) which introduces a stochastic

component into the growth rate of aggregate consumption. In the following, we will assume

that consumption and the long-run growth rate are locally uncorrelated, i.e., σ′C ≡ (σc, 0)

and σ′X ≡ (0, σx).

5



The inclusion of a state variable like X is an important extension of the i.i.d. model

when general EZ preferences are considered and creates a ’true’ long-run risk model. In

contrast to the CRRA case there will in general be a non-zero market price of risk for the

innovations in X, which helps to generate a sizeable equity risk premium.

2.2 Investors

There are two heterogeneous investors i (i = 1, 2) with recursive utility of the Epstein-Zin

(EZ) type.5 The indirect utility of investor i at time t is

Ji,t = Et

[∫ ∞
t

fi(Ci,s, Ji,s)ds

]
,

where Ci,t is investor i’s consumption at time t, and fi denotes the aggregator function.

fi(Ci, Ji) =
βiC

1− 1
ψi

i(
1− 1

ψi

)
[(1− γi) Ji]

1
θi
−1
− βiθiJi. (1)

In terms of parameters γi > 0 stands for the degree of relative risk aversion, ψi > 0 is the

elasticity of intertemporal substitution (EIS), and βi > 0 is the time preference rate. The

classical CRRA preferences are obtained as a special case of EZ preferences by setting

ψi = 1/γi. Concerning risk aversion we assume with only a minor loss of generality that

γi > 1. Note that we do not allow the EIS of any investor to be equal to one, i.e., ψi 6= 1

for i = 1, 2. As usual, θi = 1−γi
1− 1

ψi

.

We will write γ̄ for the average risk aversion and ψ̄ for the average EIS, where

γ̄ ≡ 1

ω 1
γ1

+ (1− ω) 1
γ2

ψ̄ ≡ ωψ1 + (1− ω)ψ2,

and where ω is the first investor’s consumption share, i.e., ω = C1/(C1 +C2). Analogously,

the second investor’s share is given by 1− ω.

5See Duffie and Epstein (1992) for details on this preference specification in a continuous-time model.

Benzoni, Collin-Dufresne, and Goldstein (2011) present an application in the context of option pricing.
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Three aspects of the above preference specification are important for our analyses.

First, there is the investors’ aversion to risk across states, which increases in γi. Second,

there is the investors’ aversion to variation in consumption over time, measured by ψi. Here

a higher value means more tolerance for, i.e., less aversion to, variation in consumption

over time. Third, the investors may have a preference for either early or late resolution

of uncertainty. In case the difference γi − ψ−1
i is positive investor i exhibits a preference

for early resolution of uncertainty. The larger the difference the more pronounced this

preference.

2.3 Asset Markets

With two heterogeneous investors, market completeness becomes an issue. We assume

complete markets by allowing the investors to trade the claim to aggregate consumption,

which is in unit net supply (and which we simply call ’the stock’), the money market

account (in zero net supply) as well as a contingent claim like an option the value of

which is linked to the state variable X (also in zero net supply). The main reasons for

choosing to work with complete markets (in addition to computational ease) is that we

want to focus on the consequences of investor heterogeneity, not on the implications

of market incompleteness. On an incomplete market the investors are restricted to the

package of consumption and X-risk represented by the stock, and this restriction has

an impact on the equilibrium outcome. It would thus be necessary to analyze a wide

range of scenarios in terms of the relative importance of the two risk factors to isolate

the implications of heterogeneity from those of market incompleteness. Furthermore, the

focus of our investigation is on highly aggregated equity-like assets (the stock market as

a whole), so that assuming the existence of an active options market seems natural.
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3 Survival and Long-Run Evolution of Consumption

Shares

3.1 Structure of the Analysis

Intuitively survival is linked to the behavior of an investor’s consumption share when she

is small. Roughly speaking the issue here is whether an already small consumption share

will on average decrease further or whether there is a chance for the investor to recover.

Consequently the following sections contain an analysis of the relevant properties of the

small investor’s consumption share, i.e., its drift and its volatility. These two quantities

are integral parts of the equilibrium solution of our model (together with the individual

wealth-consumption ratios and the aggregate pricing kernel), so this is the first main result

we are going to derive.

For the case without a state variable the technical conditions for long-run survival

can even be stated in closed-form. In terms of the exact computations we rely on the

analysis in Borovička (2015) (based on Karlin and Taylor (1981)), adapted to our setting.

The purely mathematical representation of the survival condition is, however, only one

part of the analysis, since we first and foremost want to gain a deeper understanding of

the economic mechanisms behind survival and extinction. So we devote a separate section

to the economic interpretation of the mathematical results, where we trace the survival

condition back to the investment and savings decisions of the small (as compared to the

large) investor. In case there is a state variable, such a closed-form survival condition

no longer exists, so that we have to resort to Monte-Carlo simulations of the average

consumption shares.
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3.2 Solving for the Equilibrium

3.2.1 Consumption Sharing Rule

With two heterogeneous investors the equilibrium consumption sharing rule is one of

the key outputs of the model. Investor 1’s consumption share ω = C1

C1+C2
introduced in

Section 2 is our key state variable and exhibits dynamics

dωt = µω(ωt, Xt)dt+ σω(ωt, Xt)
′dWt.

The coefficient functions in this stochastic differential equation have to be determined as

part of the solution. Below we will use a more compact notation by setting µω ≡ µω(ωt, Xt)

and σω ≡ σω(ωt, Xt).

Given the dynamics of aggregate consumption and investor 1’s consumption share

the evolution of investor 1’s individual consumption level C1 ≡ ωC is obtained via Ito’s

lemma as
dC1,t

C1,t

= µC1dt+ σ′C1
dWt

with drift and volatility coefficients

µC1 = µC +
1

ω
µω +

1

ω
σ′ωσC (2)

and

σC1 = σC +
1

ω
σω. (3)

Analogous expressions are obtained for investor 2’s consumption.

3.2.2 Individual Wealth-Consumption Ratios

Given prices each investor maximizes her indirect utility Ji. In the optimum it holds that

Et [dJi,t + fi(Ci,t, Ji,t)dt] = 0, (4)

and we set

Ji,t =
C1−γi
i,t

1− γi
βθii e

θivi,t . (5)
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Given this specification it can be shown that vi,t ≡ vi(ωt, Xt) is investor i’s log wealth-

consumption ratio at time t (see Benzoni, Collin-Dufresne, and Goldstein (2011)). Its

dynamics follow from Ito’s lemma and are given by the stochastic differential equation

dvi,t = µvi(ωt, Xt)dt+ σvi(ωt, Xt)
′dWt.

The drift µvi and the volatility σvi obviously depend on the partial derivatives of vi with

respect to ω and X, which are given in Appendices A.2.2 and A.2.3. Again, the dependence

of µvi and σvi on ω and X will be suppressed from here on to make the notation more

readable.

Plugging the dynamics of the indirect utility function derived from Equation (5) into

Equation (4) and simplifying we obtain partial differential equations for the log wealth-

consumption ratios vi (i = 1, 2):

0 = e−vi − βi +

(
1− 1

ψi

)(
µCi −

1

2
γiσ
′
Ci
σCi

)
+ µvi +

1

2
θiσ
′
vi
σvi + (1− γi)σ′Ciσvi . (6)

3.2.3 Pricing Kernel

As shown in Benzoni, Collin-Dufresne, and Goldstein (2011) investor i’s pricing kernel at

time t (denoted by ξi,t) is given by

ξi,t = βθii e
−βiθit−(1−θi)

∫ t
0 e

−vi,sdse(θi−1)vi,tC−γii,t . (7)

Its dynamics follow directly by an application of Ito’s lemma. Simplifying and using

Equation (6) for the individual log wealth-consumption ratio gives

dξi,t
ξi,t

= −
[
βi +

1

ψi
µCi −

1

2
γi

(
1 +

1

ψi

)
σ′CiσCi −

1

2
(1− θi)σ′viσvi − (1− θi)σ′Ciσvi

]
dt

− [γiσCi + (1− θi)σvi ]
′ dWt (8)

for i = 1, 2. From this we obtain investor i’s subjective risk-free rate ri,t as

ri,t = βi +
1

ψi
µCi −

1

2
γi

(
1 +

1

ψi

)
σ′CiσCi −

1

2
(1− θi)σ′viσvi − (1− θi)σ′Ciσvi

and the (subjective) market prices of risk λi,t as

λi,t = γiσCi + (1− θi)σvi .
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3.2.4 Putting the Pieces Together

We are now in a position to solve for the equilibrium quantities of interest. The investors

have to agree on the risk-free rate and the market prices of risk, i.e., on the drift and

volatility of the pricing kernel. These functions depend on the individual (log) wealth-

consumption ratios, which in turn have to be chosen such that the individual indirect

utilities satisfy Equation (4).

In detail we have to solve for the following five quantities, which are all functions of

the two state variables ω and X: the investors’ individual log wealth-consumption ratios

v1 and v2 (which have to be chosen such that Equation (6) is satisfied for i = 1, 2),

the drift function µω of investor 1’s consumption share (which follows from equating the

subjective risk-free rates), and the two volatilities collected in the vector σω (which follow

from equating the subjective market prices of risk for the two Wiener processes driving

C and X).

One issue which has to be resolved concerns the boundary conditions for the partial

differential equations. For the consumption share ω the domain is the closed interval

from zero to one. At the boundaries of this interval the problem reduces to finding the

equilibrium in an economy with one investor only (see the appendix for details), so that

the wealth-consumption ratio of the large investor is given by the solution in a homogenous

economy populated exclusively by this type. For the state variable X there are no ’natural’

boundaries, so we have to consider the solution over a sufficiently large interval.

The boundary condition for ω → 0 assumes no price impact on the part of the

small investor. In his proof of this claim Borovička (2015) argues that the drift of lnω is

bounded so that a substantially positive consumption share for the small investor can be

moved arbitrarily far into the future, which in turn eliminates a potential current price

impact via the force of discounting.
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3.3 Dynamics of Individual Consumption Shares

3.3.1 Drift and Volatility of Consumption Shares

The vector of volatilities of the consumption share follows from equating the investors’

subjective market prices of risk:

γ1

(
σC +

1

ω
σω

)
+ (1− θ1)σv1 = γ2

(
σC −

1

1− ω
σω

)
+ (1− θ2)σv2 .

Solving for σω, the volatility vector of investor 1’s consumption share, yields

σω =
ω(1− ω)

(
1
γ1
− 1

γ2

)
σC + ω(1−ω)

γ1γ2

[
(1− θ2)∂v2

∂x
− (1− θ1)∂v1

∂x

]
σX

1
γ̄

+ ω(1−ω)
γ1γ2

[
(1− θ1)∂v1

∂ω
− (1− θ2)∂v2

∂ω

] (9)

Consider first the limiting cases ω → 0 and ω → 1. At the boundaries for ω the volatility

of investor 1’s consumption share goes to zero. This is also in line with intuition, since

a non-zero volatility would imply that the consumption share can become negative or

greater than one.

