

Randomized Quasi Sequential
Markov Chain Monte Carlo2

Fabian Goessling †

70/2018

† Department of Economics, University of Münster, Germany

wissen•leben
 WWU Münster

Randomized Quasi Sequential Markov Chain Monte Carlo2

Fabian Goesslinga

aDepartment of Economics, Am Stadtgraben 9, University of Münster, 48143 Münster, Germany

Abstract

Sequential Monte Carlo and Markov Chain Monte Carlo methods are combined into a uni-

fying framework for Bayesian parameter inference in non-linear, non-Gaussian state space

models. A variety of tuning approaches are suggested to boost convergence: likelihood tem-

pering, data tempering, adaptive proposals, random blocking, and randomized Quasi Monte

Carlo numbers. The methods are illustrated and compared by running eight variants of the

algorithm to estimate the parameters of a standard stochastic volatility model.

Keywords: SMC, MCMC, Bayesian Estimation, Filtering

JEL: C11, C13, C32

1. Introduction

Bayesian estimation approaches for non-linear, non-Gaussian state space models are –

seemingly – divided into two methods: Sequential Monte Carlo (SMC) and Markov Chain

Monte Carlo (MCMC). While SMC can be interpreted as an approximation based on a cross-

section of samples, MCMC constitutes an approximation based on trajectories of samples.

Building upon the work of Chopin et al. (2005), Andrieu et al. (2010), Deligiannidis et al.

(2016), and in particular Gerber and Chopin (2015), this paper merges both viewpoints into

a single, unifying framework for parameter inference. The resulting randomized Quasi Se-

quential Markov Chain Monte Carlo2 (rQSMCMC2) algorithm is an extended version of the

algorithms presented by Chopin et al. (2005), Herbst and Schorfheide (2014) and Duan and

Fulop (2015). Augmenting the latter work, I give a theoretic, general presentation of the full

algorithm that covers a plethora of variants and special cases. Nevertheless, the presentation

is application-oriented to bridge the gap between theory and applied econometrics.

Email address: Fabian.Goessling@uni-muenster.de (Fabian Goessling)

CQE Working Paper This Version: February 21, 2018

The rQSMCMC2 algorithm is based on a particle filter for the latent state variables,

which itself is used to form a second, outer particle filter on an extended parameter space.

The outer SMC approximation is mutated using blocked, correlated pseudo-marginal MCMC

steps. Slight variations in the parametrization shift the algorithm from pseudo-marginal

MCMC to SMC2 and vice versa, such that the presented approach nests standard (cor-

related) pseudo-marginal MCMC, parallel pseudo-marginal MCMC and SMC2 as special

cases, blurring the borders between the methods.

Besides the theoretic justification, which is related to Gerber and Chopin (2015), another

contribution is the seamless integration of a variety of tuning approaches, e.g. likelihood

tempering, data tempering, adaptive proposals, random blocking and randomized Quasi

Monte Carlo (rQMC) numbers.

The paper proceeds as follows. Section 2 introduces the notation, the general setting and

briefly reviews importance sampling. Section 3 covers the SMC steps. Section 4 describes

several tuning-approaches, extensions and limiting cases as well as a comment on resampling.

As an empirical illustration, a standard stochastic volatility model is estimated by eight

different versions of the algorithm in section 5. Section 6 concludes.

2. General setting

Throughout the paper, consider a state space model with latent variables xt ∈ X ⊆ Rd

which are observed through variables yt ∈ Y ⊆ Rl with parameter vector θ ∈ Θ ⊆ Rp. The

objective is to obtain an unbiased estimator of the high-dimensional integral∫
Θ

∫
X

∫
X
. . .

∫
X
ϕ(θ)p(θ,x0,x1, . . . ,xT |y1:T)dx0dx1 . . . dxTdθ (1)

where ϕ : Θ → R. Naive SMC methods approximate (1) by an appropriately weighted set

of particles of dimension dim(Θ)× (T + 1)×dim(X). Clearly, such a direct approach, which

necessitates approximations of the marginals xt|y1:T for all t ∈ {0, . . . , T}, is needlessly

complex if one is exclusively interested in θ|y1:T .

SMC2 methods reduce complexity by splitting up the problem. The first step is a point-

wise approximation of the likelihood p(y1:T |θ). In the second step, it is used to construct

an approximation of the posterior distribution with density p(θ|y1:T). Given samples from

2

the posterior distribution, it is straightforward to approximate integrals of the form∫
Θ

ϕ(θ)p(θ|y1:T)dθ.

As importance sampling is the key element in both steps, I proceed with a brief review.

Importance sampling allows to sample from a target distribution π(dx) by means of an

importance (or proposal) distribution p(dx).1 The general idea of importance sampling is

based on the identity

π(dx) =
G(x)p(dx)∫
X G(x)p(dx)

(2)

with the Radon-Nikodym derivative

G(x) =
π(dx)

p(dx)
.

