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Abstract

This paper proposes a new framework to model distinct channels of volatility
transmission between assets and trading places. The model is estimated using
a data set comprising of three stock indices traded at three major trading places:
the Nikkei at the Tokyo Stock Exchange, the FTSE at the London Stock Exchange
and the S&P500 at the New York Stock Exchange. Strong volatility transmission
effects can be observed between London and New York, whereas current volatility
in Tokyo mostly depends on past volatility in Tokyo. For the assets in consideration,
spillovers are strong across trading zones, but weak across assets, suggesting a
close connection between market places but only a loose volatility link between
assets.
Volatility impulse response functions indicate a long lasting and comparably large
response of volatility to shocks in Tokyo, whereas they suggest a quicker volatility
decay in London and New York.
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1 Introduction

Interest in volatility spillovers between different market places first aroused
at the late 80’s and early 90’s of the past century. Beginning with the seminal
work of Engle et al. (1990), channels of volatility spillovers for different markets
and different assets have been detected. Engle et al. (1990) use a multivariate
GARCH approach modeling a single asset that is traded in three different trad-
ing zones constructed without overlaps over a 24 hour period. They distinguish
between volatility transmitted from the own trading zone (heat wave) and
transmitted from foreign trading zones (meteor shower). Building on this work
Hogan and Melvin (1994) investigate heat wave effects in the foreign exchange
market by dividing the trading day into four non overlapping trading zones
and using data on the yen/dollar exchange rate, whereas Fleming and Lopez
(1999) examine heat wave and meteor shower effects for the US treasury market.
In their 1990 paper, Hamao et al. (1990) model correlations between volatilities
of three Assets (Nikkei, FTSE and S&P500) across three different markets (Tokyo,
London and New York) by using a set of MA(1)− GARCH(1, 1) models, inde-
pendently. They allow for volatility transmission from the preceding trading
zones to the current one, but use assets and trading zones equivalently, i.e. they
assume the Nikkei is only traded in Tokyo, the FTSE is only traded in London
and the S&P500 is only traded in New York.
Another approach is the one of Booth et al. (1997), who investigate volatility
spillovers for scandinavian stock markets. They use a multivariate GARCH
model to describe transmission between Denmark, Finland, Sweden and Nor-
way, i.e. trading zones that are almost completely overlapping. Hence, they also
don’t distinguish between trading zones and assets.
In a more recent approach Karunanayake et al. (2009) use a multivariate GARCH
framework in a four trading zone setting to model spillovers, but by using
weekly data, they exclude any intra day effects between different trading zones.
Recently, Clements et al. (2015) re-investigate the results of Engle et al. (1990)
and additionally estimate a set of different model specifications using realized
volatility, decompositions into good and bad news as well separating real-
ized volatility into a continuous component and a jump component. On the
downside Clements et al. (2015) neither give insights to their methodology nor
question the artificial construction of a non overlapping trading day. Addition-
ally, only normally distributed innovations are used although financial returns
usually exhibit fat tails (see e.g. Richard J. Rogalski and Joseph D. Vinso (1978)
or Boothe and Glassman (1987) who both find that either t distributions with
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slightly less than 4 degrees of freedom or stable distributions with stability
parameter α < 2 fit best to daily foreign exchange rates). Hence, a multivariate
copula GARCH (CMGARCH) model based on the work of Lee and Long (2009)
that can incorporate both, multiple assets in multiple (and overlapping) trading
zones as well as non normal error terms is proposed.
The remainder of this paper organizes as follows: section 2 proposes the volatil-
ity transmission GARCH model and discusses its basic statistical properties. In
the third section an estimation approach, based on the Differential Evolution
Metropolis Hastings algorithm is developed and the fourth section applies the
model to a setting of three trading zones and three assets, with each asset being
traded in each trading zone. The fifth section summarizes.