It is also important to consider the limiting behavior of the normalized consumption

share volatility 1
ω
σω. With σC1 = σC + 1

ω
σω this term captures the deviation of individual

consumption volatility from the volatility of the aggregate and thus describes risk sharing

between investors. The normalized consumption share volatility goes to zero for ω → 1,

but converges to some finite value for ω → 0 (see Appendix A.2.1). These properties of

1
ω
σω in the limits are perfectly in line with intuition. The large investor obviously cannot

share risk any more, but has to consume C, implying σC1 = σC . The small investor has

the best chance for risk-sharing. Due to the fact that her overall share in the economy is

so small, her positions barely matter to the large investor.

The drift µω of investor 1’s consumption share follows from equating the investors’

subjective risk-free rates, which we get from the drift of the pricing kernel in Equation (8).

This yields the condition

β1 +
1

ψ1

µC1 − 0.5γ1

(
1 +

1

ψ1

)
σ′C1

σC1 − 0.5(1− θ1)σ′v1σv1 − (1− θ1)σ′C1
σv1

= β2 +
1

ψ2

µC2 − 0.5γ2

(
1 +

1

ψ2

)
σ′C2

σC2 − 0.5(1− θ2)σ′v2σv2 − (1− θ2)σ′C2
σv2 .
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Plugging in µCi from Equation (2) and solving for µω yields

µω = −σ′ωσC +
ω(1− ω)ψ1ψ2

ψ̄

×

{
β2 − β1 +

(
1

ψ2

− 1

ψ1

)
µC

− 0.5γ2

(
1 +

1

ψ2

)
σ′C2

σC2 − 0.5(1− θ2)σ′v2σv2 − (1− θ2)σ′C2
σv2

+ 0.5γ1

(
1 +

1

ψ1

)
σ′C1

σC1 + 0.5(1− θ1)σ′v1σv1 + (1− θ1)σ′C1
σv1

}
. (10)

In what follows we will assume that the economy has a positive average growth rate.

More precisely, we assume µC > 0 and a long-run mean of zero for the stochastic growth

rate X. Furthermore, we restrict the analysis to the case when both investors’ wealth-

consumption ratios are finite (see the appendix for details). As pointed out by Borovička

(2015), this implies a lower bound on βi.

3.3.2 Technical Conditions for Survival

For the reasons stated in the introduction we are mostly interested to find out for what

parameter and preference scenarios both investors survive in the long run, since for these

cases we have a well-defined model with heterogeneous agents also for an infinite horizon,

i.e., in the steady state. In our interpretation both investors survive, if in the limit as

t → ∞, the probabilities that ω goes to zero or to one are both zero, i.e., it must hold

that P (limt→∞ ωt = 0) = P (limt→∞ ωt = 1) = 0. In the model without a state variable, we

can rely on the results of Karlin and Taylor (1981). They show that the probability that

the stochastic process for ω reaches zero in the limit can be translated into a condition for

the drift and the volatility of ω or, equivalently, of lnω. Intuitively, investor 1 will survive

if the drift of lnω is positive in the neighborhood of ω = 0. Analogously for investor 2

the drift of ln(1− ω) must be positive near ω = 1. The exact condition for investor 1 to

escape extinction is thus

lim
ω→0

[
µω(ω)

ω
− 1

2

σ2
ω(ω)

ω2

]
> 0. (11)
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One can show (see Appendix A.4) that this is equivalent to the condition

β1 +
1

ψ1

(µC − 0.5σ′CσC) + 0.5

(
γ1 −

1

ψ1

)
(γ1 − 1)

(
γ2

γ1

)2

σ′CσC

≤ β2 +
1

ψ2

(µC − 0.5σ′CσC) + 0.5

(
γ2 −

1

ψ2

)
(γ2 − 1)σ′CσC . (12)

The condition for investor 2’s survival is completely analogous, one merely has to switch

the indices ’1’ and ’2’ in (12). This implies that the analogous condition for investor 2 is

not obtained by simply reverting the inequality sign in (12), and the reason for this is that

the third terms on the two sides of the inequality are not mirror images of each other.

For the model with long-run growth risk, the analysis becomes somewhat more

involved. The drift of lnω now depends on the state variable X. Intuitively, it then

matters whether the investor can escape extinction on average when she becomes small.

This implies that one needs to know the joint distribution of ω and X. To get the intuition,

consider the case where the drift of lnω depends on X (which is true in our model). If ω

goes to zero only for those values of X which come with a negative drift, then investor 1’s

consumption share will decrease over time. If on the other hand very small consumption

shares for investor 1 tend to occur for those values of X which imply a positive drift for

ω, investor 1 will see her consumption share increase again when she is small.6

3.4 Economic Analysis of Survival

The fundamental economic quantities of interest are the individuals’ consumption and

investment decisions. This is why we will now analyze the drift of lnω from an economic

point of view. Even if there is a closed-form condition for survival only in the case of i.i.d.

consumption growth, the dynamics of lnω will obviously also matter for the long-run

evolution of consumption shares when expected consumption growth is stochastic.

The survival condition (11) is a statement about the drift and volatility of the

6We will show below that the drift of the log consumption share and the state variable X indeed

exhibit non-zero correlation. See Tables 9 and 10.
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consumption share ω. The dynamics of individual consumption in Equations (2) and (3)

imply
µω(ω, x)

ω
− 1

2

σ2
ω(ω, x)

ω2
=

(
µC1 −

1

2
σ′C1

σC1

)
−
(
µC −

1

2
σ′CσC

)
. (13)

In the limit as ω → 0 the economy basically only consists of the large investor 2, so that

C = C2, and the above equation becomes

lim
ω→0

(
µω(ω, x)

ω
− 1

2

σ2
ω(ω, x)

ω2

)
=

(
µC1 −

1

2
σ′C1

σC1

)
−
(
µC2 −

1

2
σ′C2

σC2

)
.

This means that, for investor 1 to have a chance to survive, the average drift of her

individual log consumption must be greater than that of her counterpart.

How is survival related to the dynamics of individual wealth? With Vi ≡ Cie
vi

(i = 1, 2) denoting investor i’s wealth, its drift and volatility follow from an application

of Ito’s lemma as

µVi = µCi + µvi +
1

2
σ′viσvi + σ′viσCi

σVi = σCi + σvi ,

and the same is true for aggregate wealth V ≡ Cev. Using these equations together with

(13) yields

µω(ω, x)

ω
− 1

2

σ2
ω(ω, x)

ω2
=

(
µV1 −

1

2
σ′V1σV1 − µv1

)
−
(
µV −

1

2
σ′V σV − µv

)
.

Given that µVi + e−vi = r + σ′Viλ, i.e., the expected return on individual wealth plus

the current individual consumption-wealth ratio equals the risk-free rate plus the risk

premium, we can further deduce that

µω(ω, x)

ω
− 1

2

σ2
ω(ω, x)

ω2
=

(
σ′V1λ− e

−v1 − µv1 −
1

2
σ′V1σV1

)
−
(
σ′V λ− e−v − µv −

1

2
σ′V σV

)
.

For ω → 0 we can replace aggregate quantities in the second term in parentheses by those

for investor 2, so that we ultimately obtain

lim
ω→0

(
µω(ω, x)

ω
− 1

2

σ2
ω(ω, x)

ω2

)
=

(
σ′V1λ− e

−v1 − µv1 −
1

2
σ′V1σV1

)
−
(
σ′V2λ− e

−v2 − µv2 −
1

2
σ′V2σV2

)
. (14)
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Decomposing the right-hand side of Equation (14) gives us the opportunity to identify

the fundamental economic mechanisms behind survival.

First, in the spirit of Borovička (2015), we look at the difference σ′V1λ − σ
′
V2
λ, the

difference in risk premia earned on individual wealth. It contributes to investor 1’s chances

to survive if she is the one holding the portfolio with the higher risk premium. She then

tries to ’speculate her way out of extinction’. This constitutes what Borovička (2015) calls

the ’risk premium channel’.

We assume a preference for early resolution of uncertainty for both investors, i.e.,

γi > ψ−1
i for i = 1, 2. The market prices of risk are then positive for both consumption

risk and long-run growth risk, so that the expected return is the higher the higher the

exposures of current wealth to these two risk factors.

When ω goes to 0, investor 1 is small and, accordingly, investor 2 is large. In Ap-

pendices A.2.1 and A.2.2 we compute the limiting volatilities of consumption and of the

log wealth-consumption ratio. Putting the results together we obtain

lim
ω→0

σV1 =
γ2

γ1

σC +
∂v1

∂x
σX +

1

γ1

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX (15)

lim
ω→0

σV2 = σC +
∂v2

∂x
σX , (16)

where the partial derivatives with respect to x are evaluated in the limit as ω → 0.

We can now analyze the exposures to the risk factors in the model one by one. It

immediately follows that investor 1 has a higher exposure to consumption risk and thus

earns the higher premium on this factor if she is less risk averse, i.e., if γ1 < γ2.

For X-risk the picture is not so clear. We start our analysis by looking at the last

term on the right-hand side of (15), which is not present in (16). This term corresponds to

the exposure of investor 1’s consumption to X-risk. It is obvious that the corresponding

exposure for investor 2 (who is large) must be zero, since her consumption basically

equals aggregate consumption, and so do the associated risks. If we want to know whether

investor 1’s consumption exposure to X is higher than investor 2’s, the answer depends on
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whether the term in square brackets is positive or negative. It is impossible to determine

its sign analytically, but we can rely on an approximation described in Appendix A.3.2,

yielding

lim
ω→0

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
≈

γ2 − 1
ψ2

e−v2 + κx
−

γ1 − 1
ψ1

e−v1 + κx

ψ1

ψ2

≈ 1

ψ2

· γ2ψ2 − γ1ψ1

e−v̄ + κx
,

where v̄ is the log wealth-consumption ratio assumed to be common to the two investors

in the approximation, i.e., v̄ ≈ v1(0) ≈ v2(0).

Based on this approximation the exposure of the small investor’s consumption to X

is positive, if and only if γ1ψ1 < γ2ψ2. This will be true, e.g., when investor 1 has CRRA

preferences (implying that γ1ψ1 = 1) and investor 2 has a preference for early resolution

of uncertainty, implying γ2 > ψ−1
2 and thus γ2ψ2 > 1. To get the intuition, note that

the premium for X-risk is set by the large investor 2 and increases in her preference for

early resolution of uncertainty. The small investor 1 then takes a long position in X-risk

if that premium is attractive to her, i.e., if she has a less pronounced preference for early

resolution of uncertainty.

It now remains to look at the respective second terms on the right-hand sides of

Equations (15) and (16). They represent the response of the individual wealth-consumption

ratios to changes in X. Appendix A.3.1 provides approximate expressions for the partial

derivatives of the log wealth-consumption ratios:

lim
ω→0

∂v1

∂x
≈

1− 1
ψ1

e−v1 + κx
· ψ1

ψ2

lim
ω→0

∂v2

∂x
≈

1− 1
ψ2

e−v2 + κx
.

For v1(0) ≈ v2(0) ≈ v̄ investor 1’s exposure will be greater than investor 2’s if ψ1 > ψ2.