Importance sampling approximates (2) by the discrete distribution

πN(dx) ∝
N∑
n=1

G(xn)δxn(dx),

where xn denotes a sample from the importance distribution p(dx), δxn(dx) is the Dirac mea-

sure in xn, and G(·) evaluated at xn are unnormalized importance weights. This approach

allows to approximate an integral over a function ϕ : X → R as

πN(ϕ) =

∫
X
ϕ(x)πN(dx),

where πN(ϕ) denotes the expectation of ϕ(x) under the approximate measure πN(dx). This

general idea carries over to Section 3, where sequential iterations of importance sampling

steps are used to approximate the likelihood and the posterior distribution of a general

state-space model, respectively.

1As suggested by Andrieu et al. (2002), the following notation is adopted: Distributions are denoted as

p(dx), and the corresponding density with respect to an underlying measure is denoted as p(x).

3

3. Sequential Monte Carlo

3.1. SMC for latent variables

The dynamics of the possibly non-linear, non-Gaussian, Markovian state space model

considered in Section 2 are

x0 ∼ fX0 (dx0|θ), (3)

xt|xt−1 ∼ fX(dxt|xt−1,θ), (4)

yt|xt ∼ fY (dyt|xt,θ), (5)

where for the time being, θ is considered a fixed parameter vector. Let f(d·) denote known

distributions, e.g. implied by an underlying economic model, while unknown generic distri-

butions that have to be approximated are denoted as p(d·). Following Gerber and Chopin

(2015), all probability measures are assumed to be elements of the set P(X) of probabil-

ity measures dominated by the Lebesgue measure, and π(ϕ) denotes the expectation of a

function ϕ : X → R with respect to π ∈ P(X). For ease of notation, I omit θ from the

conditioning set for the remainder of this subsection.

Due to the Markov property of xt and conditional independence of yt given xt, it follows

that

p(dxt|y1:t−1) =

∫
X
fX(dxt|xt−1)p(dxt−1|y1:t−1), (6)

hence the incremental likelihood contributions are given as

p(yt|y1:t−1) =

∫
X
fY (yt|xt)p(dxt|y1:t−1), (7)

implying the likelihood

p(y1:t) = p(y1)
t∏

τ=2

p(yτ |yτ−1). (8)

The distribution of the latent states in period t conditioned on observations up to t is

p(dxt|y1:t) = p(yt|y1:t−1)−1fY (yt|xt)p(dxt|y1:t−1), (9)

which can be used to construct p(dxt+1|y1:t) and so on and so forth in a recursive manner.

Note that the eventual objective of the current subsection is to get an estimator for the

4

likelihood (8). To do so the normalizing constant p(yt|y1:t−1) in equation (9) has to be

approximated as the predictive and filtering distributions in (6) and (9) are in general

analytically unknown.

The rigorous approach of Gerber and Chopin (2015) facilitates a deeper understanding

of the algorithm’s underlying mechanics, at the cost of a slightly more complex notation.

Define the functions

G0(x0) =
fY (y0|x0)fX0 (dx0)

m0(dx0)
,

Gt(xt−1,xt) =
fY (yt|xt)fX(dxt|xt−1)

mt(xt−1, dxt)
,

with

G0 : X → R+,

Gt : X × X → R+,

ϕ : X → R,

an initial importance distributionm0(dx0) and a set of Markov transition kernelsmt(xt−1, dx)

for t ≥ 1. Sampling x0 ∼ m0(dx0) yields the importance sampled distribution

Q0(dx0) = m0(dx0)G0(x0)/Z0,

Z0 =

∫
X
G0(x0)m0(dx0),

for t = 0, corresponding to p(dx0|y0). Combining the latter distribution with the kernel

m1(x0, dx1) constitutes the importance distribution for t = 1, i.e.

Q1(d(x0,x1)) =
G1(x0,x1)Q0(dx0)m1(x0, dx1)∫

X

∫
X G1(x0,x1)Q0(dx0)m1(x0, dx1)

. (10)

As an intermediate measure, define the predictive distribution

Q̄1(d(x0,x1)) = Q0(dx0)m1(x0, dx1).