2 Modeling Volatility transmissions

Modeling multiple assets that are traded in different trading places enables to
distinguish between characteristics of the assets and characteristics of the trading
zones. To highlight this, one asset is chosen for each trading zone that is traded
at this zone, very frequently and hence, subsumes a large share of the total
news belonging to this zone. This allows to investigate how market participants
react to the magnitude of news regarding their home asset depending on how
volatile trading in other trading zones, days or other assets has been. To identify
transmission effects between both, assets and between trading places a model is
necessary that can capture both kinds of effects, jointly. The general idea of this
model is based on the seminal work of Engle et al. (1990) and Clements et al.
(2015) and extends it in two directions: first, allowing for overlapping trading
hours in different trading places and second, allowing for multiple assets. The
first extension has already been discussed in a previous working paper, hence
this paper focuses on extending the model to allow multiple assets. Consider a
situation in which k = 1, . . . , K assets are traded in i = 1, . . . , I trading places.
Then, the return of asset k in trading place i is denoted by rk,i. Following
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previous work, the conditional covariance matrix is described using a GARCH
model embedded in the copula GARCH framework of Lee and Long (2009):

rt = H
1
2
t εt (1)

Ht = diag(ht)
1
2 Mtdiag(ht)

1
2 (2)

ht = κ + Aht−1 + Ãht + Gr2
t−1 + Br2

t (3)

εt = Σ−
1
2

t ηt (4)

ηt ∼ F (η1, . . . , ηK·I) (5)

diag(Mt) = 1K·I (6)

In this setup, the matrices A and G display effects of previous trading days
(referred to as heat wave in Engle et al. (1990)) whereas the matrices Ã and B
account for effects of preceding trading places (referred to as meteor shower).
In both cases, only transmission effects from within the same trading place (A
and G) and the immediately preceding trading place (Ã and B) are taken into
account. Consequently, the following matrices are used if three trading zones
were considered:

A =

A11 0 Ã13

0 A22 0
0 0 A33

 B =

 0 0 0
B21 0 0
0 B32 0


G =

G11 0 B13

0 G22 0
0 0 G33

 Ã =

 0 0 0
Ã21 0 0
0 Ã32 0

 (7)

Note that all submatrices of A, Ã, B and G are full matrices of dimension
K × K. Also note that however stored in A and G, Ã13 and B13 account for
effects of the immediately preceding trading place and hence, describe meteor
shower patterns. Equation (6) is necessary in order to identify the model. Mt

is combined from the cross sectional correlations between the different assets
and the correlation between the trading places due to their overlapping trading
hours:

Mt = ρZ ⊗ ρA,t, (8)

where ρZ is the correlation matrix resulting from overlaps and ρA,t is the cross
sectional correlation matrix of the assets in consideration1. The latter could

1If both, ρA,t and ρZ are positive definite, then Mt is positive definite as well and thus, Mt is a
correlation matrix once ρA,t and ρZ are correlation matrices, too.
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be modeled time variant which is not pursued in the remainder to keep the
number of parameters feasible. If trading places in countries that make use of
daylight savings time are chosen, it can be reasonable to use a regime switching
approach on ρZ in order to account for potentially changing overlaps.

The log-likelihood with respect to rt for the above model is given by the sum
of the log-densities of the marginal distributions and the log-copula-density
plus the sum of the Jacobian of the transformation (see Lee and Long (2009))

from innovations ηt to returns rt, i.e. the sum of ln
(∣∣∣∣Σ0.5(θ)H−0.5

t (α)

∣∣∣∣) for

all observations t = 1, . . . , T with α denoting all GARCH parameters and θ

denoting the parameters of the marginal distributions and the copula of the
error terms. Then,

ln(L) =
T

∑
t=1

ln
(

f1(η1,t)
)
+ ... + ln

(
fm(ηm,t)

)
+ ln

(
c(F1(η1,t), ..., c(Fm(ηm,t))

)
+

+
T

∑
t=1

ln
(∣∣∣∣Σ0.5(θ)H−0.5

t (α)

∣∣∣∣).

is the log-likelihood.

