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Abstract

Previous literature on price discovery in commodity markets is mainly focused

on the question whether the spot or the futures market dominates the price

discovery process. Little attention, however, has been paid to the question how

the price discovery process is affected by futures speculation. Using different

measures for speculation and hedging and a new price discovery metric, the

present study analyzes this relationship for various agricultural commodities.

The results indicate that speculative activity generally reduces the level of noise

in the futures market, while increasing the relative contribution of the futures

market to the price discovery process.
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1 Introduction

In the past decade the role of speculators in commodity futures markets has

been subject to great debate. Public commentators, politicians and market par-

ticipants feared that speculation could impair the functioning of futures mar-

kets. Two key functions of futures markets are risk transfer and price discov-

ery. Concerning the transfer of risk, the importance of futures speculation is

straightforward. Speculators provide liquidity to the market and help hedgers

to find a matching counterparty to transfer price risk (Keynes 1923, Kaldor

1940). With regard to futures markets’ price discovery function, the role of spec-

ulators is, however, less clear.

Previous research largely focused on determining whether price discovery

occurs primarily in the futures or in the spot market. Across different agri-

cultural commodities, the majority of studies concludes that futures markets

dominate the price discovery process (see e.g. Garbade & Silber 1983, Zapata &

Fortenbery 1996, Yang & Leatham 1999, Yang et al. 2001). This is in line with the

theoretical argument of Grossman (1977) that futures markets are an important

place for gathering and exchanging information. However, little attention has

been paid to the role of speculation in affecting futures markets’ price discovery

function. This article sets out to fill this gap in the literature.

Price discovery is defined as the “efficient and timely incorporation of the

information implicit in investor trading into market prices” (Lehmann 2002,

p. 259). While “efficient” means the relative absence of noise, “timely” refers

to how quickly a price series reflects new information about an asset’s funda-

mental value (Putnin, š 2013). It seems reasonable to expect that speculation can

affect both the level of noise and the processing of new information. Therefore,

we follow Yan & Zivot (2010) and Putnin, š (2013) who establish a new way of

measuring price discovery which specifically allows disentangling these two el-
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ements of price discovery. Their approach combines two commonly used mea-

sures of price discovery, namely the component shares developed by Garbade

& Silber (1983) and Gonzalo & Granger (1995) as well as the information shares

of Hasbrouck (1995) and Lien & Shrestha (2009). Using a structural vector error

correction model, Yan & Zivot (2010) show that the component shares primarily

measure the avoidance of noise, while the information shares capture both the

avoidance of noise and the processing of new information. The authors then

combine these measures to subtract the noise avoidance component from the

information shares to obtain a new metric of informational leadership, which

Putnin, š (2013) reformulates as information leadership shares.

This article studies the impact of speculation on information leadership in

the price discovery process in four agricultural commodity futures markets,

namely the markets for corn, soybean, cocoa and feeder cattle futures. Our anal-

ysis comprises two steps. First, price data are used to compute time-varying

information leadership shares using rolling window estimation. Second, this

price discovery metric is regressed on different measures of speculative and

hedging activity including the total levels of speculation and hedging, as well

as the level of excessive speculation as measured by Working’s (1960) T. Here,

we rely on trader positions data from the Commodity Futures Trading Com-

mission’s (CFTC) Commitment of Traders (COT) reports.

Our results indicate that futures speculation significantly enhances the price

discovery function of the futures market. This holds for both the total level of

speculation as well as the level of excessive speculation. Conversely, hedging

activity is found to reduce the futures market’s ability to process new informa-

tion. This result supports the intuitive idea that hedgers intend to lock in prices

for the future, while speculators seek to execute profitable trades by using new

information. Hence, speculators are informed traders and important market

participants who allow futures markets to fulfill their key functions.
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The remainder of this paper is structured as follows. Section 2 outlines the

methodology used to measure price discovery and how it is affected by futures

speculation, while section 3 describes the data used in this study. The results

of this paper are presented in section 4 which are subsequently tested for their

robustness. Lastly, section 5 concludes.

2 Methodology

To study the impact of futures speculation on price discovery, a two-step ap-

proach is adopted. Based on a simple cost-of-carry model, we first compute

time-varying metrics of the relative contributions of the spot and futures mar-

kets to the price discovery process. Thereafter, a linear regression analysis is

used to investigate how the price discovery function of the futures market is

influenced by different measures of speculative and hedging activity.

2.1 Cost-of-carry model

In a simple cost-of-carry model, St denotes the spot price of a commodity in

period t and F T
t the price of a futures contract with delivery in period T . To

carry the commodity from t to T , one incurs the cost of carry (r + c − y) · (T −

t), where r is the interest rate, c denotes storage and transportation costs and

y is the convenience yield. Spot and futures market are naturally linked by

arbitrage. Given that all arbitrage opportunities are exploited it must hold that

F T
t = St · e(r+c−y)·(T−t) . (1)

Taking logs on both sides of the equation yields

fT
t = st + θ . (2)
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Here, fT
t denotes the logarithm of the futures price and st that of the spot price.

The parameter θ comprises the cost-of-carry-rate and all other components of

spot and future price differentials. To investigate this relationship empirically,

the following equation is estimated:

fT
t = θ + ξst + εt . (3)

In this equation εt resembles white noise, while the unbiasedness hypothesis

(Engel 1996, Zivot 2000) implies that the parameter ξ will be equal to one.