Then equation (10) can be rewritten as

Q1(d(x0,x1)) =
Q̄1(d(x0,x1))G1(x0,x1)

Q̄1(G1)
,

5

which yields the well-known prediction-update recursion of filtering algorithms for t > 1 as

Q̄t(d(xt−1,xt)) = Qt−1(d(xt−2,xt−1))mt(xt−1, dxt),

Qt(d(xt−1,xt)) =
Q̄t(d(xt−1,xt))Gt(xt−1,xt)

Q̄t(Gt)
,

where Q̄t(d(xt−1,xt)) and Qt(d(xt−1,xt)) are measures on X × X . The marginal distribu-

tions of Q̄t(d(xt−1,xt)) and Qt(d(xt−1,xt)) with respect to xt correspond to (6) and (9),

respectively. For any function ϕ : X → R,

Q̄t(ϕ) =
1

Zt−1

E

[
ϕ(xt)G0(x0)

t−1∏
τ=1

Gτ (xτ−1,xτ)

]
,

Qt(ϕ) =
1

Zt
E

[
ϕ(xt)G0(x0)

t∏
τ=1

Gτ (xτ−1,xτ)

]
,

where expectations are taken with respect to the Markov Chain defined by mt(xt−1, dxt).

The normalizing constant

Zt =

∫
X
. . .

∫
X
G0(x0)

t∏
τ=1

Gτ (xτ−1,xτ)m0(dx0)
t∏

τ=1

mτ (xτ−1, dxτ) (11)

is the likelihood up to time t, corresponding to equation (8).

Having established the theoretical iterations, I turn to their Monte Carlo approximations.

Define the normalized importance weights

wn0 =
G0(xn0)∑N
i=1G0(xi0)

, (12)

wnt =
Gt(x

n
t−1,x

n
t)∑N

i=1Gt(xit−1,x
i
t)

(13)

and denote particles by xnt with n ∈ {1, . . . , N}. Thus, the estimator of Q0(ϕ) is
∑N

n=1 w
n
0ϕ(xn0),

where the particles xn0 are generated by m0(dx0). Consequently, the approximated prediction

probability measure is

Q̄N
t (d(x̃t−1,xt)) =

N∑
n=1

wnt−1δxn
t−1

(dx̃t−1)mt(x
n
t−1, dxt)

and the approximated update probability measure is

QN
t (d(x̃t−1,xt)) =

Q̄N
t (d(x̃t−1,xt))Gt(x̃t−1,xt)

Q̄N
t (Gt)

.

6

The marginal likelihood (11) can easily be approximated by the product of the average

unnormalized importance weights, i.e.

ZN
t =

(
1

N

N∑
n=1

G0(xn0)

)
t∏

τ=1

(
1

N

N∑
n=1

Gτ (x̃
n
τ−1,x

n
τ)

)
,

and resembles an unbiased estimator of the true likelihood as shown by Andrieu et al. (2010).

Note that the SMC presentation above possibly includes resampling steps as the measures

are defined on X × X and xnt 6= x̃nt .

3.2. SMC for parameter estimation

The iteration steps of the SMC for latent states yield an unbiased estimator ZN
T for the

likelihood. This estimator now acts as a stepping stone for parameter estimation in the sec-

ond step which combines SMC and the correlated pseudo-marginal MCMC of Deligiannidis

et al. (2016). To economize on notation, many variable names are re-used, and new symbols

are only introduced sparingly.

Consider an extended space Θ×U with parameters θ ∈ Θ ⊆ Rp and auxiliary variables

u ∈ U ⊆ RN×(T+1)×(d+1). In contrast to Section 3.1, the auxiliary random variables u which

are required for purely technical reasons, are explicitly taken into account. Typically, the

auxiliary variables are necessary to draw from the distribution QN
t (d(x̃t−1,xt)). Denoting

the unbiased estimator p̂(y1:T |θ,U) = ZN
T where U ∼ p(du) and defining π(·) = p(·|y1:T),

the joint posterior density of parameters and auxiliary variables on Θ× U is

π(θ,u) =
π(θ)p(u)p̂(y1:T |θ,u)

p(y1:T |θ)
,

which serves as target distribution for the second stage of SMC iterations. By construction

the posterior density

π(θ) ∝ p(y1:T |θ)p(θ),

is the marginal density of π(θ,u) when u is integrated out.

Let the index j denote the iteration stage of the algorithm, i.e. the j-th bridge distribution

is πj(d(θj,uj)). Similar to the previous section let

G0((θ0,u0)) =
π0(d(θ0,u0))

k0(d(θ0,u0))
, (14)

Gj((θj−1,uj−1), (θj,uj)) =
πj(d(θj,uj))

kj ((θj−1,uj−1), d(θj,uj))
, (15)

7

where

G0 : (Θ× U)→ R+,

Gj : (Θ× U)× (Θ× U)→ R+.