2.1 Stationarity

For the non overlapping specification with Ã = 0, A being diagonal and only
a single asset in consideration, stationarity conditions can be found in Engle
et al. (1990). The stationarity conditions for the above specification will now
be evaluated. The one step ahead forecast of ht is given by E

[
ht|Ft−1

]
where

Ft−1 denotes all information up to t− 1, i.e Ft−1 =
{

r0, . . . , rt−1, h0, . . . , ht−1
}

.
Starting at equation (7) and taking expectations yields:

E
[

ht|Ft−1

]
= E

[
k + Aht−1 + Ãht + Br2

t + Gr2
t−1|Ft−1

]
,

and applying iterated expectations to E
[
r2

t |Ft−1
]

results in

E
[

ht|Ft−1

]
= k + Aht−1 + ÃE

[
ht|Ft−1

]
+ BE

[
ht|Ft−1

]
+ Gr2

t−1,

since diag(Ht) = ht and hence

E
[

ht|Ft−1

]
= (I − Ã− B)−1(k + Aht−1 + Gr2

t−1). (9)
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Accordingly, the n ≥ 1 step ahead forecast is given by

E
[

ht|Ft−n

]
= (I − Ã− B)−1

(
k + (A + G)E

[
ht−1|Ft−n

])
, (10)

applying iterated expectations on E
[
r2

t |Ft−n
]

and E
[
r2

t−1|Ft−n
]
.

Evaluating E
[

ht−1|Ft−n

]
in (10) recursively for n→ ∞ reveals that stationarity

requires all eigenvalues of (I − Ã− B)−1(A + G) to lie inside the unit circle. If
the process is stationary, the unconditional variance is given by

h = lim
n→∞

E
[

ht|Ft−n

]
= (I − A− Ã− B−G)−1k. (11)

Equation (11) allows to control a given parametrization for non-negativity of
the unconditional variance h.

3 Estimation

3.1 Randomized Blocking Di�erential Evolution Metropolis Hastings

Algorithm

The proposed model in a setting of three trading places and three assets re-
quires the estimation of in total 123 parameters. Thus, a Differential Evolution
Metropolis Hastings algorithm (DE-MH) -a combination of the Differential Evo-
lution optimizer and a Metropolis-Hastings sampler- augmented by the use of
randomized blocking (see Chib and Ramamurthy (2010)) is used for estimation.
DE-MH offers two major advantages over the ordinary Metropolis-Hastings
algorithm: first, DE-MH does not rely on a precise specification of the proposal
distribution and thus can handle large parameter spaces easily and second,
DE-MH profits from running a large number of Markov Chains in parallel and
thus, is perfectly suited to be used on a large scale cluster computer.
The general idea of the DE-MCMC is rather simple2: N Markov chains are run
in parallel with θi,j denoting the parameter vector of chain j in iteration i. Then
a value for θi+1,j is proposed by

θp,j = θij + γ(θi,a − θi,b) + ε (12)

where a and b are two different randomly drawn elements from {1, ...N}\j
and ε is drawn from a symmetric distribution with unbounded support to

2For a textbook like treatment of the algorithm, see the paper of Braak, Cajo J. F. Ter (2006),
that also contains some pseudo code for a basic DE-MCMC sampler.
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ensure irreducibility of the chains. In other words, DE-MH randomly chooses
two different chains at each step, computes the difference of the parameter
vector of those chains, scales this difference with a factor γ, adds some random
noise ε and finally adds everything to the parameter vector of the current
chain. Then, the proposed new parameter vector is accepted with probability

α = min
{

1,
p(θp,j|y)

p(θi−1,j|y)