Collecting the above results we are now in a position to make a statement about the

difference between the two investors in terms of the risk premia earned on their respective
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individual wealth. We find that

lim
ω→0

(σV1 − σV2)′λ ≈

[(
γ2

γ1

− 1

)
σC +

γ2
γ1
− 1

e−v̄ + κ
σX

]′
λ, (17)

which is positive for γ1 < γ2. So it is ultimately the less risk-averse investor who earns

the higher risk premium on her wealth when she is small. Since a higher risk premium

is associated with more aggressive investment behavior, this effect can be described as

’speculating one’s way out of extinction.’

Analogously to Borovička (2015) there is also a phenomenon like ’saving one’s way

out of extinction’. To see how the mechanism works here, consider again Equation (14),

this time the term (e−v2 − e−v1) + (µv2 −µv1). If this expression is positive then investor 1

either consumes less out of her wealth than investor 2 (her consumption-to-wealth ratio

e−v1 is smaller than that of investor 2) or postpones consumption more than investor 2

(hier wealth-consumption ratio grows more slowly on average, i.e., she will consume more

out of her wealth than investor 2 in the future, but not now), or both. Both things imply

that investor 1 is more willing to save than investor 2, and according to Equation (14)

this improves her chances to survive by saving her way out of extinction.

We now link the investor 1’s higher willingness to save to differences in preferences

between investors. Substituting for e−vi (i = 1, 2) using Equation (6) we can see that

(e−v2 − e−v1) + (µv2 − µv1)

= β2 − β1

+

(
1− 1

ψ1

)(
µC1 −

1

2
γ1σ

′
C1
σC1

)
−
(

1− 1

ψ2

)(
µC2 −

1

2
γ2σ

′
C2
σC2

)
+

1

2
θ1σ

′
v1
σv1 −

1

2
θ2σ

′
v2
σv2

+ (1− γ1)σ′C1
σv1 − (1− γ2)σ′C2

σv2 .

Looking at the first two lines on the right-hand side we see that investor 1’s propensity

to save and thus her prospects of survival first of all improve when she has the lower

subjective rate of time preference, i.e., when she is more patient and thus more willing
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to postpone consumption. Second, ignoring differences in the drifts and volatilities of

personal consumption, investor 1 also benefits from a higher EIS, i.e., when she is ready

to accept a ’less flat’ consumption path. In a growing economy she will then be ready to

have a higher growth rate in her personal consumption, which implies lower consumption

and thus higher savings today. The remaining two lines are related to the conditional

variances of the individual wealth-consumption ratios and to the covariances of the vi

with individual consumption.

Given these two fundamental economic mechanisms behind survival we now analyze

for which preference combinations both investors can survive. If one of the investors has

a ’double advantage’, i.e., exhibits both a lower risk aversion and a higher EIS than her

counterpart, then this investor will dominate in the long run. If on the other hand each

investor has an advantage in one of the two preference dimensions, they may both survive

in the long run.

Joint survival of both investors is thus possible, if the investor with the lower risk

aversion (who will try to speculate her way out of extinction) also has the lower EIS

(so that it is the other investor, who will try to save her way out of extinction). For

joint survival to actually occur, however, the two advantages must be somehow balanced.

When the less risk-averse investor is close to extinction she will hold the riskier portfolio,

but she will also save less due to her lower EIS. In case she saves too little, however,

she will nevertheless not survive. An exactly analogous logic holds for the opposite case

when the small investor has the higher EIS and thus saves more, but may invest into too

conservative a portfolio.

This possibility that either investor can have an advantage with respect to one of the

two preference characteristics is the key difference to the CRRA case. Since there γ has

to equal 1/ψ, having the lower risk aversion necessarily means to have the higher EIS, so

that there are no offsetting effects of one preference parameter with respect to the other.

This is turn means that survival becomes the ’knife-edge’ result mentioned above, which

is only possible if two symmetric inequalities are satisfied at the same time, implying an
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equality.7

This becomes directly obvious when we look at the survival condition (12) in the case

without a state variable. As noted above the two sides of the inequality are not exactly

symmetric, but in the CRRA case with γi = ψ−1
i for i = 1, 2 the third term causing

the initial asymmetry vanishes, so that the condition for investor 1’s survival now reads

β1 + γ1 (µC − 0.5σ′CσC) ≤ β2 + γ2 (µC − 0.5σ′CσC). For investor 2, swapping the indices

is now equivalent to reverting the inequality sign, so that the only situation in which

both investors can survive is when β1 + γ1 (µC − 0.5σ′CσC) = β2 + γ2 (µC − 0.5σ′CσC), the

knife-edge case mentioned above.

4 Quantitative Analysis

4.1 I.i.d. Consumption Growth

The setup without a state variable mainly serves as a benchmark against which we will

later compare the results for the case with long-run risk. The restricted model is of course

easier to solve, and it substantially helps to develop intuition about the economic effects in

a heterogeneous agent economy. For all the numerical analyses below we assume µC = 0.02,

σC = 0.0252, β1 = β2 = 0.1, γ1 = 4, and γ2 = 10. The analysis below focuses on the

implications of different combinations of the two EIS parameters, ψ1 and ψ2, which we

vary between 0.4 and 1.6 each. To get a feel for the impact of heterogeneity with repsct

to risk aversion, we compare the above base case to a scenario with γ1 = 6 and γ2 = 8.

The weak inequality condition for investor 1’s survival in the model without long-run

growth risk is shown above in (12), which states a relation between all the preference-

related parameters of the model and the consumption dynamics. Figure 1 focusses on the

(ψ1, ψ2)-combinations and shows the regions where investor 1, investor 2, or both survive.8

7Of course, the individual rates of time preference are an additional degree of freedom in the preference

specification of the two investors, but we only focus on risk aversion and the EIS.
8In case the small investor’s wealth-consumption ratio turned out to be infinite we proceed in the
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In terms of investor survival the graphs show that it is of first order importance in this

setup to have the higher EIS. We see that the less risk averse investor 1 ’can afford’ to have

a lower EIS than investor 2 and still survive (as long as her EIS is not too low), indicated

by the shaded area above the 45 degree line in the left graph in Figure 1. Investor 2 on the

other hand needs a somewhat larger EIS to survive than her less risk-averse counterpart,

as shown in the middle graph in Figure 1.

We now want to trace the analytical survival condition back to the underlying eco-

nomics, i.e., back to the consumption and savings decisions by the small investor. Investor

1 is less risk-averse and will therefore try to speculate her way out of extinction, when she

is small. Looking at the risk exposure of the investors’ portfolios (and assuming a bounded

wealth-consumption ratio for the small investor) we see that the volatility of the small

investor 1’s individual consumption (and thus also the consumption risk exposure of her

wealth in the case without a state variable) is given by σC1(0) = γ2
γ1
σC , as compared to

σC for the large investor 2 (see Appendix A.2.1). The small investor thus, unsurprisingly,

takes on additional consumption risk since she is less risk averse, i.e., since γ1 < γ2. In

this case the market price of consumption risk γ2σC set by the large investor is attractive

to her and induces her to take additional risk. She thus earns a higher expected return

on her wealth than the large, more risk-averse investor.

By the same logic the small investor 2 will hold a less risky portfolio than her large

counterpart, which can also be seen from a comparison of the two investors’ consumption

volatilities, since σC2(1) = γ1
γ2
σC < σC and σC1(1) = σC .

The second element of long-run survival is the investors’ savings behavior. To see

whether the small investor can save her way out of extinction we therefore need to compare

the investors’ wealth-consumption ratios, as discussed above. Solving the partial differ-

analysis of investor 1’s survival as follows: Assume Condition (12) has indicated survival for a given

combination of ψ1 and ψ2. Then we also label any other combination with the same ψ2 and a higher ψ1

as ’survival’. Given the economic mechanisms described in Section 3 this seems a sensible approach. In

the analysis of investor 2’s survival we proceeded in a completely analogous fashion. This approach is

feasible, whenever the left-hand side of (12) is decreasing in ψ1. This is true for our parametrization.
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ential equation in Appendix A.2.4 for the wealth-consumption ratio v2(0) of the large

investor 2 in the case without a state variable yields

ev2(0) =
1

β2 −
(

1− 1
ψ2

) (
µC − 1

2
γ2σ2

C

) .
Not surprisingly, this is also the solution in a homogeneous economy with only this investor

type. Given our basic parameters v2(0) (and also v1(1)) is indeed bounded for all the

combinations of preference parameters we consider.

The wealth-consumption ratio of the small investor 1 is (see Appendix A.2.4)

ev1(0) =
1

ψ1β1 + (1− ψ1)β2 −
(

1− 1
ψ1

)
ψ1

ψ2

(
µC − 0.5γ2σ2

C

)
− 1

2 (ψ1 − 1) γ2

(
γ2
γ1
− 1
)
σ2
C

, (18)

given that the denominator is positive. It will be negative when investor 1 is much more

patient, or exhibits a much lower risk aversion, or has a much higher EIS. In these cases

the investment opportunities set by the large investor 2 are overly attractive to the small

investor, and her wealth-consumption ratio becomes infinite.9 Again the analysis for the

case ω → 1 is completely analogous.

The shaded regions in Figure 2 represent the combinations of ψ1 and ψ2 for which

the wealth-consumption ratio of the small investor is indeed bounded. We see that an

unbounded wealth-consumption ratio for the small investor occurs when her EIS is greater

than one and also sufficiently larger than the EIS of her counterpart. Note that the region

of bounded wealth-consumption ratios is slightly smaller for the less risk-averse investor

(here investor 1).

In terms of comparing the two individual wealth-consumption ratios the shaded

regions in Figure 3 show the combinations of parameters for which the small investor’s

wealth-consumption ratio is greater than the large investor’s, i.e., they indicate the cases

when the smaller investor indeed saves more than her counterpart. In the left graph the less

risk-averse investor 1 is small, in the right picture it is investor 2. One can immediately see

that differences in the investors’ EIS explain almost everything here. Basically whenever

9Note that her wealth still remains finite, though.
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the small investor has the higher EIS she also has the higher wealth-consumption ratio

and thus saves more. The (albeit small) differences between the two graphs in Figure 3

are caused by differences in risk aversion, with the shaded region being slightly larger for

the less risk averse investor. Compared to the impact of the EIS, however, these effects of

differences in risk aversion appear rather small.

Comparing Figure 3 to Figure 1 highlights the relation between survival and savings

behavior. For the less risk-averse investor, a comparison of the left graphs in the two

figures shows that the area where the small investor saves more is a strict subset of the

region where she can survive. The former is the region where the investor both saves

and speculates her way out of extinction. The difference between the two shaded areas

thus represents the cases where the investor only speculates her way out of extinction

by taking a larger position in consumption risk. Here the disadvantage of saving less can

still be offset by the higher risk premium earned on wealth. Analogously when the small

investor is more risk averse the area for which she can survive is slightly smaller than the

region where she has the higher savings. To offset her disadvantage from earning a lower

expected rate of return on her wealth, her savings rate has to be larger than the one of

the other investor by some finite amount.