Let the initial target distribution π0(d(θ0,u0)) equal the prior p(d(θ0,u0)), and define

Markov kernels kj ((θj−1,uj−1), d(θj,uj)) for j = 1, . . . , J . The prediction and update

measures are then

Q0(d(θ0,u0)) =
G0(θ0,u0)k0(d(θ0,u0))

Z0

,

Z0 =

∫
Θ×U

G0(θ0,u0)k0(d(θ0,u0)),

Q̄1(d((θ0,u0), (θ1,u1))) = Q0(d(θ0,u0))k1((θ0,u0), d(θ1,u1)),

Q1(d((θ0,u0), (θ1,u1))) =
Q̄1(d((θ0,u0), (θ1,u1)))G1((θ0,u0), (θ1,u1))

Q1(G1)
.

and so on for all j = 2, . . . , J .

The Monte Carlo implementation closely follows Section 3.1, apart from from indexing

the particles {θm,um} by m ∈ {1, . . . ,M}, where M is the number of particles in the θ

dimension. The approximated measures are

Q̄M
j

(
d((θ̃j−1, ũj−1), (θj,uj))

)
=

M∑
m=1

wmj−1δ(θm
j−1,u

m
j−1)(d(θ̃j−1, ũj−1))kj

(
(θmj−1,u

m
j−1), d(θj,uj)

)
,

QM
j

(
d((θ̃j−1, ũj−1), (θj,uj))

)
=

1

Q̄M
j (Gj)

Q̄M
j

(
d((θ̃j−1, ũj−1), (θj,uj))

)
Gj((θ̃j−1, ũj−1), (θj,uj)),

where the normalized weights w1:M
j−1 are constructed using (14) and (15).

4. Implementation details and extensions

4.1. Auxiliary Markov kernel

An auxiliary Markov transition kernel can serve as a powerful tool to refine the samples

from Qj(d((θj−1,uj−1), (θj,uj))). Consider an index s = 1, . . . , S which denotes auxil-

iary steps in iteration j and denote the corresponding kernel k̃j((θj,s−1,uj,s−1), d(θj,s,uj,s)).

8

If k̃j(·, d·) has invariant distribution πj(d(θj,uj)) the invariance property (Andrieu et al.

(2002))∫
Θ×U

Qj(d((θj−1,uj−1), (θj,uj)))k̃((θj,1,uj,1), d(θj,2,uj,2))

= Qj(d((θj−1,uj−1), (θj,uj)))

holds. Thus, applying the kernel k̃(·, d·) for S iterations preserves the target distribution,

and defining

Qj(d((θj−1,uj−1), (θj,s,uj,s)))

= Qj(d((θj−1,uj−1), (θj,uj)))
s∏
r=2

k̃j((θj,r−1,uj,r−1), d(θj,r,uj,r)),

allows to generate S random realizations from the approximate measure of interest.

A possible auxiliary Markov kernel is the commonly used Metropolis Hastings (MH)

kernel. Omitting the fixed index j for parsimony the MH kernel is

k̃((θs−1,us−1), d(θs,us)) = α{(θs−1,us−1), (θs,us)}q((θs−1,us−1), d(θs,us))

+ r(θs−1,us−1)δ(θs−1,us−1)d(θs,us),

with acceptance probability

α{(θs−1,us−1), (θs,us)} = min

{
1,

πj(θs,us)q(θs−1,us−1|θs,us)
πj(θs−1,us−1)q(θs,us|θs−1,us−1)

}
, (16)

and rejection probability

r(θs−1,us−1) = 1−
∫

Θ×U
α{(θs−1,us−1), (θs,us)}q((θs−1,us−1), d(θs,us))

where q(·, d) denotes the proposal distribution and q(·|·) the corresponding density. Instead

of using a standard kernel, I propose the correlated pseudo marginal kernel of Deligiannidis

et al. (2016). It is a Metropolis-Hastings kernel on Θ×U with cunning proposals and priors

for the auxiliary variables u. The corresponding proposal distribution is split up into two

separate kernels, i.e.

q((θs−1,us−1), d(θs,us)) = q1(θs−1, dθs)q
2(us−1, dus),

9

and the prior for u is constructed, such that

p(us−1)q2(us|us−1) = p(us)q
2(us−1|us) (17)

holds. Thus the calculation of equation (16) simplifies noticeably, as the proposal density

and the prior for the auxiliary variables drop out of the calculation of the acceptance prob-

ability. Moreover, correlating the auxiliary variables decreases the Monte Carlo noise in

the acceptance probability, and thus the algorithm can be implemented with a significantly

smaller number N of particles in the xt dimension.

Note that the kernels kj(·, d·) and k̃j(·, d·) are subject to different requirements as they

serve different purposes. The former kernel is required to propagate the θ particles and even

though an MCMC step preserving the target distribution is a sensible choice, this is not

mandatory. By contrast, the latter kernel is used to refine the sample and has to have the

correct invariant distribution. In the following section, I discuss the proposal strategy with

regards to k̃j(·, d·).