}
3 with p(·|y) being the posterior distribution of the pa-

rameter vector θ given the data y.
For a large number of chains N and a small variance of the noise ε, the proposal
asymptotically (in this context, asymptotically refers to the number of chains
and not to sample size) looks like θp,j = θij + γε as N → ∞ with E(ε) = 0
and Cov(ε) → 2Ω, the covariance matrix of the posterior distribution (see
Braak, Cajo J. F. Ter (2006)). Additionally to the DE proposal, the parameters
are randomly blocked according to Chib and Ramamurthy (2010), in order to
speed up convergence. At each iteration, the parameter space is split up into a
random number of blocks uniformly distributed between max

(
n/5− 10, 5

)
and

min
(
n/5 + 10, 40

)4, then the parameters are randomly assigned to the blocks.
As they’re of no interest in terms of volatility transmission, the constants κ in
the GARCH specification (7) are fitted every time new parameters are proposed
according to the moment conditions in equation (11). This ensures that small
increments close to the stationarity boundary don’t result in large changes of
the unconditional variance of the model and hence, prevent large jumps of the
likelihood. This approach might lead to a asymmetric proposal for k which is
not accounted for, here, as it is not the focus of this paper to correctly estimate
the level of unconditional volatility. The prior distributions of all parameters
are set to uniform distributions with boundaries applied, where necessary.
The given scheme results5 in N Markov chains with unique stationary distribu-
tion that has density p(·|y)N . Thus, once all chains converged, all draws can be
used as posterior samples leading to a large reduction in computation time. In
a simulation study on a 100-dimensional normal distribution, Braak shows that
convergence speed strongly depends on the number of parallel Markov chains
and can be substantially increased by choosing a high number of chains. This
underlines that DE-MCMC is perfectly tailored for cluster computers with the

3The acceptance probability is just the ratio of the posterior distributions as the DE-MH
algorithm is used with a random walk proposal and thus just behaves like a random walk
Metropolis-Hastings algorithm. For a textbook treatment see Greenberg (2008).

4This rule is completely arbitrary, but worked rather well.
5For a proof, see Braak, Cajo J. F. Ter (2006).
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ability of evaluating many chains in parallel. This argument gets even stronger
the more complex and time consuming the evaluation of the likelihood is as
the fraction of overhead reduces, the longer each individual processor needs for
computation.

4 Three Markets with three Assets

This section conducts analyzes a setting consisting of three market places with
three assets being traded. The market places are Tokyo, London and New York
and the respective home assets are the Nikkei225, FTSE100 and SP5006 indices.
The trading hours of the market places are Tokyo:10pm-10am CET, London:
8am-4pm CET and New York: 12pm-9pm CET and hence, two overlaps (Tokyo
and London share two hours and New York and London share four hours of
common trading time) are included. The conditional volatility of each asset will
be modeled separately for each trading place. This constellation leads to 123
parameters, 114 of which will be estimated by the above mentioned sampler.
The remaining nine parameters (the intercepts in each of the GARCH equations
(7)) are computed using the moment conditions in equation (11) by equating the
theoretical unconditional volatility and the volatility of the data set and solving
the equations for the intercept terms, each time new parameters a proposed. For
the sake of reducing computation time and complexity, the model is estimated
under the assumption of multivariate normal innovations.
The dataset that is used in this paper is taken from Dukascopy (2019) Historic
Data feed. It’s built from hourly price data and consists of 1,227 observations
ranging from January 3rd, 2014 to December 14th, 2018. The above described
RBDEMH algorithm has been used on a single node of PALMA II using 72
cores to draw 500 parallel Markov Chains. Point estimates (posterior means)
for all parameters can be found in the appendix of this paper. To visualize how
shocks influence conditional volatility, volatility impulse response functions
(VIRF) are computed. According to Hafner and Herwartz (2006), the VIRF is
given by

Vt(η0) = E(vech(Ht)|η0,Ft−1)− E(vech(Ht)|Ft−1), (13)

6The Nikkei index comprises of 225 large companies and is the stock market index for the
Tokyo Stock Exchange, the FTSE contains 100 UK listed companies and the S&P500 covers
500 large companies, listed in New York.
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i.e. the impact of a shock in t = 0 on volatility, given some initial state of
volatility h0. Using equation (9), the VIRF can be computed as