Most importantly we find a significant overlap of the shaded areas in the left and

middle graph in Figure 1 (shown separately in the right graph). This implies that there are

indeed combinations of ψ1 and ψ2 for which both investors will survive. A similar result

has been shown by Borovička (2015) for heterogeneous beliefs and i.i.d. consumption.

Furthermore we extend the analysis in Gârleanu and Panageas (2014) (who rely on an

overlapping generations model and thus on ’survival by construction’) by showing that

survival of both investors can also arise endogenously.
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4.2 Long-Run Growth Risk

We now analyze the model including the long-run growth rate X as a state variable. For

the numerical analyses below we assume µC = 0.02, σC = 0.0252, β1 = β2 = 0.10, γ1 = 4,

and γ2 = 10. Furthermore, we set κx = 0.3 and σx = 0.0114. As in the case without a

state variable, we then vary ψ1 and ψ2. To study the impact of heterogeneity with respect

to risk aversion, we compare the base case also to a specification with γ1 = 6 and γ2 = 8.

Since we are in an economy with EZ preferences, X-risk will be priced. This positive

risk premium (in case of a preference for early resolution of uncertainty) will have an

impact on the investors’ portfolio and savings decisions, and thus also on the long-run

evolution of the investors’ respective consumption shares.

In terms of solving the model there are no longer closed-form solutions for the

coefficients of the stochastic processes for ω, and thus also no longer a survival condition

which can be represented in closed form. We will instead resort to Monte Carlo simulations,

where we track the evolution of consumption shares over a horizon of T = 500 years along

1,000 paths with monthly time steps. The initial value of the state variable X is set equal

to its long-run mean of zero.

The idea behind our analysis is the following: We look at the investors’ average

consumption shares at the very distant future point in time T = 500, starting from a

point where one investor is small (and, consequently, the other one is large). For investor

1 being initially small is represented by initial consumption share of ω0 = 0.1, and for

investor 2 it is in a symmetric fashion given by an initial share of 1−ω0 = 0.1. If then for

a certain combination of ψ1 and ψ2 both investors’ average consumption shares increase

from a point where they are small initially, we take this as evidence that both investors

retain a non-negligible (average) consumption share over the long run. If on the other

hand one initially small investor’s average consumption share grows up to T = 500, while

for the other one it decreases, this represents a case where we cannot make a strong

statement concerning the evolution of consumption shares in the limit. It might be the
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case that the investors’ consumption shares converge towards a distribution where one

investor retains, e.g., 5% and the other one 95% of aggregate consumption, but it might

also be that one investor actually vanishes.

Table 1 shows the results of this analysis for ω0 = 0.1 (upper panel) and ω0 = 0.9

(lower panel) under the base case parametrization with γ1 = 4 and γ2 = 10.

The numbers in the table make sense intuitively. Across a given row in the table

investor 1’s average consumption share is monotonically increasing in ψ1, since investor 1

is in a better and better position relative to investor 2 with respect to the savings channel.

Analogously, in a given column investor 1’s average share is decreasing in ψ2.

The question of key interest is now whether for a given combination of ψ1 and ψ2

ω500 is greater than 0.1 in the upper and less than 0.9 in the lower panel of the table, since

these scenarios are those that we identify with increasing average consumption shares for

initially small investors.

An example is the case ψ1 = 0.4 and ψ2 = 0.5. Starting from a level of ω0 = 0.1,

investor 1’s average consumption share has increased to around 0.37 after 500 years, as

shown in the upper panel of the table. When her initial share is 0.9 on the other hand,

it reduces on average to about 0.77 at T = 500. This in turn implies that investor 2’s

share has gone up from 0.1 to around 0.23 on average. So both investors exhibit increasing

average consumption shares when small initially. These cases are marked by the entry ’1/2’

in Table 2, whereas ’1’ (’2’) indicate the cases when investor 1’s (2’s) average consumption

share is increasing from an initially low level.

Looking at the overall location of the ’1/2’ entries in Table 2, we find that not

surprisingly they are found below the main diagonal, i.e., in cases when ψ2 > ψ1. The

reason for this is that investor 1 has the advantage with respect to risk aversion, so that

she will tend to hold the more aggressive portfolio, which lets her earn a higher risk

premium. This has to be compensated from the perspective of investor 2 by a higher EIS,

so that she can save more to make her consumption share grow on average.
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The numbers in the table also give an idea of how much the relative advantage with

respect to the EIS must be to not just compensate but actually over-compensate the

disadvantage from a higher risk aversion. With our parametrization of the consumption

and growth rate processes, investor 2 has a chance to take over the economy only for the

lowest value of ψ1 = 0.4 considered in our analysis, and there also only with a markedly

higher ψ2 (in our case for ψ2 ≥ 1.1).10

We vary the base case with respect to two main features. One is the difference

between the two investors in their degrees of risk aversion. Here we consider γ1 = 6 and

γ2 = 8 as an alternative scenario, i.e., a case where the two investors are more similar

than in the base case. The second dimension of variation is consumption dynamics. We

have already analyzed the case of i.i.d. consumption growth above, but to asses how much

it matters, if there is actually long-run risk, we perform our simulation analyses also for

that setting.

With respect to differences in risk aversion, a comparison of Tables 2 and 4 shows

that with a smaller difference between γ1 and γ2, differences in the EIS become more

relevant with respect to the long-run evolution of average consumption shares. The ’1/2’-

region is considerably smaller than in the base case. Even small advantages with respect

to the EIS can now (but again need not) lead to the respective investor being the only

one with an increasing average consumption share in the long run. The intuition behind

these results is that starting from ω0 = 0.1 investor 1 now has a smaller advantage with

respect to risk aversion than in the base case. Consequently, if it grows at all, her average

consumption share will grow at a lower rate, or, in the opposite case, will decrease faster.

Furthermore, there are many combinations of ψ1 and ψ2 for which ω no longer grows but

falls on average. For investor 2 we can exactly mirror this argument, i.e., her disadvantage

with respect to γ is now less pronounced, so that, if her average consumption share grows,

it will grow faster, or, in the opposite case, decrease more slowly.

10Again, we cannot rule out the case that the investors’ average consumption shares converge to values

like 0.05 for investor 1 and 0.95 for investor 2.
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When we then look at the impact of the presence of long-run growth risk as compared

to the i.i.d. case, we see that the 1/2-region is now larger than without a state variable.

Comparing Tables 2 and 6 we find that it only takes a much smaller advantage with respect

to EIS for investor 2 to become the only one with an increasing average consumption share.

This is due to that fact that now, without long-run risk, there is a smaller risk premium

to be picked up, so that the advantage with respect to risk aversion is less relevant than

in a situation with X-risk present. In a sense this result is analogous to the one obtained

before for a smaller difference between γ1 and γ2. The fundamental issue is that whenever

risk premia become smaller or less relevant, be it due to more similar levels of risk aversion

or smaller risk premia in general, the region of ψ-combinations with increasing average

consumption shares for both investors becomes smaller.

Finally, we take a look at the correlation between consumption shares and the evolu-

tion of the expected growth rate X. As discussed above, there is no closed-form condition

for survival in the case with a state variable, and one of the main reasons for that is that

ω and X are potentially correlated.

Tables 9 and 10 show estimates of the correlation between ω500 and X500, i.e.,

between investor 1’s consumption share and the long-run growth rate, both measured

at T = 500. The evidence is clear. In those cases where investor 1 enjoys the double

advantage of lower risk aversion and higher EIS, the estimated correlations are indeed

small in absolute value (the fact that the sign sometimes switches is likely due to simulation

error). This makes sense, since in these cases there is no doubt that investor 1 will dominate

in the long run, and her consumption share will be large basically no matter how X has

evolved. In all other cases, where either investor 2 is the only one with an increasing

average consumption share or where both investors grow on average when they are small

initially, the correlations are positive and substantially away from zero.
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5 Conclusion

In this paper we have analyzed an economy with two heterogeneous EZ investors and

stochastic long-run growth risk. The focus of our analysis was on the conditions under

which both investors can survive in the long run (or at least exhibit increasing average

consumption shares over the long term when they are small initially). Since many analyses

in asset pricing models are performed for the steady state of the economy, the long-run

presence of both investors is crucial for a meaningful analysis of a heterogeneous-agent

economy.

For the analysis of long-run survival the evolution of the small investor’s consump-

tion share near zero is crucial. We have identified two channels via which the small investor

can actually avoid extinction. One is to ’save his way out’ (as shown by Borovička (2015))

by having a high enough wealth-consumption ratio relative to the large investor. The other

is to ’speculate his way out of extinction’ by holding a riskier portfolio with a higher ex-

pected excess return. The first strategy is followed by the investor with the higher EIS,

while the second is adopted by the investor with the lower risk aversion.

For the case of i.i.d. consumption we can solve for the survival condition in closed

form. Our main interest is in the impact of the combinations of preference parameters,

and we find that, in contrast to the CRRA case, EZ preferences create an area (not jsut a

line) of combinations of preference parameters for which both investors can survive in the

long run. This result complements the findings of Borovička (2015), who studies a model

where agents have identical EZ preferences, but differ in their beliefs.

We extend his analysis further by studying the long-run evolution of (average) con-

sumption shares also for the case when consumption growth is not i.i.d., i.e., when the

expected growth rate is stochastic. Here the main finding is that the area of preference

parameter combinations for which both investors retain non-negligible average consump-

tion shares in the long run is even larger than in the i.i.d. case. The reason is that the

survival becomes ’easier’ (compared to the i.i.d framework) for the small investor when she

28



exhibits a low degree of risk aversion. She will then be willing to hold a riskier portfolio,

and the additional risk premium on the long-run growth factor contributes significantly

to the overall expected excess return on her wealth. The savings channel on the other

hand is hardly affected by the introduction of a state variable.
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A Appendix

A.1 Assumptions

Our key assumptions are that when an investor becomes large the partial derivative
of her wealth-consumption ratio with respect to ω remains finite, and that when she
becomes small this partial derivative multiplied by her consumption share goes to zero,
i.e., limω→1

∂v1
∂ω

< ∞ and limω→0
∂v1
∂ω
ω = 0 (see Borovička (2015)). Furthermore, any

derivatives of the wealth-consumption ratios with respect to x are assumed to be finite.
Throughout this appendix, we consider the case with a state variable. The respective
formulas for the economy without a state variable follow as special cases, but are not
given explicitly.

A.2 Properties of Consumption and Wealth-Consumption Ra-
tios

A.2.1 Volatility of Consumption

The volatility of investor 1’s consumption is given by σC1 = σC + 1
ω
σω. The general

expression for the volatility of the consumption share is given in Equation (9). For ω → 0
the limiting value of the normalized volatility is

lim
ω→0

1

ω
σω =

(
γ2
γ1
− 1
)
σC + 1

γ1

[
(1− θ2)∂v2

∂x
− (1− θ1)∂v1

∂x

]
σX

1 + 1−θ1
γ1

lim
ω→0

∂v1
∂ω
ω

.