4.2. Proposal distribution

Since the success of SMC hinges on suitable proposals for the θ particles, I suggest to

use the tailored proposal kernel q1(θs−1, dθs) of Herbst and Schorfheide (2014). Further, I

adopt their Gibbs strategy, which randomly partitions the parameter space into a predefined

number of subspaces Θ =
∏G

g=1 Θg. While constructing the proposal I make use of the full

set of particles in the parameter dimension (Andrieu et al. (2002), Herbst and Schorfheide

(2014) and Chopin et al. (2005)) and use the mixture distribution

(θms ,u
m
s)|θ1:M

s−1 ,u
1:M
s−1

∼ N (ρums−1, (1− ρ2))×

N (θms−1, c

2
s−1Σs−1) with probability p

N (θms−1, c
2
s−1diag(Σs−1)) with probability 1−p

2

N (θ̄s−1, c
2
s−1Σs−1) with probability 1−p

2

where Σs−1 and θ̄s−1 are the empirical covariance matrix and the mean of the particle set

θ1:M
s−1 , while diag(·) sets all non-diagonal elements of its input matrix to zero. Furthermore,

the scaling variable c is adapted after each iteration in order to achieve a pre-specified

10

acceptance ratio α̃∗. Note that the acceptance ratio α̃s measures the proportion of accepted

moves at step s, while the acceptance probability α is the probability of moving given the

current state of the Markov chain. In particular, I adopt the specification of Herbst and

Schorfheide (2014) and use the recursion

cs = cs−1f(1− α̃s−1),

where

f(x) = 0.95 + 0.1
exp(16(x− α̃∗))

1 + exp(16(x− α̃∗))
.

Note that the reversibility of the auxiliary distributions in (17) is left untouched by this

proposal distribution. Thus, calculating the acceptance probability (16) only requires to

evaluate the density of the normal mixture distribution at θs. Furthermore, one could

dampen the Monte Carlo noise in the likelihood estimation by using an additional Gibbs

block for the auxiliary variables. An alternative approach is presented by Tran et al. (2017),

who propose to update random partitions of the us vector in a pseudo-marginal MCMC

framework.

4.3. Tempering strategies

This section discusses different ways to construct bridge densities, in particular the three

obvious approaches: likelihood tempering, data tempering and a combination of both. Each

of these approaches applies a tempering schedule Φ(j) to the target distribution.

For likelihood tempering this schedule is defined such that Φ(1) = 0 and Φ(J) = 1, and

the bridge distributions are constructed as

πj(d(θj,uj)) ∝ p(y1:T |θj,uj)Φ(j)p((dθj,uj))

for j = 1, . . . , J and Φ(·) is increasing in j. Furthermore, setting the initial target distribu-

tion equal to the prior and defining the particle generating kernel

kj ((θj−1,uj−1), d(θj,uj)) = πj−1(θj−1,uj−1)δ(θj−1,uj−1)(d(θj,uj)), (18)

simplifies the algorithm as the ratios (14) and (15) reduce to

G0((θ0,u0)) = 1

Gj((θj−1,uj−1), (θj,uj)) = p(y1:T |θj−1,uj−1)Φ(j)−Φ(j−1).

11

In contrast, the data tempering approach adds observations step by step to the condi-

tioning set of the target distribution, such that πj(θj,uj) ∝ p(y1:Φ̃(j)|θj,uj)p(θj,uj) where

e.g. Φ̃(1) = 1 and Φ̃(J) = T . Thus, while maintaining kernel (18), the corresponding

weights simplify to

G0((θ0,u0)) = 1

Gj((θj−1,uj−1), (θj,uj)) = p(yΦ̃(j)|θj−1,uj−1,y1:Φ̃(j−1)).

Both approaches can be combined to construct doubly-tempered bridge distributions.

For each data tempering step one runs a full likelihood tempering schedule. Such a combined

approach could be termed incremental likelihood tempering and the weights are

G0((θ0,u0)) = 1

Gj((θj−1,uj−1), (θj,uj)) = p(yΦ̃(j)|θj−1,uj−1,y1:Φ̃(j−1))
Φ(j)−Φ(j−1),

where Φ̃(j) is constant for a sweep of the likelihood tempering schedule. The combined

tempered approach might be particularly useful for very high dimensional posterior distri-

butions, as it ensures that successive bridge distributions are even more alike than in the

standard tempering cases.

All approaches use the approximation of stage j−1 as importance distribution, and thus

the particles of the initial stage are carried through all stages, leading to a deteriorating

variety of the particle swarm over iterations. Therefore auxiliary mutation steps (i.e. S ≥
1) are necessary to rejuvenate the swarms. Note that data tempering allows to interpret

the bridge densities, while likelihood tempering does not. Even though the intermediate

distributions are not unbiased estimators of the “true” transformed posterior, this is not a

concern as only the final approximation is used for inference.