V1(η0) =vech
[

diag
((

(I − Ã− B)−1(k + Ah0 + Gr2
0)
) 1

2

)
M diag

((
(I − Ã− B)−1(k + Ah0 + Gr2

0)
) 1

2

)
− diag

((
(I − Ã− B)−1(k + Ah0)

) 1
2

)
M

diag
((

(I − Ã− B)−1(k + Ah0)
) 1

2

)]
, (14)

where I is a (K · I) × (K · I) identity matrix and diag(x) creates a diagonal
matrix with the elements of x on its main diagonal. Vt(η0) for t ≥ 2 can be
computed using the recursion in equation (10), straightforwardly. Figure 1
shows the VIRFs of the conditional volatilities of all assets for a shock in their
respective home trading zone7 for three initial levels of volatilities (solid: h0 = h,
dashed: h0 = 0.5h, dotted: h0 = 2h, where h denotes the unconditional volatility
deduced from equation 11). Each plot contains the responses in all three trading
zones (Tokyo: black, London: red, New York: blue). The plots reveal persistent
shocks in Tokyo, no matter which asset or trading zone initiated the shock. As
can be expected, responses are very pronounced in situations of increased initial
volatility compared to situations with low initial volatility, but their decay is
similar to regimes with low initial volatility. The fastest decay can be observed in
New York putting London between New York and Tokyo. In general, responses
are larger the closer the responding trading zone is to one originating the shock.
Following the idea of Engle et al. (1990) to distinguish between heat waves and
meteor shower effects, one can summarize all transmission parameters that
belong to either effect in order to obtain the total heat wave and total meteor
shower effect of the underlying combination of assets and trading places. The
median total heat wave effect is 0.3065 (2.5% and 97.5% quantiles: 0.1619 and
0.4801) and in contrast, the median total meteor shower effect is 0.8381 (2.5%
and 97.5% quantiles: 0.6352 and 1.0334). These strong volatility transmissions
across trading zones can be seen as an indicator of strong global financial
interconnectednes. Besides the classification into heat waves and meteor showers,
the entire set of volatility transmission effects can be aggregated into four
groups: on the one hand, local transmission effects from the own trading place

7If there is a shock in any other than the last trading zone, the initial conditional volatility of
all subsequent zones needs to be matched accordingly, because the shock already took place.
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against transmission effects from foreign trading zones and on the other hand,
transmission through the past of the asset in consideration against transmissions
from other assets. The joint effect of each group8 is defined as the sum of all
parameters that belong to the group divided by the number of assets or trading
zones that are affected.
Table 1 shows all aggregated effects: it’s clearly visible that both, spillovers
from other assets and transmissions originating in foreign trading zones, are
present in the data. Aggregating transmission effects reveals an astounding
heterogeneity between trading zones: when being traded in London and New
York, an assets volatility depends to a large share on the previous volatility in
preceding trading zones whereas in Tokyo the volatility primarily depends on
the volatility of the previous trading day in Tokyo. Similar results are obtained,
if effects are grouped by asset: when an asset is traded in Tokyo, then the
current conditional volatility is almost not affected by volatility of other assets,
whereas there is a fairly strong dependency on the volatility of other assets
whilst trading takes place in either London or New York.
Looking into the assets in consideration, it is visible that the volatility of all
assets is mostly driven by the the own past volatility (median values Nikkei:
0.8411, FTSE: 0.7636 and S&P500: 1.2513) but also by the volatility of foreign
trading zones (median values Nikkei: 0.7145, FTSE: 0.8688 and S&P500: 0.9321).
If all spillover effects are separated into spillovers from the same asset versus
spillovers from other assets, it’s apparent that spillovers between assets (median:
0.1961, 2.5% quantile: 0.02790, 97.5% quantile: 0.3722) are much less pronounced
than spillovers within the same asset (median: 0.9512, 2.5% quantile: 0.8304,
97.5% quantile: 1.0619).