Consequently, the following cointegration relationship with a cointegration

vector of (1,−1) is obtained:

ect−1 = ft−1 − ξ0 − ξ1st−1 . (4)

Based on the Granger representation theorem (Engle & Granger 1987) the rela-

tionship between futures and spot prices can be expressed using the following

vector error correction (VEC) model, where the operator ∆ denotes first differ-

ences:

∆ft = γf + αfect−1 +
K∑
k=1

γfs,k∆st−k +

Q∑
q=1

γff,q∆ft−q + εf,t , (5a)

∆st = γs + αsect−1 +
K∑
k=1

γss,k∆st−k +

Q∑
q=1

γsf,q∆ft−q + εs,t . (5b)

Parameters γf and γs are the equations’ intercepts. The error-correction coeffi-

cients αf and αs reflect the speed of adjustment of the two price times series to-

wards the long-run price equilibrium in response to short-run deviations of the

system. Conversely, parameters γij captures the model’s short run dynamics,

i.e. how previous changes in market j = f, s affect present changes in market

i = f, s.
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As shown by Stock & Watson (1988) the VEC model of equation (5) has the

following vector moving average (VMA) representation:

pt = p0 + Ψ(1)
t∑

i=1

εi + Ψ∗(L)εt , (6)

with

pt = (ft st)
′ , (7)

where p0 is a (2×1) vector of constants and the (2×2) matrix Ψ(1) is the moving

average impact matrix. This matrix contains the cumulative VMA coefficients

such that the term Ψ(1)
∑t

i=1 εi summarizes the long-run impact of an inno-

vation at time t on each of the prices. Lastly, Ψ∗(L) is a matrix polynomial in

the lag operator, L, where εt is a (2 × 1) error vector with variance-covariance

matrix Ω. The cointegration relationship described in equation (4) implies that

γTΨ(1) = 0 and Ψ(1)α = 0. Based on the parameters of the VEC and the VMA

model, the literature has proposed various price discovery measures which are

discussed below.

2.2 Measuring price discovery

As explained earlier, price discovery is defined as the efficient and timely in-

corporation of the information implicit in investor trading into market prices

(Lehmann 2002). While “efficient” means the relative absence of noise, “timely”

refers to how quickly a price time series reflects new information about an as-

set’s fundamental value (Putnin, š 2013). To quantify the relative contribution

of each market to the price discovery process, the literature has proposed var-

ious price discovery metrics. However, as argued by Yan & Zivot (2010) and

Putnin, š (2013) these metrics capture two different aspects of the price discov-

ery process, namely noise avoidance and actual price leadership in the sense of
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incorporating new information more quickly.

In this sense, a measure for the avoidance of noise is based on the contribu-

tions of Garbade & Silber (1983), Schwarz & Szakmary (1994) and Gonzalo &

Granger (1995). The latter show how the price vector pt can be decomposed into

a permanent (common factor) component and a transitory (stationary) compo-

nent. The authors propose two component shares (CSf and CSs) which can be

calculated from the VEC model’s long-run adjustment coefficients as

CSf =
|αs|

|αf |+ |αs|
and CSs =

|αf |
|αf |+ |αs|

, (8)

where it holds by construction that CSf + CSs = 1. It follows from equation

(8) that the smaller a market’s long-run adjustment coefficient, the greater its

component share. Thus, if αf = 0, the futures market does not react to any

deviations from the long-run equilibrium. Consequently, all adjustment to the

equilibrium occurs in the spot market. In this case CSs = 0 such that the spot

market is said to make no contribution to the price discovery process, which is

then entirely dominated by the futures market.

While these component shares only measure the markets’ relative avoid-

ance of noise, an alternative measure developed by Hasbrouck (1995) and Lien

& Shrestha (2009) captures both noise avoidance and the processing of new

information. Both argue for making use of the information contained in the

variance-covariance matrix of the error term in equation (5), Ω, in order to ac-

count for short-term dynamics. For this purpose, the authors propose the fol-

lowing information shares

ISf =

([
ΨF

]
f

)2
ΨΩΨ′

and ISs =

([
ΨF

]
s

)2
ΨΩΨ′

, (9)

where the (1×2) matrix Ψ is either of the two identical rows Ψ1 or Ψ2 contained
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in Ψ andF is a transformed version of the error covariance matrix Ω.1 To obtain

F , Hasbrouck (1995) originally advocates the use of a Cholesky factorization.

However, depending on the orderings of the prices this procedure produces

two information shares for each market, referred to as upper and lower bounds.

Conventionally, averages of these upper and lower bounds are computed. But

in the case of highly divergent bounds, a market’s average information shares

are rather weak in their explanatory power. For this reason, Lien & Shrestha

(2009) propose using an eigen-decomposition of Ω to obtain a unique matrix

F which then circumvents the problem of the Hasbrouck bounds. Similar to

the component shares, these information shares also sum to one and have an

analogous interpretation regarding the dominance of either market, i.e. price

discovery primarily occurs in the market with the higher information share.