4.4. (Randomized) Quasi Monte Carlo

As additional extension randomized Quasi Monte Carlo (rQMC) numbers instead of

pseudo-random numbers are used (Gerber and Chopin (2015)). This choice is motivated by

the Koksma-Hlawka inequality∣∣∣∣ 1

N

N∑
n=1

ϕ(un)−
∫

[0,1)d
ϕ(u) du

∣∣∣∣≤ V (ϕ)D?(u1:N),

12

which states that the approximation error is bounded by a measure of variation V (·) of

a function ϕ : U → R and a discrepancy measure D?(u1:N)2. For parsimony, consider

integration in the unit cube [0, 1)d, i.e. approximating an integral by

1

N

N∑
n=1

ϕ(un) ≈
∫

[0,1)d
ϕ(u)du,

where the discrepancy measure quantifies the uniformity of the integration points u1:N in

the unit cube. QMC provides are low discrepancy set by construction and is thus a natural

choice for constructing u1:N . Nevertheless, directly using a QMC sequence v1:N or a deter-

ministic (sparse) grid as integration points u1:N is not adequate as the resulting estimator is

deterministic, and hence biased. Therefore a randomization has to be applied which trans-

forms the QMC point set into a rQMC point set that, on the one hand, retains the low

discrepancy property, but on the other hand, ensures that marginally un ∼ U([0, 1)d). A

simple method is the Cranley-Patterson shift,

un = (vn + w) mod 1,

w ∼ U([0, 1)d).

Estimators based on the shifted points are unbiased,

E

[
1

N

N∑
n=1

ϕ(un)

]
=

∫
[0,1)d

ϕ(u)du.

As the state variables in equation (3) are transformations of uniform auxiliary variables

by assumption, the rQMC points imply the set of integration points x1:N
t , i.e. the particle

swarm. Implementing resampling steps (discussed in the next section) requires additional

random variates ur,nt ∼ U([0, 1)) for each particle at each time step t. Overall, I thus consider

a QMC sequence v1:N where vn ∈ [0, 1)(d+1)(T+1) and apply a random shift for n = 1, . . . , N ,

such that

un = (vn + w) mod 1

2See Gerber and Chopin (2015) for more details on discrepancy measures and variation.

13

is marginally un ∼ U([0, 1)(d+1)(T+1)) if w ∼ U([0, 1)(d+1)(T+1)). Using this construction

with M different w generates M random replications of an integration grid of dimension

N × (d+ 1)(T + 1), which I use to run the M inner particle filters.

Using the rQMC sequence u1:N has a welcome side effect when computing the correlated

pseudo-marginal kernel of Deligiannidis et al. (2016). Instead of keeping track of M ×
N × (d + 1)(T + 1) uniform random numbers, there are only M random variables w, i.e.

M×(d+1)(T+1) one dimensional uniform random numbers, and the deterministic sequence

v1:N . Note that while my implementation relies on the Sobol set, any kind of integration

lattice or (sparse) grid could be used to construct v1:N .

4.5. Resampling

As stated before, the resampling step is implicit in Section 3, but its computational

implementation requires some comments. For the sake of brevity, I only discuss how to

resample the particles x1:N
t . All arguments carry over to the particles θ1:M

j .

Resampling the particle set x1:N
t−1 to obtain a new set x̃1:N

t−1 is necessary to avoid dominating

single weights. It is straightforward to implement a resampling step by using a projection

h : X → [0, 1) which is given by an absolute ordering σ(·) of x1:N
t−1. In combination with the

normalized weights (12) and (13), the ordering allows to construct an empirical cumulative

distribution function

FN(n) =
N∑
i=1

w
σ(i)
t−1 1{σ(i)≤n},

such that the index ant−1 of the ancestor of particle xnt can be sampled by inversion methods.

This requires additional N uniform random variables ur,nt ∼ U([0, 1)) (as mentioned in

Section 4.4) which are used to set ant−1 = F−1
N (ur,nt) and xnt−1 = x

at−1

t−1 .

The crucial choice is the ordering σ(·). Obviously, the simplest approach is to use the

index n as ordering criterion, i.e. σ(n) = n, which corresponds to standard multinomial

resampling. There are, however, better ways to resample (in terms of the variance of the

estimator based on the resampled particles). In the one-dimensional case an intuitive and

natural choice is to sample a set of quantiles of xt that uniformly cover [0, 1). To do so, the

particles xt have to be sorted ascendingly. For higher dimensions, such a natural ordering

does no longer exist. Gerber and Chopin (2015) propose a sorting mechanism that is based

14

on Hilbert’s space-filling curve. This method constructs σ(·) such that after rearranging,

successive particles are “similar” in some sense and increasingly ordered. Thus, by using a

quasi-random number set to construct ur,nt the resampled particles fill the space X evenly.