8An overview over the group assignments can be found in table 2 in the appendix.
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Figure 1: VIRFs of Nikkei, FTSE and S&P500. Shocks happen in the respective home trading
zones and have a magnitude of one standard deviation.
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Nikkei:
Asset/Zone local foreign total

own 0.0960 0.3264 0.5099 0.3504 0.5128 0.7099 0.6931 0.8411 0.9604

other -0.3547 0.0046 0.4510 -0.2812 0.2064 0.6119 0.0056 0.2102 0.4710

total 0.0177 0.3303 0.6829 0.3723 0.7145 1.0685

Tokyo:
Asset/Zone local foreign total

own 0.4903 0.7118 0.8035 0.1197 0.2396 0.4106 0.7309 0.9527 1.0689

other -0.1974 0.0667 0.5210 -0.1617 0.0116 0.1519 -0.1404 0.0827 0.4487

total 0.4943 0.7769 1.1601 0.1350 0.2491 0.3795

FTSE:
Asset/Zone local foreign total

own 0.0226 0.2347 0.3870 0.2725 0.5261 0.8359 0.5115 0.7636 0.9803

other -0.1935 0.0864 0.4471 -0.2086 0.3314 0.8779 -0.0023 0.4161 0.8797

total 0.0940 0.3184 0.5777 0.4839 0.8688 1.2806

London:
Asset/Zone local foreign total

own -0.1488 0.1066 0.3748 0.4062 0.8819 1.3313 0.6680 0.9652 1.3261

other -0.4773 -0.1351 0.2223 -0.4089 0.3344 0.9892 -0.2934 0.2188 0.6146

total -0.2999 -0.0307 0.2398 0.6578 1.2000 1.7212

S&P500:
Asset/Zone local foreign total

own 0.1290 0.3318 0.6075 0.4913 0.9233 1.2576 1.0191 1.2513 1.5011

other -0.2475 -0.0702 0.1063 -0.1581 0.0100 0.2159 -0.1852 -0.0548 0.0981

total 0.1329 0.2722 0.4166 0.6619 0.9321 1.1905

New York:
Asset/Zone local foreign total

own -0.0786 0.0782 0.2726 0.5991 0.8526 1.1117 0.7663 0.9339 1.1103

other -0.0774 -0.0938 0.2370 -0.0594 0.2027 0.4426 0.0519 0.2921 0.5235

total 0.0431 0.1739 0.3046 0.8197 1.0494 1.3050

Table 1: Total effects grouped into trading zones and assets. The values are computed by the
sum of all corresponding parameters divided by the number of assets/trading zones that
are considered. In each cell, 2.5% quantile, median and 97.5% quantile are reported,
based on 250,000 posterior observations.
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5 Conclusion

This paper shed light on the extent of which volatility is transmitted both,
geographically between trading zones and between different assets. To that
end, a new copula GARCH framework that builds onto the work of Engle
et al. (1990) and Clements et al. (2015) was proposed and estimated using a
novel combination of the Differential Evolution Metropolis Hastings sampler
augmented by randomized blocking of the parameter space. The application
in a setting of three assets that are traded at three major trading places Tokyo,
London and New York reveals new insights: A strong persistence of Japanese
volatility can be observed, which, to a large extent, depends on past Japanese
volatility and is almost independent of the volatility of other trading zones.
This is very much in contrast to London an New York where volatility strongly
depends on the volatility of foreign trading zones. This can be interpreted as a
stronger interconnectedness in Europe and the US compared to Japan.
When looking at the aggregated effects concerning the assets in consideration
it is apparent that in general, spillovers are stronger between trading zones
than within a trading zone (median total effects 0.8382 and 0.3065) and stronger
within a single asset than between assets (median total effects: 0.9512 and
0.1961). Consequently, volatility is immediately transmitted across boarders but
there is only a weak link between the volatility of different assets. The same
structure is also apparent if spillover effects are broken down into the distinct
assets.
The presence of both types of effects, those associated to trading zones and those
associated to the assets in consideration necessitates to distinguish between
assets and trading places in a thorough analysis of volatility spillovers.
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6 Appendix

