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Abstract

Previous volatility spillover models (Engle et al. (1990), Clements et al. (2015))
use artificially non overlapping trading zones to identify sources of volatility
transmission between these zones. The problem of non overlapping zones is over-
come using a copula GARCH approach that allows for multiple overlaps between
zones incorporating vine copulas to flexibly model the dependence structure and
to meet stylized facts of return data. Stationarity conditions are examined and
identifications problems concerning previous work, as well, are pointed out.
To handle the relatively large parameter space, the model is estimated by Bayesian
methods using a differential evolution MCMC (Braak 2006) approach. Simulation
studies are carried out in order to ensure robustness against copula or error term
misspecification and in order to analyze the identification problem.
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1 Introduction

Interest in volatility spillovers between different market places first aroused at
the late 80’s and early 90’s of the past century. Beginning with the seminal work
of Engle et al. (1990) channels of volatility spillovers for different markets and
different assets, see for example the work of Fleming and Lopez (1999) among
others, have been detected. Those papers following the GARCH approach of
Engle et al. (1990) to model spillover effects generally construct trading days
consisting of geographically distinct trading zones, such that e.g. London and
New York do not share common trading hours. Thus the effects measured
from these models are prone to misspecification and sensitive to changes of
the trading day structure. One more recent example is the paper of Clements
et al. (2015) who re-investigate the results of Engle et al. (1990) and additionally
estimate a set of different model specifications using realized volatility, decom-
positions into good and bad news as well separating realized volatility into a
continuous component and a jump component. On the downside Clements et al.
(2015) neither give deep insights in their methodology nor question the artificial
construction of a non overlapping trading day. Additionally, only normally
distributed innovations are used although financial returns usually exhibit fat
tails (see e.g. Rogalski and Vinso (1978) or Boothe and Glassman (1987) who
both find that either t distributions with slightly less than 4 degrees of freedom
or stable distributions with stability parameter α < 2 fit best to daily foreign
exchange rates).
Knowledge of volatility spillover channels is not only interesting on it’s own
but can be used to precisely forecast over night risk of assets or portfolios, espe-
cially if they either denote in foreign currencies or are most commonly traded
abroad. To be able to create precise forecasts, a reliable estimation of both, the
underlying process of the (conditional) volatility as well as the distribution of
the asset’s return are important. To that end, a multivariate copula GARCH
(CMGARCH) model that meets those requirements is introduced.
The remainder of this paper organizes as follows: section 2 introduces copulas
and vine copulas which will be used later on to connect the error terms. Section
3 covers the Heat Wave and Meteor Shower model of Engle et al. (1990) and
one extension of Clements et al. (2015), whereas section 4 extends this model
class to overlapping trading zones. Section 5 explains the algorithm that is used
for estimation and section 6 supplies simulation studies and robustness checks.
The final section briefly concludes.
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2 Copulas and Vine Copulas

This section introduces concept of copulas and vine copulas, before turning
the focus on modeling spillovers in the subsequent section. Consider a m-
dimensional random vector X = (X1, . . . , Xm) with joint distribution function
FX . If this joint distribution function is continuous, there is a unique decompo-
sition into the marginal distribution functions FX1 to FXm and a corresponding
copula C(u1, . . . , um), where ui = FXi(xi), according to Sklar’s famous theorem:

FX(x) = C
(

FX1(x1), . . . , FXm(xm)
)
= C

(
u1, . . . , um

)
. (1)

Hence, it is possible to model marginal distributions and their dependency
structure independently of each other. Although copulas add flexibility in
modeling multivariate data the extend of additionally flexibility is limited
since most copulas are symmetric in the sense that (at least) their functional
form is identical in each dimension or strong restrictions apply when building
multivariate Archimedean copulas (see Savu and Trede (2010)). The concept of
regular vines -or pair copula constructions-, introduced by Bedford and Cooke
(2002) and further developed by Aas et al. (2009), Dißmann (2010) among others
offer a solution to this issue. A regular vine is a factorization of a multivariate
density function into its marginal densities and (conditional) copula densities.
This factorization can be conceived of a set of spanning trees with each node
being a (conditional) random variable and each edge being a (conditional)
copula to connect these nodes. Given a d−dimensional random variable, a
regular vine V can be formally described as (see Brechmann (2010))

Definition 2.0.1. Regular Vine

1. V =
(
T1, . . . , Td−1

)
2. T1 =

(
N1, E1

)
is a tree with nodes N1 = {1, . . . , d}. For i = 2, . . . , n − 1,

Ti =
(

Ni, Ei
)

is a tree with nodes Ni = Ei−1

3. For i = 2, . . . , n− 1, if {a, b} ∈ Ei, where a = {a1, a2} and b = {b1, b2}, then
exactly one element of a equals one element of b.