Samples obtained from Q̄N(d(x̃t−1,xt)) are a low discrepancy point set and the integration

error can be kept small.

Note that Deligiannidis et al. (2016) propose to use the Hilbert sort with a different

intention. They correlate the pseudo-random numbers ur,nt and adopt the Hilbert sort in

order to assure that slightly changing ur,nt to u′r,nt results in a′nt−1 = F−1
N (u′r,nt) such that

x
at−1

t−1 is close to x
a′t−1

t−1 . Then, the likelihood approximation p̂′(y1:T) is (hoped to be) close

to p̂(y1:T), i.e. the acceptance probability of a MH step is less distorted by noise induced

by the filter. As an alternative, I propose to use the previous weights directly, such that

w
σ(1)
t−1 ≤ . . . ≤ w

σ(N)
t−1 . Then, after resampling the likelihood approximation p̂′(y1:T) is close

to p̂(y1:T) as well.

4.6. Parallel MCMC

In principle, SMC algorithms are intended to approximate a distribution by a cross-

section of samples. However, a special case of the rQSMCMC2 nests a (parallel) MCMC

method. Therefore only a single bridge distribution is required, i.e.

π0(θ0,u0) = p(θ,u),

π1(θ1,u1) = π(θ,u),

and S iterations of the MH-kernel k̃((θ1,s−1,u1,s−1), d(θ1,s,u1,s)) are carried out. This cor-

responds to a single importance sampling step, that is passed on to M “embarrassingly

parallel” MCMC chains. The proposal distribution is constructed using the pooled informa-

tion across all chains. Whereas MCMC requires ergodic chains and a burn-in phase, the SMC

framework is less demanding, i.e. the pooled set {QM
1 (d((θj−1,uj−1), (θj,s,uj,s)))}s∈{1,...,S}

resembles draws from the posterior distribution of θ.

15

Algo- Data Likelihood

rithm tempering tempering S M T

1 - 100 5 20000 80

2 80 5 5 5000 80

3 80 - 10 12500 80

4 - 40 5000 50 80

5 - 300 5 10000 300

6 300 - 5 10000 300

7 300 4 2 6250 300

8 - 20 12500 60 300

Table 1: This table specifies eight different variants of the estimation algorithm. Each variant uses a fixed

number of 20 000 000 (30 000 000) (incremental) likelihood evaluations. Columns 2 to 5 report the number

of data tempering/likelihood tempering steps, the number of MCMC mutation steps (S), the number of θ

particles (M) and the length of the data sample (T).

5. Application

As an empirical application consider the simple stochastic volatility model

yt ∼ N
(

0, exp
(xt

2

)
σ2
y

)
,

xt ∼ N (ρxt−1, σ
2
x),

with parameter vector θ = (σy, ρ, σx)
′. Given this setting, I compare the eight versions of

the algorithm listed in Table 1. In particular, I fix the number of (incremental) likelihood

evaluations to 20 000 000 (30 000 000) in order to assess the performance under a shared

constraint for a small (medium) sample size of 80 (300) observations.

I use the same tailored proposal distribution (10) and priors across all versions, random-

ized Sobol sequences, two random Gibbs blocks and a fixed number of particles N = 500

in the xt dimensions. The data set is simulated using σy = 1.2, ρ = 0.95 and σx = 0.2 and

depicted in Figure 1.

Table 2 summarizes the key estimation results. Judging from a single simulation run,

Algorithms 1, 2 and 4 essentially yield equivalent point estimates and intervals, while Al-

gorithm 3 slightly deviates. This is understandable if one recalls that the data tempering

approach adds new information step by step, while likelihood tempering uses all available

16

Alg. ρ σx σy

Panel A: Mean

1 0.7973 0.2700 1.5779

2 0.7971 0.2697 1.5773

3 0.7861 0.2991 1.5689

4 0.7973 0.2681 1.5774

5 0.9126 0.2523 1.4692

6 0.9040 0.2659 1.4721

7 0.9098 0.2590 1.4690

8 0.9165 0.2478 1.4656

Panel B: Median

1 0.7999 0.2483 1.5815

2 0.7998 0.2465 1.5801

3 0.7908 0.2695 1.5738

4 0.7996 0.2473 1.5816

5 0.9327 0.2294 1.4737

6 0.9258 0.2421 1.4785

7 0.9297 0.2363 1.4764

8 0.9361 0.2253 1.4714

Panel C: Interval [0.05,0.95]

1 [0.6369, 0.9491] [0.0370, 0.5783] [1.2717, 1.8777]

2 [0.6370, 0.9512] [0.0386, 0.5809] [1.2747, 1.8789]