6.1 Parameters and group assignment

Parameter indices and group assignment:
κ = (1, 2, 3, 4, 5, 6, 7, 8, 9)′

A =



10 13 16 37 40 43
11 14 17 38 41 44
12 15 18 39 42 45

19 22 25
20 23 26
21 24 27

28 31 34
29 32 35
30 33 36


B =



46 49 52
47 50 53
48 51 54

55 58 61
56 59 62
57 60 63



G =



64 67 70 91 94 97
65 68 71 92 95 98
66 69 72 93 96 99

73 76 79
74 77 80
75 78 81

82 85 88
83 86 89
84 87 90


Ã =



100 103 106
101 104 107
102 105 108

109 112 115
110 113 116
111 114 117


ρA = (118, 119, 120)′, ρZ = (121, 122, 123)′
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Nikkei:
Asset/Zone local foreign

own 10,19,28,64,73,82 37,46,55,91,100,109

other
13,16,22,25,31,34, 40,43,49,52,58,61,
67,70,76,79,85,88 94,97,103,106,112,115

FTSE:
Asset/Zone local foreign

own 14,23,32,68,77,86 41,50,59,95,104,113

other
11,17,20,26,29,35, 38,44,47,53,56,62
65,71,74,80,83,89 92,98,101,107,110,116

S&P500:
Asset/Zone local foreign

own 18,27,36,72,81,90 45,54,63,99,108,117

other
12,15,21,24,30,33, 39,42,48,51,57,60,
66,69,75,78,84,87 9„96,102,105,111,114

Tokyo:
Asset/Zone local foreign

own 10,14,18,64,68,72 37,41,45,91,95,99

other
11,12,13,15,16,17, 38,39,40,42,43,44,
65,66,67,69,70,71 92,93,94,96,97,98

London:
Asset/Zone local foreign

own 19,23,27,73,77,81 46,50,54,100,104,108

other
20,21,22,24,25,26, 47,48,49,51,52,53,
74,75,76,78,79,80 101,102,103,105,106,107

New York:
Asset/Zone local foreign

own 23,32,36,82,86,90 55,59,63,109,113,117

other
29,30,31,33,34,35, 56,57,58,60,61,62,
83,84,85,87,88,89 110,111,112,114,115,116

Table 2: Group assignment
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6.2 Point estimates

Point estimates based on the posterior mean of 50,000 draws.

A =



0.721 0.282 −0.434 0.375 0.227 −0.289
−0.012 0.627 0.127 0.082 0.138 −0.123
−0.011 0.050 0.541 0.014 0.076 0.011

0.265 −0.062 −0.190
0.057 −0.041 −0.025
−0.124 0.007 0.072

−0.052 0.132 0.013
−0.084 0.059 0.056
−0.096 −0.080 0.273



B =



0.013 0.056 0.596
0.005 0.456 0.227
−0.003 0.031 0.532

0.277 −0.019 0.187
0.060 0.146 0.138
0.035 0.043 0.385



G =



0.037 −0.003 0.112 0.062 −0.038 0.112
0.004 0.109 0.044 −0.029 0.065 0.032
−0.002 −0.001 0.118 −0.005 0.009 0.031

0.048 0.013 −0.060
0.018 0.018 −0.024
−0.006 −0.002 −0.038

0.018 0.051 0.121
−0.011 −0.013 0.086
−0.011 0.008 0.158
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Ã =



0.340 −0.116 −0.116
−0.041 0.475 0.505
0.130 −0.172 0.702

0.382 −0.011 0.074
0.085 0.267 0.114
−0.035 0.050 0.812



ρA = (0.290, 0.413, 0.388)′, ρZ = (0.122,−0.037, 0.273)′
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