Yan & Zivot (2010) and Putnin, š (2013) note that the component shares as

well as the information shares of Hasbrouck (1995) and the modified version

by Lien & Shrestha (2009) are only able to accurately measure price discovery

in the sense of "which market moves first" when both markets exhibit similar

levels of noise. This finding is based on a structural cointegration model of

Yan & Zivot (2010). The authors show that the component shares only cap-

ture the relative response of the system to transitory shocks, while the informa-

tion shares measure responses to both transitory shocks and permanent shocks.

Consequently, in the case of differing noise levels, the price discovery measures

can be higher for two reasons. On the one hand, the price discovery measures

1 Baillie et al. (2002) show that Ψ can directly be obtained from the VEC model in equation
(5). In particular, the authors prove that

Ψ(1) = ξ⊥πα
′
⊥ =

(
Ψ
Ψ

)
=

(
Ψ1 Ψ2

Ψ1 Ψ2

)
= π

(
δf δs
δf δs

)
, (10)

where δf an δs denote the orthogonal complements to the vector of error correction adjust-
ment coefficients (α⊥). The scalar π is an arbitrary constant resulting from the computa-
tion of the orthogonal complements, which cancels out when calculating the information
shares.
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are higher if a price time series processes new information more quickly. On

the other hand they are also higher if the price time series contains less noise.

Thus, when examining either of the price discovery measures individually, one

will not be able to tell which of the two causes dominates.

In order to obtain a price discovery metric that exclusively measures how

markets process new information, Yan & Zivot (2010) propose removing the

"noise" component from the existing information shares by dividing the quo-

tient of the information shares by the quotient of the component shares

ILf =
ISf

ISs

· CSs

CSf

and ILs =
ISs

ISf

· CSf

CSs

. (11)

While originally unnamed, Putnin, š (2013) refers to these two metrics as "infor-

mation leadership" (IL). To ease interpretation and allow for straightforward

comparisons between markets, the author suggests making use of the following

normalization

ILSf =
ILf

ILf + ILs

and ILSs =
ILs

ILf + ILs

. (12)

The resulting information leadership shares (ILS) add up to one, and thus have

the same quantitative interpretation as the component and information shares.

In order to obtain a time varying measure of price discovery, this paper es-

timates equation (5) using a rolling window estimation. In the baseline version

we select a window size of 250 trading days which corresponds to one trading

year. We also conduct three robustness exercises. First, we decrease the window

size to 200 trading days, then increase it to 375 and 500 trading days. While 200

days are roughly the minimum number of observations needed to meaning-

fully estimate a VEC model, 375 and 500 trading days correspond to one and a

half respectively two whole trading years. Based on the resulting time-varying
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estimates for the vector of long-run coefficients α and the variance-covariance

matrix of residuals Ω, the three measures of price discovery are computed as ex-

plained above2. Comparing how futures speculation affects the different price

discovery metrics CS, IS and ILS then allows disentangling the effects that

speculation has on either the level of noise or the actual processing of new in-

formation in the futures market.

2.3 The impact of speculation on price discovery

To measure speculative activity, we rely on trader position data provided in

the Commitment of Traders (COT) reports by the Commodity Futures Trading

Commission (CFTC). The reports contain data on the end-of-day open interest

of three different trader types for a variety of different commodity futures mar-

kets: First, there are commercial traders who can be classified as hedgers. The

second category consists of non-commercial traders who are generally viewed

as speculators. And third, there are traders whose positions fall below the

CFTC’s minimum reporting standards such that the nature of these traders’

operations is unknown.

The literature has proposed various ways of measuring speculative activity

using such trader position data. A straightforward measure which is e.g. used

by Manera et al. (2016) is the total percentage share of open interest held by

speculators, St. This measure is defined as

St =
NCLt +NCSt + α · (NRLt +NRSt)

2 ·MOIt
· 100 . (13)

Long and short positions of non-commercial speculators are denoted by NCSt

and NCLt. Analogously, the positions of non-reporting traders are denoted by

2 The detailed regression results of the rolling window estimations are available upon re-
quest.
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NRLt and NRSt. Lastly, MOIt resembles market open interest in week t, while

α captures the fraction of speculative positions among non-reported positions.

We follow Rutledge (1977) and Sanders et al. (2010) and allocate non-reported

positions to hedging and speculative positions in the same proportions that are

observed for reported positions.

Another common measure that specifically aims to capture excessive amounts

of speculation is Working’s (1960) T index, Wt. This index is defined as

Wt =


1 +

SSt

HSt +HLt

, if HSt ≥ HLt

1 +
SLt

HSt +HLt

, if HSt < HLt

, (14)

where SLt, SSt, HLt and HSt represent the long and short positions of specu-

lators and hedgers, respectively. These are given by

SLt = NCLt + α ·NRLt , (14a)

SSt = NCSt + α ·NRSt , (14b)

HLt = CLt + (1− α) ·NRLt , (14c)

HSt = CSt + (1− α) ·NRSt . (14d)

The idea behind this index is that any trade by a hedger will require an oppos-

ing trade by a speculator. If hedgers as a whole prefer taking a short position,

i.e. HSt ≥ HLt, then speculators must take a sufficiently large long position for

the market to clear. If, however, speculators take a short position, SSt, which

exceeds the needs of hedgers, this can be regarded as a sign of excessive spec-

ulation. Consequently, Working’s T has a lower bound of unity and increases

with this speculative pressure. Note, however, that as highlighted by Fattouh

et al. (2013) and Boyd et al. (2018) “excessive” is to be understood in a techni-
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cal and not a normative manner. An index value above one only indicates that

there are more speculative positions in the market than necessary to offset the

positions of hedgers, not that market functioning is fundamentally impaired by

speculative activity.