The third part of this definition is usually referred to as proximity condition
and ensures that only pairs of variables are modeled together in one stage of
the vine that share a node in the previous stage. As a simple example of a three
dimensional regular vine consider the following factorization:

fX,Y,Z(x, y, z) = fX
(
x
)

fY
(
y
)

fZ
(
z
)
·

cX,Y
(

FX(x), FY(y)
)
· cY,Z

(
FY(y), FZ(z)

)
· cX,Z|Y

(
FX(x|Y), FZ(z|Y)

)
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The conditional distributions FX(x|Y) are computed using (see Schmitz (2003))

P(X ≤ x|Y = y) =
∂C(u, v)

∂v

∣∣∣∣
FX(x),FY(y)

.

Visually, this vine can be depicted as three trees where all nodes in each tree
are connected by a single path (see figure 1) and belongs to the subclass of
D-vines (drawable vines). D-vines are a natural starting point for modeling
different trading zones within a trading day since time develops on a single
path. Another subclass, the C-vines (canonical vines) is generate by placing
one node in the center of each tree and directly connecting all other variables
to build a star. If there is only a single layer of overlapping trading zones, it is
possible to truncate the vine structure after the first stage (i.e. all subsequent
stages consist of independence copulas) in order to save computation time (see
Brechmann et al. (2012)) Using only bivariate copulas in each of the trees allows

X Y ZXY YZ T1

XY YZ
XZ|Y T2

XZ|Y T3

Figure 1: Three dimensional regular vine

for very flexible modeling of high dimensional data.
There are several possibilities to estimate regular vines either using a two stages
approach by estimating the structure first and then fitting the pair copula
parameters or by estimating both, structure and parameters at once (Dißmann
et al. (2013)). A recent paper of Gruber and Czado (2015) introduces a fully
Bayesian sampling algorithm to estimate the posterior distribution of regular
vines. This approach gives posterior samples for both, the pair copula parameter
and the structure of the vine. A comprehensive R-package for regular vines is
supplied and maintained by Technical University of Munich (see Schepsmeier
and Nagler (2017)).
In the remainder of this paper, the structure of the vine will be induced by
the order of trading zones within a trading day and hence, only the copula
parameters need to be estimated.
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3 Heat Waves and Meteor Showers

In their seminal work Engle et al. (1990) detect two distinct effects of the
transmission of volatility: one from adjacent markets (the so called meteor
shower) and the other one from previous trading days in the same market (the
so called heat wave). In a model with more than one trading zone, the meteor
shower pattern reflects effects from neighboring trading zones on the current
market’s volatility, i.e. effects that move around the globe within the trading
day, whereas the heat wave pattern describes local (in terms of geographically
distinct markets) transmission effects. Canonical univariate GARCH models are
thus only capable of modeling heat wave patterns and the approach of Engle
et al. hence is an extension to multivariate GARCH models although only one
asset is examined at once.
The original model of Engle et al. (1990) contains i = 1, ..., m independent, i.e.
non-overlapping trading zones and describes returns ri in zone i as (the notation
is taken from Clements et al. (2015)) as:

ri
t = εi

t; εi
t ∼ N(0, hi

t) (2)

hi
t = κi + αiihi

t−1 +
i−1

∑
j=1

βijε
2
j,t +

n

∑
j=i

γijε
2
j,t−1 (3)

Using matrix notation this model can be rewritten following Clements et al.
(2015)

ht = K + Aht−1 + Bε2
t + Gε2

t−1, (4)

where ht and εt are m-element vectors of returns and innovations at time
t, respectively. Both, Engle et al. (1990) and Clements et al. (2015) use data
samples from the three trading zones USA (New York), Japan (Tokyo) and
Europe (London) to estimate their models. I follow their choice of trading zones
throughout this paper and hence, the parameter matrices corresponding to (4)
are given by:

A =

α11 0 0
0 α22 0
0 0 α33

 B =

 0 0 0
β21 0 0
β31 β32 0

 G =

γ11 γ12 γ13

0 γ22 γ23

0 0 γ33

 (5)

According to the matrix structure, the hypothesis of meteor showers would
be supported by nonzero coefficients in matrix B and nonzero off diagonal
coefficients in matrixG and the heat wave hypothesis would be supported by
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nonzero diagonal elements of G and A.
Up to now, only effects from current and lagged innovations on volatility in the
current zone as well as effects from previous volatility have been modeled, but
no intra day effects from volatility of preceding zones. To model such volatility
spillovers the specification is changed according to Clements et al. (2015) into:

ht = K + Aht−1 + Ãht + Br2
t + Gr2

t−1 (6)

with

A =

α11 0 α13

0 α22 0
0 0 α33

 B =

 0 0 0
β21 0 0
0 β32 0


G =

γ11 0 γ13

0 γ22 0
0 0 γ33

 Ã =

 0 0 0
α̃21 0 0
0 α̃32 0

 . (7)