Under the assumption that lim
ω→0

∂v1
∂ω
ω → 0, this yields

lim
ω→0

1

ω
σω =

(
γ2

γ1

− 1

)
σC +

1

γ1

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX .

From Equation (9) we obtain limω→1
1
ω
σω = 0, implying

lim
ω→1

σC1 = σC

and

lim
ω→0

σC1 =
γ2

γ1

σC +
1

γ1

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX .

A.2.2 Volatility of Wealth-Consumption Ratio

Given v1 ≡ v1(ω, x) the volatility of the log wealth-consumption ratio is

σv1 =
∂v1

∂ω
σω +

∂v1

∂x
σX .
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∂v1
∂ω

remains bounded for ω → 1 by assumption and the volatility of the consumption

share goes to zero (as shown above), so that ∂v1
∂ω
σω also goes to zero. This yields

lim
ω→1

σv1 =
∂v1

∂x
σX .

For the small investor we also obtain

lim
ω→0

σv1 =
∂v1

∂x
σX .

To see this note that
∂v1

∂ω
σω =

(
∂v1

∂ω
ω

)(
1

ω
σω

)
,

where the first term is zero by assumption and the second remains finite as shown above,
so that product goes to zero.

A.2.3 Drift of Wealth-Consumption Ratio

The drift of the log wealth-consumption ratio is

µv1 =
∂v1

∂ω
µω −

∂v1

∂x
κXt + 0.5

∂2v1

∂ω2
σ′ωσω + 0.5

∂2v1

∂x2
σ′XσX +

∂2v1

∂ω∂x
σ′ωσX

=
∂v1

∂ω
ω

1

ω
µω −

∂v1

∂x
κXt

+ 0.5
∂2v1

∂ω2
ω2 1

ω
σ′ω

1

ω
σω + 0.5

∂2v1

∂x2
σ′XσX +

∂2v1

∂ω∂x
ω

1

ω
σ′ωσX .

When investor 1 is large, the normalized drift and volatility of the consumption share
converge to zero. This yields

lim
ω→1

µv1 = −∂v1

∂x
κXt + 0.5

∂2v1

∂x2
σ′XσX .

When investor 1 is small, ∂v1
∂ω
ω and ∂2v1

∂ω2 ω
2 are zero by assumption. The normalized drift

and volatility of the consumption share then converge to some finite number, and we get

lim
ω→0

µv1 = −∂v1

∂x
κXt + 0.5

∂2v1

∂x2
σ′XσX .

So at the boundaries the drift of the log wealth-consumption ratio is independent of the
consumption share ω.
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A.2.4 Partial Differential Equation for Wealth-Consumption Ratio

The partial differential equation for the log wealth-consumption ratio vi is

0 = e−v1 − β1 +

(
1− 1

ψ1

)(
µC1 − 0.5γ1σ

′
C1
σC1

)
+ µv1 + 0.5θ1σ

′
v1
σv1 + (1− γ1)σ′C1

σv1 .

Plugging in the volatility and the drift of the log wealth-consumption ratio for the large
investor from Appendices A.2.2 and A.2.3 we obtain

0 = e−v1 − β1 +

(
1− 1

ψ1

)
(µC +Xt − 0.5γ1σ

′
CσC)

− ∂v1

∂x
κXt + 0.5

∂2v1

∂x2
σ′XσX + 0.5θ1

(
∂v1

∂x

)2

σ′XσX + (1− γ1)σ′C
∂v1

∂x
σX .

This equation coincides with the partial differential equation in an economy with one
investor only, and the dependence on the consumption share vanishes.

For the small investor the partial differential equation becomes

0 = e−v1 − ψ1β1 − (1− ψ1) β2 + (ψ1 − 1)
1

ψ2

(µC +Xt)

+ (ψ1 − 1)

{
− 0.5γ2

(
1 +

1

ψ2

)
σ′CσC − 0.5(1− θ2)σ′v2σv2 − (1− θ2)σ′Cσv2

}

+ 0.5γ1 (ψ1 − 1)

{
γ2

γ1

σC +
1

γ1γ2

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX

}′
{
γ2

γ1

σC +
1

γ1γ2

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX

}
+ 0.5 [(ψ1 − 1) (1− θ1) + θ1]

(
∂v1

∂x

)2

σ′XσX

+ γ1 (ψ1 − 1)

{
γ2

γ1

σC +
1

γ1γ2

[
(1− θ2)

∂v2

∂x
− (1− θ1)

∂v1

∂x

]
σX

}′
∂v1

∂x
σX

− ∂v1

∂x
κXt + 0.5

∂2v1

∂x2
σ′XσX .

The dependence on the consumption share has vanished. Note that the function v2 and its
partial derivatives have already been solved for and are known when it comes to finding
lim
ω→0

v1(ω, x). For the latter function, we are thus left with an ordinary differential equation

in x.
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A.3 Approximations

A.3.1 Approximating the Derivatives of the Log Wealth-Consumption Ratio

Differentiating both sides of (6) with respect to x and assuming that the volatilities are
independent of x and the second derivative of vi with respect to x is zero one obtains

0 ≈ −e−vi ∂vi
∂x

+

(
1− 1

ψi

)
∂µC1

∂x
− ∂vi
∂x

κx

⇒ ∂vi
∂x

≈
1− 1

ψi

e−vi + κx
· ∂µCi
∂x

. (A.1)

We now need to find
∂µCi
∂x

. Taking Equation (2) and plugging in σω and µω from Equa-
tions (9) and (10) yields

µC1 =
ψ1

ψ̄
(µC +Xt)

+
(1− ω)ψ1ψ2

ψ̄

{
β2 −

γ2

2

(
1 +

1

ψ2

)
σ′C2

σC2 −
(1− θ2)

2
σ′v2σv2 − (1− θ2)σ′C2

σv2

− β1 +
γ1

2

(
1 +

1

ψ1

)
σ′C1

σC1 +
(1− θ1)

2
σ′v1σv1 + (1− θ1)σ′C1

σv1

}
.

Differentiating both sides with respect to x and assuming that all volatility terms are
independent of x we get

∂µC1

∂x
≈ ψ1

ψ
.

For the relevant limits this implies

lim
ω→0

∂µC1

∂x
≈ ψ1

ψ2

lim
ω→1

∂µC1

∂x
≈ 1,

since the average ψ̄ is equal to the large investor’s EIS. Plugging this into (A.1) gives

lim
ω→1

∂v1

∂x
≈

1− 1
ψ1

e−v1 + κx
.

and

lim
ω→0

∂v1

∂x
≈

1− 1
ψ1

e−v1 + κx
· ψ1

ψ2

.
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A.3.2 Approximating the Volatility of Individual Consumption

With the limiting approximations for the derivatives of the log wealth-consumption ra-
tio derived above, we can now determine approximate expressions for the volatility of
consumption. When investor 1 is large, it obviously holds that limω→1 σC1 = σC .

For the small investor we obtain

lim
ω→0

σC1 ≈
γ2

γ1

σC +
1

γ1

[
γ2 − 1

ψ2

e−v2 + κx
−

γ1 − 1
ψ1

e−v1 + κx
· ψ1

ψ2

]
σX .

To further simplify this expression we ignore potential differences between v1 and v2 and
set ev1 ≈ ev2 ≈ ev̄, yielding

lim
ω→0

σC1 ≈
γ2

γ1

σC +
1

γ1ψ2

· γ2ψ2 − γ1ψ1

e−v̄(0) + κx
σX .

A.3.3 Approximating the Volatility of Wealth

Equipped with the limiting values for the dependence of the wealth-consumption ratio on
x from Appendix A.3.1, we can now determine approximate expressions for the volatility
of wealth. If investor 1 is large, we obtain

lim
ω→1

σV1 ≈ σC +
1− 1

ψ1

e−v1 + κx
σX .

For the small investor and under the additional assumption that lim
ω→0

∂v1
∂ω
ω → 0, the

limiting value for the volatility of wealth is

lim
ω→0

σV1 ≈
γ2

γ1

σC +
1

γ1

[
γ2 − 1

ψ2

e−v2 + κx
−

γ1 − 1
ψ1

e−v1 + κx
· ψ1

ψ2

]
σX +

1− 1
ψ1

e−v1 + κx

ψ1

ψ2

σX .

To further simplify this term, we ignore any differences in the level of wealth-consumption
ratios and set e−v1 ≈ e−v2 ≈ e−v̄ for ω → 0, which finally gives

lim
ω→0

σV1 ≈
γ2

γ1

σC +

γ2
γ1
− 1

ψ2

e−v̄ + κx
σX .

A.4 Behavior of the Consumption Share at the Boundaries

The long-run survival of the investors depends on the behavior of the consumption share
at the boundaries ω = 0 (where investor 1 is small) and ω = 1 (where investor 2 is small).
The exposition and analysis here closely follows Borovička (2015).

If the left boundary ω = 0 is attracting, investor 2 will take over the whole economy
when investor 1’s consumption becomes small. In the opposite case, investor 1 can survive.
A similar analysis holds for the right boundary. This results in four different cases:
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1. If both boundaries are not attracting, neither investor 1 nor investor 2 will dominate
in the long run, but both investors can survive.

2. If the left boundary ω = 0 is attracting while the right boundary ω = 1 is not,
investor 2 will dominate in the long run.

3. If the left boundary ω = 0 is not attracting while the right boundary ω = 1 is,
investor 1 will dominate in the long run.

4. If both boundaries are attracting, investor 1 and investor 2 will dominate the econ-
omy with a positive probability each.

We present the analysis for the case without a state variable. Following Karlin and Taylor
(1981) and Borovička (2015) the condition for the left boundary not to be attracting is
that

lim
ω→0

µ̃ω(ω)− 1

2
σ̃2
ω(ω) > 0, (A.2)

where

µ̃ω(ω) =
µω(ω)

ω(1− ω)

σ̃ω(ω) =
σω(ω)

ω(1− ω)
,

and µω(ω) and σω(ω) are the drift and the volatility of the consumption share ω, i.e.

dω = µω(ω)dt+ σω(ω)′dW.

Intuitively, condition (A.2) says that the drift of the log of ω is positive in the limit as
ω → 0, or, equivalently, lnω → −∞. From Ito

d lnω =

(
1

ω
µω(ω)− 1

2ω2
σ2
ω(ω)

)
dt+

1

ω
σω(ω)′dW,

In the limit as ω → 0 (and thus (1−ω)→ 1) 1
ω
µω(ω) is just equal to µ̃ω(ω). An analogous

statement holds for 1
ω
σω(ω) and σ̃ω(ω). A positive drift for lnω at the left boundary is

thus equivalent to condition (A.2). The division by 1 − ω in the definition of µ̃ω(ω) and
σ̃ω(ω) is done for reasons of symmetry between the cases ω → 0 and ω → 1, since the
dynamics of ln(1 − ω) have the same structure as those for lnω, with 1 − ω replacing ω
everywhere.