3 [0.5974, 0.9565] [0.0375, 0.6664] [1.2277, 1.8929]

4 [0.6367, 0.9508] [0.0377, 0.5741] [1.2721, 1.8728]

5 [0.7672, 0.9870] [0.1293, 0.4550] [1.1767, 1.7461]

6 [0.7489, 0.9877] [0.1273, 0.4840] [1.1609, 1.7593]

7 [0.7607, 0.9881] [0.1296, 0.4676] [1.1644, 1.7531]

8 [0.7775, 0.9878] [0.1268, 0.4448] [1.1614, 1.7481]

Table 2: This table reports estimation results for the variants of the algorithm listed in Table 1. Panel A

reports the posterior mean, Panel B reports the median and Panel C a 90% Bayesian interval constructed

from the 0.05 and 0.95 quantile of the posterior distribution.

17

0 50 100 150 200 250 300

t

-6

-4

-2

0

2

4

6

8

y
an

d
x

Figure 1: Simulated stochastic volatility model. This figure shows the simulated data set: the observable

return series yt (solid blue line) and the latent log-volatility xt (dashed red line).

information right from the start. While the bridge distributions for data tempering are

sensitive to outliers in the data and thus relatively different from each other, the likelihood

tempered bridge distributions are by construction more alike. The downside is that the in-

termediate distributions have no direct interpretation, while data tempering allows to track

the evolution of the posterior distribution over time.

As the results for Algorithm 2 show, combining both tempering approaches solves the

problem of data tempering. Moreover, note that the results of the parallel MCMC-style

Algorithm 4 are equivalent to the SMC-style Algorithms 1 and 2. For the medium sample

size of 300 observations and more tempering steps, Algorithms 5 to 8 result in roughly

the same parameter estimates. The sightly more disperse estimates of Algorithms 5 to 8

as compared to Algorithms 1 to 4 can be explained by the fact that the dimension of the

integral (1) is more than 3 times higher if T = 300. Still, due to more data points and better

identification, the estimates approach the “true” values used for the simulation.

Summing up, the results in Table 2 are in favour of likelihood tempering with a balanced

choice between the number of MCMC steps S and the number of θ particles M .

6. Conclusion

The rQSMCMC2 algorithm is a highly versatile and powerful tool for parameter esti-

mation of non-linear, non-Gaussian state space models and nests a considerable variety of

18

conventional algorithms. In particular, it merges SMC with MCMC methods into a uni-

fying, flexible framework. It is straightforward to exploit parallel computing architectures.

This is especially helpful for estimating complex economic models, e.g. non-linear Dynamic

Stochastic General Equilibrium models, when it is necessary – but very expensive in terms

of computing time – to solve the model for each draw of θ.

A moot question, subject to future research, is how an optimal trade-off between SMC

and MCMC can be achieved, and how specific (model) criteria can be used to automatize

tuning of the algorithm. Incorporating the Hilbert sort also constitutes a promising extension

to reduce the Monte Carlo integration errors.

19

Literature

Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov Chain Monte Carlo Methods. Journal

of the Royal Statistical Society Series B - Statistical Methodology 72 (3), 269–342.

Andrieu, C., A. Doucet, and E. Punskaya (2002). Sequential Monte Carlo Methods for Optimal Filtering.

In Sequential Monte Carlo Methods in Pratice, pp. 79–95.

Chopin, N., P. Jacob, and O. Papaspiliopoulos (2005). SMC2 : An Efficient Algorithm for Sequential

Analysis of State-Space Models. Working Paper (1), 1–27.

Deligiannidis, G., A. Doucet, and M. K. Pitt (2016). The Correlated Pseudo-Marginal Method. pp. 1–61.

Duan, J. and A. Fulop (2015). Density-Tempered Marginalized Sequential Monte Carlo Samplers. Journal

of Business & Economic Statistics 33 (2), 192–202.

Gerber, M. and N. Chopin (2015). Sequential Quasi Monte Carlo. Journal of the Royal Statistical Society

Series B - Statistical Methodology 77 (3), 509–579.

Herbst, E. and F. Schorfheide (2014). Sequential Monte Carlo Sampling for DSGE Models. Journal of

Applied Econometrics 1098 (July), 1073–1098.

Tran, M.-N., R. Kohn, M. Quiroz, and M. Villani (2017). The Block Pseudo-Marginal Sampler. Working

Paper .

20

	Titelblatt Goessling WP 70
	Working Paper Goessling 70
	Introduction
	General setting
	Sequential Monte Carlo
	SMC for latent variables
	SMC for parameter estimation

	Implementation details and extensions
	Auxiliary Markov kernel
	Proposal distribution
	Tempering strategies
	(Randomized) Quasi Monte Carlo
	Resampling
	Parallel MCMC

	Application
	Conclusion