In addition to these two speculation measures we also consider a measure of

hedging activity, which is computed in analogy to the total open interest share

of speculators. But instead of using the positions of non-commercial traders, we

now consider the positions of commercial traders. Hence, the total percentage

share of hedgers, Ht, is defined as

Ht =
CLt + CSt + (1− α) · (NRLt +NRSt)

2 ·MOIt
· 100 . (15)

Given these measures of speculation and hedging activity, St, Wt and Ht,

we are now able to analyze both how speculation and hedging affect the price

discovery process. For this purpose the following linear regression model is

estimated:

PDt = β0 + β1SPECt + β2V OLt + β3BASISt + ηt , (16)

where PDt is one of the measures of the futures market’s contribution to price

discovery in period t, i.e. CSft, ISft or ILSft. Similarly, SPECt is a measure

of the dominance of either trader type, i.e. St, Wt, or Ht. V OLt represents the

trading volume, while BASISt denotes the spread between spot and futures

prices. Lastly, ηt denotes random disturbances.

When investigating the impact of speculation (hedging) on the component

share, positive values for β1 indicate that speculators (hedgers) increase the fu-

tures market’s relative avoidance of noise, i.e. speculators (hedgers) reduce the

amount of noise in the futures market. Whereas a positive impact of speculation
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(hedging) on the information share implies either an increase of new informa-

tion and/or a reduction of noise in the market. Finally, a positive impact on the

information leadership share suggests that speculation (hedging) amplifies the

futures market’s ability to impound new information.

3 Data

This study analyzes four agricultural commodity markets included in the CFTC’s

COT reports. The choice of these markets is motivated by the average trading

volume of the markets’ associated futures contracts. The analysis focuses on the

two largest and two of the smallest contracts for which long-term CFTC data

are available, i.e. the markets for corn, soybeans, cocoa and feeder cattle. Corn,

soybeans and feeder cattle futures are traded at the Chicago Board of Trade

(CBOT) which is now part of the CME group, while cocoa futures are traded at

the Intercontinental Exchange (ICE).

Daily data for spot and futures prices and futures trading volume are for

all of these commodities obtained from Thomson Reuters Datastream. The fu-

tures price time series consist of continuously compounded settlement price

composites. Data on the open interest of the different trader types is taken from

the CFTC’s COT reports. Table 1 characterizes the selected futures contracts

as well as the sample range for each market and provides descriptive statistics

for prices, volume and the speculation variables. Data for corn and soybeans

are available from 30 March 1982 until 29 June 2018, while data for cocoa and

feeder cattle start from 1 November 1983 and 4 January 1993, respectively. All

series end on 29 June 2018. However, for the later regression analysis, the data

are limited by the availability of CFTC COT report data.

[ Table 1 about here. ]
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As shown in table 1, corn has the highest average trading volume with over

132 thousand futures contracts traded per day. Feeder cattle has the lowest

average daily trading volume with roughly 5 thousand futures contracts. The

feeder cattle market features on average the highest values for total specula-

tion (St) and excessive speculation (Wt), while cocoa features the lowest. Con-

versely, total hedging (Ht) is on average the highest in the cocoa market, while

the feeder cattle market exhibits the lowest hedging levels.

[ Figure 1 about here. ]

Figure 1 displays the daily futures and spot prices for each of the four com-

modity contracts. In each panel, the futures price is indicated in black, while

the spot price series is highlighted in gray. For all commodities, the graphs

show a strong co-movement between spot prices and futures prices. Moreover,

similar price developments can be observed for all commodities. Starting from

moderate levels in the 1990s the commodities experience rapid price increases

with subsequent declines around the mid 2000s.

[ Table 2 about here. ]

As indicated before, using a VEC model requires that the time series con-

sidered are cointegrated which in turn requires them to be integrated of or-

der one. To test the price time series’ order of integration we employ two dif-

ferent stationarity tests, namely the tests of Dickey & Fuller (1979, 1981) and

Kwiatkowski et al. (1992), hereafter ADF and KPSS test. While the former as-

sumes a unit root in the null hypothesis, the latter tests the null hypothesis that

the time series are stationary. The test results for the log series as well as log

first differences are reported in Table 2. The results of both tests show that the

log series contain a unit root, while the log differences are stationary, indicat-

ing that the price time series are integrated of order one. In order to test for
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cointegration, Johansen’s (1988, 1991) trace and eigenvalue tests are used. The

results of the tests, also reported in Table 2, show for all commodities that spot

and futures price are cointegrated as suggested by the cost-of-carry model.