For the case of EZ preferences in the model without a state variable, the left bound-
ary is not attracting when Condition (12) holds. This condition is obtained by substituting
for µ̃ω(ω) and σ̃ω(ω) in (A.2), using the expressions for the drift and the volatility of ω
derived above (where all terms related to x drop out).
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Figure 1: Long-run survival (i.i.d. consumption growth)

The figure shows the combinations of the intertemporal elasticity of substitution of in-
vestor 1 (x-axis) and investor 2 (y-axis) for which investor 1 (left graph), investor 2 (middle
graph), and both investors (right graph) survive. The parameters of relative risk aversion
are γ1 = 4 and γ2 = 10, both investors have a time preference rate of β = 0.1. The drift
and volatility of consumption are µc = 0.02 and σc = 0.0252.
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Figure 2: Bounded wealth-consumption ratio of small investor (i.i.d. consumption growth)

The figure shows the combinations of the intertemporal elasticity of substitution of in-
vestor 1 (x-axis) and investor 2 (y-axis) for which the wealth-consumption ratio of the
small investor is bounded. The parameters of relative risk aversion are γ1 = 4 and γ2 = 10,
both investors have a time preference rate of β = 0.1. The drift and volatility of consump-
tion are µc = 0.02 and σc = 0.0252.
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Figure 3: Small investor saves more (i.i.d. consumption growth)

The figure shows the combinations of the EIS of investor 1 (x-axis) and investor 2 (y-
axis) for which the wealth-consumption ratio of the small investor exceeds the wealth-
consumption ratio of the large investor, i.e. for which the small investor saves more. The
parameters of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time
preference rate of β = 0.1. The drift and volatility of consumption are µc = 0.02 and
σc = 0.0252.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.58127 0.83606 0.93768 0.97295 0.98660 0.99204 0.99661 0.99746 0.99807 0.99845 0.99872 0.99892
0.50 0.36867 0.62136 0.82076 0.92427 0.96232 0.98027 0.99260 0.99493 0.99631 0.99721 0.99778 0.99824
0.60 0.25327 0.44290 0.65403 0.81992 0.91075 0.95376 0.98416 0.98984 0.99300 0.99491 0.99617 0.99710
0.70 0.18685 0.32775 0.51407 0.69407 0.82767 0.90658 0.96828 0.98055 0.98752 0.99114 0.99356 0.99504
0.80 0.15190 0.26243 0.40112 0.56272 0.71932 0.83426 0.94393 0.96395 0.97832 0.98465 0.98923 0.99212
0.90 0.12925 0.21925 0.32751 0.46419 0.60813 0.74286 0.90380 0.94069 0.96172 0.97485 0.98285 0.98743
1.10 0.09979 0.16269 0.24064 0.33869 0.44692 0.57378 0.78545 0.86085 0.90868 0.93937 0.96028 0.97127
1.20 0.09245 0.14254 0.20999 0.29569 0.39243 0.50168 0.71670 0.80845 0.86668 0.91257 0.93983 0.95798
1.30 0.08442 0.13138 0.19973 0.26846 0.35245 0.45346 0.65719 0.74498 0.81846 0.87729 0.91383 0.94002
1.40 0.07523 0.12111 0.17745 0.24396 0.31751 0.40738 0.60506 0.68828 0.77297 0.83640 0.88424 0.92092
1.50 0.07160 0.11374 0.16416 0.22616 0.29468 0.37429 0.54410 0.63432 0.72051 0.79157 0.84835 0.89489
1.60 0.06818 0.10846 0.15190 0.21176 0.27330 0.34025 0.50431 0.59146 0.66986 0.74907 0.81230 0.86353

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.95393 0.99126 0.99714 0.99879 0.99937 0.99961 0.99981 0.99985 0.99988 0.99990 0.99991 0.99993
0.50 0.77278 0.95776 0.98929 0.99628 0.99823 0.99906 0.99961 0.99972 0.99978 0.99983 0.99986 0.99989
0.60 0.50485 0.83744 0.96123 0.98850 0.99525 0.99773 0.99921 0.99947 0.99963 0.99972 0.99978 0.99983
0.70 0.34339 0.64051 0.88261 0.96532 0.98764 0.99465 0.99838 0.99899 0.99933 0.99951 0.99964 0.99973
0.80 0.26361 0.45955 0.72763 0.90850 0.96844 0.98741 0.99677 0.99815 0.99879 0.99917 0.99941 0.99957
0.90 0.21547 0.35096 0.57131 0.80151 0.92471 0.97069 0.99363 0.99652 0.99783 0.99863 0.99903 0.99929
1.10 0.16261 0.24826 0.36945 0.54351 0.73721 0.87849 0.97618 0.98787 0.99317 0.99599 0.99739 0.99829
1.20 0.14584 0.21925 0.31483 0.45472 0.62633 0.79279 0.95617 0.97851 0.98832 0.99332 0.99594 0.99734
1.30 0.13057 0.19919 0.27833 0.38903 0.53339 0.69867 0.91870 0.96187 0.98047 0.98932 0.99364 0.99586
1.40 0.12263 0.18320 0.24948 0.34677 0.45890 0.60829 0.86785 0.93332 0.96747 0.98192 0.98977 0.99358
1.50 0.11767 0.16789 0.23184 0.31300 0.40777 0.52749 0.80287 0.89687 0.94540 0.97096 0.98373 0.99024
1.60 0.11158 0.15281 0.21532 0.28285 0.36733 0.47679 0.73365 0.84066 0.91433 0.95393 0.97404 0.98451

Table 1: Long-term average consumption share of investor 1 (T = 500, γ1 = 4, γ2 = 10)

The table gives the average consumption share of investor 1 after 500 years. The calculation is based on a Monte Carlo
simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the state variable x is set
to zero. The parameters of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time preference rate of
β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the long-run growth
rate process X are κx = 0.3 and σx = 0.0114.
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↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 1 1 1 1 1 1 1 1 1 1 1 1
0.50 1/2 1 1 1 1 1 1 1 1 1 1 1
0.60 1/2 1/2 1 1 1 1 1 1 1 1 1 1
0.70 1/2 1/2 1/2 1 1 1 1 1 1 1 1 1
0.80 1/2 1/2 1/2 1 1 1 1 1 1 1 1 1
0.90 1/2 1/2 1/2 1/2 1 1 1 1 1 1 1 1
1.10 2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1 1
1.20 2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1 1
1.30 2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1 1
1.40 2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1 1
1.50 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1
1.60 2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1 1

Table 2: Long-run increasing average consumption shares (T = 500, γ1 = 4, γ2 = 10)

The entries in the table indicate if the average consumption share of (an initially small) investor 1 and/or (an initially
small) investor 2 have increased until T = 500 relative to the respective starting values of 0.1. ’1’, ’2’, and ’1/2’ indicate
that investor 1’s, 2’s, or both investors’ respective consumption share has increased on average. The calculation is based on
a Monte Carlo simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the state
variable X is set to zero. The parameters of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time
preference rate of β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the
long-run growth rate process X are κx = 0.3 and σx = 0.0114.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.22074 0.61152 0.85254 0.93797 0.96866 0.98203 0.99204 0.99418 0.99548 0.99640 0.99704 0.99751
0.50 0.06250 0.23850 0.55166 0.79474 0.90346 0.94983 0.98139 0.98738 0.99067 0.99303 0.99447 0.99551
0.60 0.02475 0.08723 0.25655 0.52135 0.74881 0.87001 0.95714 0.97232 0.98121 0.98631 0.98984 0.99203
0.70 0.01268 0.03869 0.11002 0.27098 0.50700 0.71078 0.90591 0.94127 0.96218 0.97385 0.98115 0.98603
0.80 0.00759 0.02100 0.05571 0.13561 0.28873 0.49515 0.81075 0.88716 0.92771 0.95170 0.96679 0.97576
0.90 0.00510 0.01290 0.03118 0.07266 0.15923 0.30885 0.66484 0.78843 0.86491 0.91214 0.94150 0.95821
1.10 0.00290 0.00615 0.01335 0.02804 0.05723 0.11283 0.34081 0.49955 0.64740 0.75610 0.83639 0.88727
1.20 0.00233 0.00470 0.00969 0.01922 0.03806 0.07228 0.23119 0.35919 0.50279 0.63960 0.74877 0.82365
1.30 0.00193 0.00377 0.00730 0.01399 0.02649 0.04926 0.15527 0.25569 0.38243 0.51473 0.63964 0.73985
1.40 0.00166 0.00310 0.00570 0.01068 0.01928 0.03539 0.10776 0.18139 0.27781 0.39690 0.52368 0.64317
1.50 0.00145 0.00261 0.00471 0.00837 0.01503 0.02644 0.07814 0.12847 0.20291 0.29933 0.41416 0.53302
1.60 0.00128 0.00226 0.00390 0.00679 0.01194 0.02023 0.05782 0.09300 0.14920 0.22497 0.32419 0.43157

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.94123 0.98770 0.99581 0.99808 0.99889 0.99929 0.99963 0.99971 0.99976 0.99980 0.99983 0.99985
0.50 0.72415 0.94433 0.98488 0.99415 0.99715 0.99836 0.99928 0.99945 0.99958 0.99967 0.99973 0.99977
0.60 0.39646 0.79693 0.94797 0.98250 0.99256 0.99620 0.99856 0.99900 0.99927 0.99944 0.99955 0.99963
0.70 0.20531 0.53965 0.84274 0.95024 0.98129 0.99129 0.99720 0.99815 0.99873 0.99907 0.99927 0.99943
0.80 0.11791 0.32189 0.64641 0.87111 0.95365 0.98016 0.99441 0.99660 0.99777 0.99844 0.99884 0.99911
0.90 0.07534 0.19588 0.43876 0.72398 0.89173 0.95591 0.98930 0.99365 0.99611 0.99734 0.99814 0.99861
1.10 0.03764 0.08897 0.19529 0.38484 0.62805 0.82127 0.96051 0.97905 0.98811 0.99251 0.99507 0.99660
1.20 0.02923 0.06553 0.13827 0.27309 0.47822 0.69808 0.92713 0.96277 0.97933 0.98756 0.99220 0.99473
1.30 0.02347 0.05000 0.10209 0.19911 0.35541 0.55931 0.87207 0.93457 0.96449 0.97950 0.98753 0.99181
1.40 0.01957 0.03939 0.07841 0.14837 0.26610 0.43679 0.79361 0.88922 0.94105 0.96648 0.97996 0.98733
1.50 0.01639 0.03207 0.06156 0.11386 0.20331 0.34022 0.69374 0.82674 0.90547 0.94616 0.96833 0.98033
1.60 0.01437 0.02734 0.05039 0.09025 0.15917 0.26469 0.58499 0.74290 0.85154 0.91582 0.95078 0.97029

Table 3: Long-term average consumption share of investor 1 (T = 500, γ1 = 6, γ2 = 8)

The table gives the average consumption share of investor 1 after 500 years. The calculation is based on a Monte Carlo
simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the state variable x is set to
zero. The parameters of relative risk aversion are γ1 = 6 and γ2 = 8, both investors have a time preference rate of β = 0.10.
The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the long-run growth rate process
X are κx = 0.3 and σx = 0.0114.
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↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 1 1 1 1 1 1 1 1 1 1 1 1
0.50 2 1 1 1 1 1 1 1 1 1 1 1
0.60 2 2 1 1 1 1 1 1 1 1 1 1
0.70 2 2 1/2 1 1 1 1 1 1 1 1 1
0.80 2 2 2 1/2 1 1 1 1 1 1 1 1
0.90 2 2 2 2 1/2 1 1 1 1 1 1 1
1.10 2 2 2 2 2 1/2 1 1 1 1 1 1
1.20 2 2 2 2 2 2 1 1 1 1 1 1
1.30 2 2 2 2 2 2 1/2 1 1 1 1 1
1.40 2 2 2 2 2 2 1/2 1/2 1 1 1 1
1.50 2 2 2 2 2 2 2 1/2 1 1 1 1
1.60 2 2 2 2 2 2 2 2 1/2 1 1 1

Table 4: Long-run increasing average consumption shares (T = 500, γ1 = 6, γ2 = 8)

The entries in the table indicate if the average consumption share of (an initially small) investor 1 and/or (an initially
small) investor 2 have increased until T = 500 relative to the respective starting values of 0.1. ’1’, ’2’, and ’1/2’ indicate
that investor 1’s, 2’s, or both investors’ respective consumption share has increased on average. The calculation is based
on a Monte Carlo simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the
state variable X is set to zero. The parameters of relative risk aversion are γ1 = 6 and γ2 = 8, both investors have a time
preference rate of β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the
long-run growth rate process X are κx = 0.3 and σx = 0.0114.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.33191 0.71874 0.90542 0.96478 0.98310 0.99097 0.99640 0.99740 0.99808 0.99853 0.99880 0.99901
0.50 0.12098 0.36582 0.67192 0.86689 0.94245 0.97237 0.99045 0.99380 0.99574 0.99682 0.99753 0.99808
0.60 0.05306 0.16473 0.38388 0.64691 0.83256 0.91735 0.97589 0.98557 0.99041 0.99336 0.99511 0.99631
0.70 0.02829 0.08290 0.20582 0.40892 0.63384 0.80481 0.94258 0.96674 0.97944 0.98639 0.99054 0.99303
0.80 0.01666 0.04882 0.11908 0.24419 0.43324 0.63115 0.87670 0.93023 0.95703 0.97213 0.98151 0.98692
0.90 0.01151 0.02914 0.07324 0.15211 0.27724 0.45353 0.76647 0.86025 0.91535 0.94626 0.96545 0.97655
1.10 0.00604 0.01409 0.03232 0.06762 0.12948 0.21986 0.48839 0.62753 0.75116 0.83687 0.89235 0.92848
1.20 0.00481 0.01109 0.02485 0.04882 0.09043 0.15954 0.37078 0.50668 0.64039 0.74735 0.82474 0.88357
1.30 0.00376 0.00869 0.01793 0.03694 0.06802 0.11817 0.28591 0.40482 0.52297 0.64502 0.74431 0.82177
1.40 0.00327 0.00694 0.01449 0.02876 0.05352 0.09117 0.22204 0.31636 0.42733 0.54408 0.65283 0.74587
1.50 0.00276 0.00611 0.01180 0.02204 0.04115 0.07033 0.17537 0.26035 0.34815 0.44785 0.55942 0.65986
1.60 0.00243 0.00503 0.00980 0.01809 0.03380 0.05793 0.14219 0.20620 0.28451 0.37260 0.48044 0.57879

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.92943 0.98847 0.99671 0.99866 0.99930 0.99959 0.99981 0.99986 0.99989 0.99991 0.99992 0.99993
0.50 0.63518 0.93387 0.98469 0.99500 0.99786 0.99887 0.99957 0.99970 0.99977 0.99983 0.99987 0.99989
0.60 0.30942 0.72612 0.93553 0.98196 0.99334 0.99695 0.99902 0.99937 0.99955 0.99968 0.99975 0.99980
0.70 0.16158 0.43617 0.78217 0.93721 0.97932 0.99163 0.99781 0.99862 0.99913 0.99939 0.99955 0.99966
0.80 0.09903 0.24786 0.53425 0.81734 0.94129 0.97777 0.99495 0.99715 0.99822 0.99883 0.99919 0.99942
0.90 0.06407 0.15662 0.33746 0.61719 0.84477 0.94227 0.98874 0.99400 0.99652 0.99776 0.99850 0.99899
1.10 0.03500 0.07739 0.15391 0.28924 0.50681 0.73292 0.94652 0.97433 0.98643 0.99220 0.99532 0.99691
1.20 0.02807 0.05845 0.11207 0.21094 0.36920 0.57105 0.89189 0.94821 0.97362 0.98563 0.99177 0.99458
1.30 0.02270 0.04683 0.08727 0.15762 0.26965 0.43271 0.80247 0.90302 0.95023 0.97371 0.98502 0.99075
1.40 0.01959 0.03685 0.07057 0.12499 0.20402 0.32933 0.68636 0.82305 0.91015 0.95274 0.97302 0.98435
1.50 0.01598 0.03082 0.05638 0.09749 0.16393 0.26055 0.55841 0.72414 0.84371 0.91648 0.95419 0.97389
1.60 0.01424 0.02618 0.04833 0.08060 0.12887 0.20651 0.45137 0.60840 0.75915 0.85930 0.92118 0.95635

Table 5: Long-term average consumption share of investor 1 (T = 500, γ1 = 4, γ2 = 10,
i.i.d. consumption growth)

The table gives the average consumption share of investor 1 after 500 years. The calculation is based on a Monte Carlo
simulation with 1,000 runs. The initial consumption share is 10%, 50%, or 90%, consumption growth is i.i.d.. The parameters
of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time preference rate of β = 0.10. The drift and
volatility of consumption are µc = 0.02 and σc = 0.0252.
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↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 1 1 1 1 1 1 1 1 1 1 1 1
0.50 1/2 1 1 1 1 1 1 1 1 1 1 1
0.60 2 1/2 1 1 1 1 1 1 1 1 1 1
0.70 2 2 1/2 1 1 1 1 1 1 1 1 1
0.80 2 2 1/2 1/2 1 1 1 1 1 1 1 1
0.90 2 2 2 1/2 1/2 1 1 1 1 1 1 1
1.10 2 2 2 2 1/2 1/2 1 1 1 1 1 1
1.20 2 2 2 2 2 1/2 1/2 1 1 1 1 1
1.30 2 2 2 2 2 1/2 1/2 1 1 1 1 1
1.40 2 2 2 2 2 2 1/2 1/2 1 1 1 1
1.50 2 2 2 2 2 2 1/2 1/2 1/2 1 1 1
1.60 2 2 2 2 2 2 1/2 1/2 1/2 1/2 1 1

Table 6: Long-run increasing average consumption shares (T = 500, γ1 = 4, γ2 = 10, i.i.d.
consumption growth)

The entries in the table indicate if the average consumption share of (an initially small) investor 1 and/or (an initially
small) investor 2 have increased until T = 500 relative to the respective starting values of 0.1. ’1’, ’2’, and ’1/2’ indicate
that investor 1’s, 2’s, or both investors’ respective consumption share has increased on average. The calculation is based on
a Monte Carlo simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the state
variable X is set to zero. The parameters of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time
preference rate of β = 0.10. Consumption growth is i.i.d. with parameters µc = 0.02 and σc = 0.0252.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.14766 0.56562 0.85689 0.94703 0.97576 0.98695 0.99476 0.99626 0.99721 0.99783 0.99825 0.99855
0.50 0.02924 0.15271 0.48689 0.78225 0.90838 0.95658 0.98575 0.99072 0.99357 0.99525 0.99635 0.99714
0.60 0.00917 0.04070 0.15720 0.43109 0.71192 0.86485 0.96200 0.97717 0.98507 0.98970 0.99250 0.99434
0.70 0.00400 0.01456 0.05152 0.16306 0.39547 0.65265 0.90298 0.94458 0.96605 0.97780 0.98470 0.98890
0.80 0.00214 0.00677 0.02073 0.06145 0.16763 0.36796 0.77449 0.87342 0.92454 0.95245 0.96874 0.97828
0.90 0.00131 0.00364 0.01006 0.02718 0.07207 0.17375 0.56324 0.73379 0.84101 0.90208 0.93775 0.95837
1.10 0.00064 0.00148 0.00346 0.00803 0.01843 0.04154 0.18421 0.32945 0.50615 0.66562 0.78062 0.85622
1.20 0.00049 0.00107 0.00235 0.00503 0.01078 0.02333 0.09939 0.19007 0.32717 0.48628 0.63547 0.75356
1.30 0.00039 0.00081 0.00165 0.00341 0.00693 0.01415 0.05622 0.10901 0.19530 0.32218 0.46985 0.61339
1.40 0.00032 0.00063 0.00124 0.00243 0.00476 0.00922 0.03408 0.06425 0.11744 0.20205 0.32097 0.45841
1.50 0.00027 0.00052 0.00097 0.00180 0.00338 0.00630 0.02181 0.04055 0.07225 0.12488 0.20730 0.31795
1.60 0.00024 0.00043 0.00078 0.00139 0.00254 0.00458 0.01471 0.02628 0.04635 0.07956 0.13430 0.21430

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.92141 0.98635 0.99592 0.99828 0.99912 0.99947 0.99974 0.99981 0.99985 0.99987 0.99990 0.99991
0.50 0.59678 0.92329 0.98195 0.99387 0.99731 0.99855 0.99943 0.99960 0.99970 0.99976 0.99981 0.99984
0.60 0.23948 0.69062 0.92486 0.97831 0.99172 0.99610 0.99872 0.99916 0.99940 0.99956 0.99966 0.99973
0.70 0.09829 0.35753 0.74957 0.92724 0.97504 0.98962 0.99715 0.99821 0.99883 0.99918 0.99939 0.99953
0.80 0.04696 0.16823 0.46556 0.78791 0.92855 0.97269 0.99357 0.99630 0.99767 0.99845 0.99891 0.99920
0.90 0.02633 0.08556 0.25121 0.55292 0.81481 0.93042 0.98577 0.99229 0.99544 0.99707 0.99802 0.99861
1.10 0.01110 0.03031 0.07975 0.19633 0.41795 0.67769 0.93304 0.96733 0.98249 0.98980 0.99372 0.99584
1.20 0.00806 0.02029 0.04996 0.12001 0.26492 0.48816 0.86546 0.93465 0.96613 0.98117 0.98886 0.99279
1.30 0.00609 0.01450 0.03360 0.07683 0.16720 0.32941 0.75288 0.87568 0.93600 0.96546 0.98000 0.98764
1.40 0.00485 0.01066 0.02391 0.05229 0.10946 0.21958 0.60790 0.77777 0.88414 0.93804 0.96465 0.97899
1.50 0.00391 0.00830 0.01749 0.03661 0.07548 0.14946 0.45608 0.65077 0.80015 0.89075 0.93917 0.96453
1.60 0.00328 0.00664 0.01350 0.02692 0.05319 0.10403 0.33214 0.51155 0.68897 0.81772 0.89645 0.94077