4 Results and robustness

Figure 2 shows how the information leadership shares of the futures markets

(in percent) evolve over time. When the share is above 50 % the futures market

is dominant in the price discovery process. In this case, the futures market pro-

cesses new information more quickly than the spot market. Alternating phases

of price dominance by either market are observed for all commodities. How-

ever, the futures market generally dominates more often. In particular for the

small markets, i.e. cocoa and feeder cattle, a particularly strong and persis-

tent dominance of the futures market is visible as of 2010. Table 3 reports the

futures markets’ information leadership shares when calculated in a static ver-

sion based on estimating equation (5) for the full sample. Moreover, the table

lists the results of the average value of the information leadership shares in the

time-varying case of the rolling window estimation, and also the percentage

share of days where the futures market dominates. For all four commodities, it

is observed that price discovery is generally dominated by the futures market.

[ Figure 2 and Table 3 about here. ]

Table 4 reports the results of regressing the different price discovery shares

of the futures market on total speculation, St. For the component share, as

outlined in Section 2.3, a positive coefficient estimate on St indicates that spec-

ulators reduce the amount of noise in the market. For the information share a

positive coefficient estimate implies that speculators reduce the level of noise

and/or increase the ability of the futures market to process new information.

14



Lastly, the coefficient estimate of speculation in the regression with the infor-

mation leadership share represents the net effect that speculators exert on the

futures market’s price discovery function.

The results show that in two markets, corn and cocoa, speculation reduces

the level of the noise as indicated by the statistically significant positive coef-

ficients of St on CSt. For all markets, the impact of speculation on the infor-

mation share is always positive and higher than the impact on the component

share. This implies that speculators contribute to the processing of new infor-

mation in the market. The net effect of speculation on the relative speed at

which the futures markets incorporates new information is given by the coeffi-

cient estimates of St on ILSt. The estimated parameters are positive and highly

statistically significant for three of the four markets, namely corn, soybeans and

cocoa. Only for feeder cattle total speculation has no statistically significant

positive effect on price discovery.

[ Tables 4 to 6 about here. ]

Table 5 presents the results from repeating the earlier analysis but with a

focus on excessive speculation as measured by Working’ T, Wt. The findings

are highly consistent with what has been reported above for total speculation.

Again, the coefficient estimates of (excessive) speculation are positive and highly

significant for the information leadership regressions. This implies that not only

total speculation, but also excessive speculation, improves the futures markets

ability to process new information. Note that with excessive speculation the

coefficient estimates are also significantly positive for feeder cattle, which were

insignificant when considering the total level of speculation.

The results regarding the influence of hedging on price discovery are dis-

played in Table 6. Except for cocoa, also hedgers significantly reduce the level

of noise in the market. However, we observe for all four commodities that
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hedgers, unlike speculators, do not add to the markets’ information processing

ability. Intuitively, this can be explained by the idea that hedgers are interested

in locking in futures prices, while speculators intend to profit from expected

price changes. Hence, speculative traders have, compared to hedgers, a greater

incentive to gather and interpret new information about fundamentals.

From an econometric point of view, one caveat of rolling window estima-

tions is the arbitrary choice of the window size. Therefore, the earlier analysis

is repeated using a variety of alternative window sizes, namely 200, 375 and

500 trading days. The former is arguably just large enough to have sufficient

observations for estimating the VEC model. The latter two amount to one and a

half and to two trading years, respectively. The results from repeating the base-

line speculation regressions with the alternative window sizes are reported in

Table 7.

[ Table 7 about here. ]

The findings are highly consistent across the different window sizes. Again,

total as well as excessive speculation are generally found to significantly reduce

the amount of noise and increase the speed of information processing in the

futures market. Conversely, hedging activity is again found to have a negative

impact on the price discovery function of the futures market, in the sense of

quickly incorporating new information.

5 Conclusion

While numerous studies have investigated whether price discovery primarily

occurs in the spot or the futures market, little work has been done to study the

impact of futures speculation on the price discovery process. This paper has

investigated how speculation affects the price discovery function of four agri-
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cultural commodity futures markets, namely the markets for corn, soybeans,

cocoa and feeder cattle. As price discovery describes the timely and efficient

incorporation of new information about fundamental values into prices, specu-

lators can contribute to price discovery in two ways. First, they can reduce the

amount of noise in the futures price. Second, speculators can add to the futures

market’s ability to process new information. For this purpose, a new measure of

price discovery is used in this paper, namely the information leadership shares

by Yan & Zivot (2010) and Putnin, š (2013) which precisely distinguish between

these two channels of impact. Alternative measures of speculative and hedging

activity are then regressed on the time-varying information leadership shares

of the futures markets.

Our findings suggest that speculation, both total and excessive, improves

the futures markets’ price discovery function in two ways. First, speculation

reduces the level of noise incorporated in futures prices. Second, speculative ac-

tivity increases the speed at which futures prices reflect new information about

changes in market fundamentals. Conversely, hedgers are found to reduce the

futures markets’ ability to process new information. Therefore, speculators, in

contrast to hedgers, appear to be more informed and trade with a stronger fo-

cus on potential changes of fundamental values. The results of this paper imply

that efforts by regulators to curb futures speculation could have adverse conse-

quences for the price discovery process in commodity markets.
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Figure 1: Futures and Spot Prices

Note: Futures prices are depicted using black lines, spot prices are displayed in gray.
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Figure 2: Futures Market Information Leadership Shares (Monthly Moving Average)
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Table 1: Descriptive Statistics

Variable Min. Mean Max. St.dev. Skew. Kurt.