Table 7: Long-term average consumption share of investor 1 (T = 500, γ1 = 6, γ2 = 8,
i.i.d. consumption growth)

The table gives the average consumption share of investor 1 after 500 years. The calculation is based on a Monte Carlo
simulation with 1,000 runs. The initial consumption share is 10%, 50%, or 90%, the initial value of the state variable x is
set to zero. The parameters of relative risk aversion are γ1 = 6 and γ2 = 8, both investors have a time preference rate of
β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the long-run growth
rate process X are κx = 0.3 and σx = 0.0114.
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↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 1 1 1 1 1 1 1 1 1 1 1 1
0.50 2 1 1 1 1 1 1 1 1 1 1 1
0.60 2 2 1 1 1 1 1 1 1 1 1 1
0.70 2 2 2 1 1 1 1 1 1 1 1 1
0.80 2 2 2 2 1 1 1 1 1 1 1 1
0.90 2 2 2 2 2 1 1 1 1 1 1 1
1.10 2 2 2 2 2 2 1 1 1 1 1 1
1.20 2 2 2 2 2 2 2 1 1 1 1 1
1.30 2 2 2 2 2 2 2 1/2 1 1 1 1
1.40 2 2 2 2 2 2 2 2 1/2 1 1 1
1.50 2 2 2 2 2 2 2 2 2 1/2 1 1
1.60 2 2 2 2 2 2 2 2 2 2 1/2 1

Table 8: Long-run increasing average consumption shares (T = 500, γ1 = 6, γ2 = 8, i.i.d.
consumption growth)

The entries in the table indicate if the average consumption share of (an initially small) investor 1 and/or (an initially
small) investor 2 have increased until T = 500 relative to the respective starting values of 0.1. ’1’, ’2’, and ’1/2’ indicate
that investor 1’s, 2’s, or both investors’ respective consumption share has increased on average. The calculation is based
on a Monte Carlo simulation with 1,000 runs. The initial consumption share is ω0 ∈ {0.1, 0.9}, the initial value of the
state variable X is set to zero. The parameters of relative risk aversion are γ1 = 6 and γ2 = 8, both investors have a time
preference rate of β = 0.10. Consumption growth is i.i.d. with parameters µc = 0.02 and σc = 0.0252.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.13214 0.04585 0.02477 0.03857 0.02012 0.02099 0.05381 0.02520 0.10023 0.02578 0.07725 0.04056
0.50 0.17932 0.07067 0.08876 0.02562 0.03928 0.03758 0.07237 0.06653 0.03751 0.01895 0.08013 0.02196
0.60 0.20109 0.11323 0.09817 0.04945 0.09162 0.05473 0.05684 0.04172 -0.03577 0.06659 0.05277 0.06894
0.70 0.17410 0.14713 0.16534 0.12518 0.12728 0.00248 0.07291 0.02578 0.06404 0.03312 0.04436 0.04509
0.80 0.16711 0.21404 0.14565 0.17800 0.06753 0.07278 0.03965 0.02585 0.01508 0.10058 -0.02240 0.03497
0.90 0.15874 0.23013 0.12247 0.16973 0.09973 0.08047 0.05815 0.12233 0.10066 0.09165 0.01148 0.05307
1.10 0.17838 0.17289 0.18256 0.16298 0.17362 0.15193 0.11709 0.05427 0.05242 0.06641 0.02941 0.02355
1.20 0.22167 0.17901 0.21760 0.19100 0.19514 0.15268 0.15120 0.09456 0.09348 0.08605 0.10902 0.02872
1.30 0.22820 0.18713 0.23621 0.21211 0.25943 0.14629 0.18494 0.13806 0.11121 0.09217 0.10129 0.10290
1.40 0.17931 0.18697 0.23291 0.27108 0.19758 0.20383 0.16345 0.16262 0.13231 0.10036 0.09437 0.00438
1.50 0.18440 0.24261 0.15081 0.23970 0.22814 0.18205 0.17628 0.16983 0.15471 0.15294 0.05073 0.11491
1.60 0.14672 0.21658 0.19991 0.20623 0.23892 0.26498 0.15711 0.19215 0.14494 0.15072 0.10800 0.08476

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.10197 0.07146 0.06364 0.04036 0.05371 -0.00341 0.07749 -0.00641 -0.00809 0.00748 0.00942 0.02470
0.50 0.10079 0.08758 0.00569 0.07521 0.05578 0.10521 0.09382 0.03402 0.04896 0.02482 0.06221 0.04113
0.60 0.14232 0.10706 0.09078 0.04287 0.08584 -0.03824 0.04499 0.04402 0.08248 0.07471 0.09405 -0.02633
0.70 0.19076 0.17114 0.12765 0.10905 0.05998 0.07936 0.08190 0.04400 0.05342 0.07526 0.01968 0.02324
0.80 0.22150 0.19980 0.11655 0.12151 0.10501 0.07941 0.06393 0.07395 0.01312 0.03998 0.03518 0.02726
0.90 0.26444 0.28320 0.15262 0.07580 0.09636 0.04340 0.03306 0.08252 0.03191 0.01607 0.02936 0.13611
1.10 0.23357 0.26757 0.20798 0.18648 0.12505 0.17159 -0.00982 0.06628 0.14132 0.05841 0.03464 0.03569
1.20 0.23908 0.26573 0.23863 0.23328 0.19282 0.05496 0.09720 0.08350 0.07349 0.05079 0.05535 0.08788
1.30 0.22273 0.23434 0.26860 0.27235 0.21932 0.17919 0.15305 0.06205 0.02640 0.08386 0.11661 0.03208
1.40 0.17951 0.24911 0.23330 0.25426 0.23073 0.21202 0.10238 0.10215 0.08762 0.07947 0.08405 0.08545
1.50 0.25469 0.25769 0.24601 0.22779 0.25665 0.20287 0.09052 0.14098 0.06601 0.10550 0.04817 0.09341
1.60 0.26233 0.28899 0.27380 0.25988 0.24730 0.26709 0.19133 0.16750 0.11964 0.06709 0.08031 0.06643

Table 9: Correlation of X and ω (T = 500, γ1 = 4, γ2 = 10)

The table gives the correlation of x and the consumption share of investor 1 after 500 years. The calculation is based on
a Monte Carlo simulation with 1,000 runs. The initial consumption share is 10%, 50%, or 90%, the initial value of the
state variable x is set to zero. The parameters of relative risk aversion are γ1 = 4 and γ2 = 10, both investors have a time
preference rate of β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the
long-run growth rate process X are κx = 0.3 and σx = 0.0114.
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ω0 = 0.10
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.08127 0.07358 0.00133 0.05092 -0.02411 -0.02420 0.00755 0.01360 -0.04566 0.01542 -0.01260 -0.03868
0.50 0.07476 0.13635 0.02922 0.06851 0.05329 0.06113 -0.01875 0.02021 -0.03153 -0.03180 -0.00664 0.03594
0.60 0.15062 0.04995 0.06398 0.03772 0.04298 -0.00131 -0.01739 -0.03703 -0.03733 0.01315 0.01728 -0.05321
0.70 0.15720 0.08371 0.06801 0.09557 0.07883 0.01662 0.04579 0.04430 0.02071 0.03782 0.02356 -0.00627
0.80 0.12050 0.17995 0.12311 0.15272 0.03333 0.08119 0.04945 0.05014 0.03587 0.09813 -0.03816 0.03165
0.90 0.08428 0.13443 0.20140 0.10188 0.09859 0.02992 0.05806 0.06049 0.06420 -0.00330 0.01878 -0.02553
1.10 0.22254 0.10966 0.18295 0.13877 0.12831 0.09031 0.09523 0.00412 0.04457 0.03035 0.04106 0.00034
1.20 0.17952 0.14453 0.13563 0.20906 0.10861 0.12496 0.08016 0.04267 0.04020 0.07571 0.06680 0.01514
1.30 0.17848 0.24759 0.18197 0.14651 0.12178 0.11583 0.06565 0.12709 0.08914 0.12700 0.00864 0.07343
1.40 0.21942 0.23919 0.17364 0.19957 0.15013 0.13892 0.03358 0.07682 0.15873 0.06285 0.06934 0.01256
1.50 0.24126 0.20055 0.17031 0.19357 0.11076 0.14520 0.16811 0.07838 0.12899 0.08368 0.04082 0.05810
1.60 0.21684 0.16746 0.16054 0.18782 0.18295 0.12386 0.19405 0.09966 0.15139 0.14245 0.12669 0.13557

ω0 = 0.90
↓ ψ2 | ψ1 → 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.60
0.40 0.08360 0.00997 0.00050 0.01157 -0.01714 0.03433 0.02156 -0.00187 0.02248 -0.01046 -0.02435 -0.03364
0.50 0.14133 0.09565 0.03667 0.07768 -0.00721 0.01855 0.01096 0.06624 -0.02004 -0.00589 -0.04163 0.01861
0.60 0.19628 0.12459 0.09758 0.09205 0.07904 -0.01212 0.01394 0.01385 0.00382 -0.00754 0.07001 -0.03007
0.70 0.24841 0.18854 0.13190 0.08597 -0.03255 0.05880 0.04550 -0.01784 0.00618 0.03545 -0.09420 0.02972
0.80 0.24388 0.24702 0.21480 0.08528 0.09056 0.05551 0.05376 0.03417 0.03310 0.00467 0.00724 0.00973
0.90 0.28184 0.23163 0.22652 0.14128 0.11072 0.07786 0.03083 0.01895 0.07084 0.04257 0.02747 0.00064
1.10 0.27407 0.23313 0.24452 0.30184 0.14569 0.13042 0.10250 0.07097 0.07603 0.08412 0.07679 -0.01356
1.20 0.25932 0.29096 0.21359 0.27402 0.21768 0.17784 0.13484 0.07554 0.07973 0.06187 -0.04501 0.05471
1.30 0.21367 0.29629 0.27633 0.22331 0.19087 0.24143 0.14452 0.11367 0.11817 0.03713 0.06989 0.04218
1.40 0.23946 0.29489 0.28127 0.26666 0.23529 0.20245 0.18565 0.10923 0.12982 0.07401 0.06326 0.05112
1.50 0.25743 0.25640 0.26164 0.24348 0.26998 0.24208 0.13501 0.12255 0.09013 0.04324 0.12467 0.12118
1.60 0.26668 0.29672 0.27851 0.29225 0.20866 0.28904 0.21956 0.17498 0.16742 0.07011 0.10426 0.12483

Table 10: Correlation of X and ω (T = 500, γ1 = 6, γ2 = 8)

The table gives the correlation of x and the consumption share of investor 1 after 500 years. The calculation is based on
a Monte Carlo simulation with 1,000 runs. The initial consumption share is 10%, 50%, or 90%, the initial value of the
state variable x is set to zero. The parameters of relative risk aversion are γ1 = 6 and γ2 = 8, both investors have a time
preference rate of β = 0.10. The drift and volatility of consumption are µc = 0.02 and σc = 0.0252. The parameters for the
long-run growth rate process X are κx = 0.3 and σx = 0.0114.
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