CME No.2 Yellow Corn (5,000 bu), 30 Mar. 1982 - 29 June 2018

Future -0.25 0.00 0.10 0.02 -0.65 16.89
Spot -0.12 0.00 0.11 0.02 -0.29 7.43
Volume 0.19 132.76 1090.83 133.35 1.71 6.30
Speculation 19.99 27.11 39.98 3.66 0.93 3.82
Working’s T 1.09 1.18 1.39 0.06 0.97 3.24
Hedging 48.74 61.38 72.97 5.46 -0.40 2.37

CME No.1 Yellow Soybeans (5,000 bu), 30 Mar. 1982 - 29 June 2018

Future -0.14 0.00 0.08 0.01 -0.58 8.42
Spot -0.17 0.00 0.08 0.02 -0.68 9.25
Volume 0.10 86.78 804.24 83.82 1.65 6.54
Speculation 19.35 26.71 37.10 2.98 0.84 3.69
Working’s T 1.07 1.16 1.35 0.05 0.76 3.57
Hedging 48.49 60.15 70.05 3.64 -0.24 2.90

ICE Cocoa (10 mtr. t), 01 Nov. 1983 - 29 June 2018

Future -0.13 0.00 0.13 0.02 -0.01 6.02
Spot -0.14 0.00 0.15 0.02 -0.09 8.61
Volume 0.03 12.82 99.15 12.49 2.27 9.42
Speculation 7.18 22.19 37.56 5.66 0.03 2.53
Working’s T 1.01 1.11 1.30 0.05 0.72 3.33
Hedging 50.57 70.48 88.81 9.28 -0.16 1.85

CME Feeder Cattle (50,000 lbs), 04 Jan. 1993 - 29 June 2018

Future -0.06 0.00 0.06 0.01 -0.11 5.92
Spot -0.09 0.00 0.09 0.01 -0.03 9.13
Volume 0.00 4.99 29.67 3.82 1.73 6.59
Speculation 33.76 46.57 61.71 4.04 0.10 3.13
Working’s T 1.27 1.50 1.89 0.09 0.47 4.04
Hedging 29.42 43.15 56.41 5.07 0.31 2.73

Note: The first two rows of each commodity panel report the summary statistics
of futures and spot log returns. Trading volume is reported in thousands. The
speculation, hedging variables and Working’s T are computed based on CFTC
data as outlined in Section 2.
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Table 2: Unit Root and Cointegration Tests

ADF test KPSS test

Commodity Variable Logs Log returns Logs Log returns

Corn Future -2.21 -67.05∗∗∗ 21.80∗∗∗ 0.04
Spot -2.18 -94.69∗∗∗ 31.80∗∗∗ 0.04

Soybeans Future -2.11 -93.94∗∗∗ 43.60∗∗∗ 0.04
Spot -2.07 -97.52∗∗∗ 42.90∗∗∗ 0.04

Cocoa Future -2.22 -92.77∗∗∗ 56.90∗∗∗ 0.03
Spot -1.94 -71.12∗∗∗ 38.30∗∗∗ 0.03

Feeder Cattle Future -1.08 -54.22∗∗∗ 8.53∗∗∗ 0.06
Spot -1.12 -15.79∗∗∗ 1.20∗∗∗ 0.08

Johansen tests

Commodity Null hypothesis Trace Eigenvalue

Corn H0 : r = 0 87.18∗∗∗ 81.81∗∗∗

H0 : r = 1 5.37 5.37
Soybeans H0 : r = 0 178.83∗∗∗ 174.12∗∗∗

H0 : r = 1 4.70 4.70
Cocoa H0 : r = 0 158.96∗∗∗ 154.85∗∗∗

H0 : r = 1 4.11 4.11
Feeder Cattle H0 : r = 0 522.88∗∗∗ 521.42∗∗∗

H0 : r = 1 1.47 1.47

Note: The table reports for log prices and log returns the critical values of the ADF and
the KPSS as computed by MacKinnon (1996) and Kwiatkowski et al. (1992), while the
optimum lag-lengths have been determined using the Bayesian-Schwarz information
criterion (1978). Moreover, the table displays for log prices the critical values of the
Johansen (1988, 1991) trace and eigenvalue tests as computed by MacKinnon et al.
(1999). The null hypothesis r = 0 tests for no cointegration, while the null hypothesis
r = 1 tests for a cointegration rank of one. Statistical significance is reported as ∗ for
p < 0.1, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01.
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Table 3: Futures Market Information Leadership Shares

Commodity Full Sample Static Average Time-Varying Relative Dominance

Corn 87.98 62.93 64.39

Soybeans 55.01 53.77 51.77

Cocoa 57.71 54.03 55.64

Feeder Cattle 98.17 75.18 73.92

Note: The second column reports the futures market’s information leadership share based on the
full-sample VEC model. Values above 50 indicate that the futures market is dominant in the price
discovery process. The third columns displays the average information leadership shares of the time-
varying VEC model. For the same regressions, the rightmost column shows the percentage share of
days where the futures market is dominant. Values greater than 50 indicate that the futures market
dominates more often than the spot market.
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Table 4: Results of Regressions with Total Speculation (St)

Corn Soybeans Cocoa Feeder Cattle

CS IS ILS CS IS ILS CS IS ILS CS IS ILS

St 1.562∗∗∗ 2.561∗∗∗ 2.091∗∗∗ −0.751∗∗∗ 0.975∗∗∗ 2.948∗∗∗ 1.081∗∗∗ 1.653∗∗∗ 1.475∗∗∗ −0.017 0.090 0.180
(0.260) (0.279) (0.320) (0.263) (0.362) (0.420) (0.155) (0.152) (0.175) (0.113) (0.097) (0.159)

V OL −0.011∗ −0.020∗∗∗ −0.025∗∗∗ −0.020∗∗∗ 0.011 0.042∗∗∗ 0.621∗∗∗ 0.871∗∗∗ 0.810∗∗∗ −0.833∗∗∗ 0.484∗∗∗ 3.113∗∗∗

(0.006) (0.007) (0.008) (0.008) (0.011) (0.012) (0.061) (0.059) (0.068) (0.122) (0.105) (0.173)
BAS 11.258∗∗ 22.899∗∗∗ 21.855∗∗∗ 5.449∗∗ 14.277∗∗∗ 13.926∗∗∗ −0.068∗∗∗ −0.072∗∗∗ −0.021∗∗ −0.557∗∗∗ −0.394∗∗∗ −0.348∗∗

(4.847) (5.194) (5.955) (2.750) (3.776) (4.388) (0.008) (0.008) (0.009) (0.125) (0.107) (0.176)
Cons. 6.320 −17.612∗∗ 1.908 79.212∗∗∗ 32.977∗∗∗ −28.945∗∗ 0.464 −16.360∗∗∗ 7.913∗∗ 81.313∗∗∗ 79.126∗∗∗ 50.597∗∗∗

(7.158) (7.670) (8.795) (7.258) (9.967) (11.583) (3.158) (3.096) (3.568) (5.334) (4.570) (7.523)

Note: Standard errors in parentheses. Statistical significance is reported as ∗ for p < 0.1, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01.
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Table 5: Results of Regressions with Excessive Speculation (Wt)

Corn Soybeans Cocoa Feeder Cattle

CS IS ILS CS IS ILS CS IS ILS CS IS ILS

Wt 27.751∗ 68.690∗∗∗ 101.306∗∗∗ 42.402∗∗∗ 165.849∗∗∗ 204.366∗∗∗ 35.705∗∗ 110.087∗∗∗ 145.279∗∗∗ −3.077 20.473∗∗∗ 67.815∗∗∗

(15.197) (16.530) (18.500) (15.107) (20.184) (23.848) (16.623) (16.460) (18.542) (5.327) (4.530) (7.274)
V OL −0.005 −0.011 −0.022∗∗∗ −0.022∗∗∗ 0.011 0.044∗∗∗ 0.732∗∗∗ 0.941∗∗∗ 0.789∗∗∗ −0.806∗∗∗ 0.304∗∗∗ 2.518∗∗∗

(0.006) (0.007) (0.008) (0.008) (0.010) (0.012) (0.063) (0.063) (0.071) (0.131) (0.111) (0.179)
BAS 5.728 15.422∗∗∗ 18.848∗∗∗ 10.409∗∗∗ 17.814∗∗∗ 11.203∗∗∗ −0.086∗∗∗ −0.095∗∗∗ −0.039∗∗∗ −0.555∗∗∗ −0.408∗∗∗ −0.402∗∗

(4.870) (5.297) (5.928) (2.625) (3.506) (4.143) (0.008) (0.008) (0.009) (0.125) (0.106) (0.171)
Cons. 15.473 −29.752 −60.951∗∗∗ 9.323 −134.314∗∗∗ −187.751∗∗∗ −22.113 −109.627∗∗∗ −125.125∗∗∗ 84.983∗∗∗ 53.581∗∗∗ −39.532∗∗∗

(17.881) (19.450) (21.769) (17.694) (23.640) (27.932) (17.752) (17.579) (19.802) (7.781) (6.616) (10.624)

Note: Standard errors in parentheses. Statistical significance is reported as ∗ for p < 0.1, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01.
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Table 6: Results of Regressions with Total Hedging (Ht)

Corn Soybeans Cocoa Feeder Cattle

CS IS ILS CS IS ILS CS IS ILS CS IS ILS

Ht 0.399∗ 0.248 −0.347 0.996∗∗∗ 0.210 −1.256∗∗∗ −1.624∗∗∗ −2.088∗∗∗ −1.523∗∗∗ 0.485∗∗∗ −0.612∗∗∗ −2.493∗∗∗

(0.209) (0.229) (0.257) (0.210) (0.291) (0.343) (0.109) (0.104) (0.127) (0.106) (0.090) (0.134)
V OL 0.007 0.001 −0.020∗∗ −0.009 0.015 0.031∗∗ 0.173∗∗∗ 0.338∗∗∗ 0.464∗∗∗ −0.470∗∗∗ 0.024 1.244∗∗∗

(0.008) (0.008) (0.010) (0.008) (0.011) (0.013) (0.067) (0.063) (0.078) (0.145) (0.123) (0.183)
BAS 2.543 9.917∗ 13.020∗∗ 6.636∗∗∗ 9.932∗∗∗ 4.319 −0.031∗∗∗ −0.029∗∗∗ 0.005 −0.501∗∗∗ −0.459∗∗∗ −0.625∗∗∗

(4.803) (5.265) (5.925) (2.548) (3.533) (4.160) (0.008) (0.008) (0.009) (0.124) (0.106) (0.157)
Cons. 21.859 34.453∗∗ 80.367∗∗∗ −2.411 46.459∗∗ 128.198∗∗∗ 156.590∗∗∗ 188.109∗∗∗ 160.865∗∗∗ 57.691∗∗∗ 112.131∗∗∗ 176.276∗∗∗

(13.756) (15.077) (16.969) (12.985) (18.008) (21.204) (9.699) (9.216) (11.338) (5.064) (4.298) (6.391)

Note: Standard errors in parentheses. Statistical significance is reported as ∗ for p < 0.1, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01.
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Table 7: Results of Robustness Exercise

Corn Soybeans Cocoa Feeder Cattle

CS IS ILS CS IS ILS CS IS ILS CS IS ILS

St(200) 1.900∗∗∗ 2.871∗∗∗ 1.615∗∗∗ 0.287 2.115∗∗∗ 3.141∗∗∗ 0.778∗∗∗ 1.499∗∗∗ 1.755∗∗∗ −0.138 0.048 0.194
(0.240) (0.286) (0.326) (0.264) (0.366) (0.430) (0.155) (0.156) (0.184) (0.118) (0.104) (0.165)

St(375) 2.297∗∗∗ 3.206∗∗∗ 1.319∗∗∗ −0.267 1.118∗∗∗ 2.559∗∗∗ 0.924∗∗∗ 1.540∗∗∗ 1.420∗∗∗ 0.310∗∗∗ 0.126 −0.256
(0.247) (0.254) (0.318) (0.274) (0.328) (0.424) (0.150) (0.156) (0.179) (0.108) (0.092) (0.156)

St(500) 1.466∗∗∗ 2.106∗∗∗ 1.361∗∗∗ −0.659∗∗ 0.028 1.332∗∗∗ 0.873∗∗∗ 1.568∗∗∗ 1.696∗∗∗ 0.420∗∗∗ 0.067 −0.362∗∗

(0.224) (0.237) (0.308) (0.277) (0.300) (0.429) (0.152) (0.155) (0.186) (0.103) (0.089) (0.152)

Wt(200) 44.666∗∗∗ 75.374∗∗∗ 58.247∗∗∗ 11.885 164.111∗∗∗ 265.082∗∗∗ 5.000 79.105∗∗∗ 142.803∗∗∗ −10.272∗ 22.021∗∗∗ 73.259∗∗∗

(14.104) (17.040) (18.873) (15.167) (20.728) (23.903) (16.467) (16.822) (19.679) (5.529) (4.829) (7.484)
Wt(375) 72.632∗∗∗ 143.382∗∗∗ 121.009∗∗∗ 87.774∗∗∗ 174.527∗∗∗ 150.683∗∗∗ 63.926∗∗∗ 141.433∗∗∗ 142.046∗∗∗ 8.716∗ 18.345∗∗∗ 41.521∗∗∗

(14.616) (15.014) (18.052) (15.463) (18.118) (24.310) (15.887) (16.539) (18.954) (5.137) (4.346) (7.340)
Wt(500) 44.836∗∗∗ 85.886∗∗∗ 76.733∗∗∗ 30.178∗ 111.318∗∗∗ 134.642∗∗∗ 95.296∗∗∗ 173.392∗∗∗ 148.137∗∗∗ 14.516∗∗∗ 15.511∗∗∗ 36.857∗∗∗

(13.057) (13.848) (17.697) (15.878) (16.846) (24.387) (16.016) (16.295) (19.770) (4.902) (4.208) (7.136)

Ht(200) −0.009 0.114 0.245 1.078∗∗∗ 0.151 −1.368∗∗∗ −1.546∗∗∗ −2.078∗∗∗ −1.632∗∗∗ 0.627∗∗∗ −0.697∗∗∗ −2.816∗∗∗

(0.195) (0.236) (0.260) (0.210) (0.299) (0.351) (0.108) (0.106) (0.135) (0.110) (0.096) (0.136)
Ht(375) 0.231 −0.540∗∗ −1.524∗∗∗ −0.077 −0.614∗∗ −0.731∗∗ −1.515∗∗∗ −2.036∗∗∗ −1.610∗∗∗ 0.262∗∗ −0.577∗∗∗ −1.980∗∗∗

(0.203) (0.214) (0.249) (0.220) (0.264) (0.346) (0.105) (0.106) (0.129) (0.104) (0.087) (0.139)
Ht(500) 0.115 −0.474∗∗ −1.125∗∗∗ −0.155 −0.758∗∗∗ −0.942∗∗∗ −1.479∗∗∗ −2.102∗∗∗ −1.924∗∗∗ 0.089 −0.554∗∗∗ −1.930∗∗∗

(0.180) (0.193) (0.243) (0.223) (0.240) (0.345) (0.107) (0.105) (0.133) (0.101) (0.085) (0.137)

Note: The displayed regressions include all the variables of the baseline regression of equation (16), however, only the coefficient estimates of the speculation-
related variables are reported. Standard errors in parentheses. Statistical significance is reported as ∗ for p < 0.1, ∗∗ for p < 0.05 and ∗∗∗ for p < 0.01.
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