Now, A contains all effects of previous day volatility in the same zone (on
the diagonal) plus the effect of preceding volatility in the last zone on current
volatility in the first zone, i.e. in the setting of three zones (London, New
York and Tokyo) the effect of preceding volatility in Tokyo on current volatility
in London. Throughout the remainder of the paper, specification (6) with
parameter matrices (7) will be used.
One key assumption of the models of Clements et al. (2015) and Engle et al.
(1990) is that trading zones are non overlapping, i.e. the trading times of
two distinct trading zones must not share common time. If trading zones
are non overlapping, then returns from different zones can be expected to
be independent, given previous information. Thus it is sufficient to model
a diagonal conditional covariance matrix Ht = diag(ht) for the return series.
Empirically this assumption does not hold as there are overlaps between major
trading zones, e.g. there is a three hour overlap between trading in Europe
(London: 8am to 4pm GMT) and the United States (New York: 1pm to 9pm
GMT). Additionally, a model that allows for overlapping trading zones can
incorporate a higher number of trading zones without the need of setting their
trading times to crudely short intervals. Ignoring overlapping trading zones
can lead to biased estimators of spillover effects, both intra day and between
trading days. The bias is strongest if a lot of volatility is created within the
overlapping trading time and high shares of the overlap are absorbed by only
one of the trading zones. In the previous example of three trading zones with
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a three hour overlap between London and New York all parameter matrices
can be expected to be biased if trading times are set accordingly to Clements
et al. (2015) or Fleming and Lopez (1999), i.e. almost all overlap is absorbed by
trading in New York (2.5 hours) and only a small share is added to trading in
London (0.5 hours).

4 Volatility transmission in overlapping trading zones

4.1 Modeling overlapping trading zones

To examine volatility transmissions in overlapping trading zones those zones
need to be modeled in advance. To that end, consider a world that consists
of only two trading zones Z1 and Z2. Trading in the first zone starts at z1a

and ends at z1b and trading times in zone two are from z2a to z2b. Usually
(see models of Engle et al. (1990), Fleming and Lopez (1999) or Clements et al.
(2015)) the restriction that those zones don’t overlap is imposed, i.e. z1b ≤ z2a.
This assumption is set aside here and the duration that both zones overlap is
denoted by t12 = z1b − z2a, the duration in which the first (second) trading zone
is the only active zone is given by t1 = z2a − z1a (t2 = z2b − z1b) and their total
trading hours are denoted by T1 = z1b − z1a (T2 = z2b − z2a). Let ηi denote the
standardized news occurring in zone i with η ∼ F and F being an arbitrary
distribution with mean zero and variance equal to one. Further denote by η?

1 , η?
2

and η?
12 the non standardized (i.e. their varaince is proportional to the trading

time in the respective zone) news occurring exclusively in the first, second and
overlapping zone. Then the former can be expressed as sums of the latter:

η1 =
η?

1 + η?
12√

T1
and η2 =

η?
12 + η?

2√
T2

. (8)

Accordingly, the covariance between the news of two overlapping trading zones
can be computed as

Cov(η1, η2) = E
[

η?
1 + η?

12√
T1

·
η?

12 + η?
2√

T2

]
=

t12√
T1T2

, (9)

which equals their correlation. Obviously, the correlation between news of
overlapping trading zones is only based on the share of overlapping trading
time compared to the total trading times. Since correlation only roots in identical
information from both zones it is in line with the market efficiency hypothesis.
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4.2 Volatility Transmission

The approach by Clements et al. (2015) reveals two major shortcomings: first,
stylized facts of stock returns (or other financial instruments) are not met by
the model as it only incorporates normally distributed innovations and second,
the model does not include cross correlated returns as beginning with Engle
et al. (1990), most subsequent papers constructs artificial trading days with non
overlapping trading zones. To overcome both issues a model is proposed that
follows the idea of copula-based multivariate GARCH models introduced by
Lee and Long (2009). The framework can incorporate both, non normal error
term distributions as well as arbitrary dependency structures between return
series.
Consider the following model for m potentially overlapping trading zones:

rt = H
1
2
t εt (10)

Ht = diag(ht)
1
2 Mt diag(ht)

1
2 (11)

ht = k + Aht−1 + Ãht + Br2
t + Gr2

t−1, (12)

εt = Σ
− 1

2
t ηt (13)

ηt ∼ F1,...,m(η1, ..., ηm; θt) (14)

where the parameter matrices A, Ã, B and G are defined as above and are
collected in α =

{
A, Ã, B, G

}
. The observed returns rt are modeled as product

of a uncorrelated set of innovations εt and the conditional covariance matrix
Ht. The uncorrelated innovations are computed from another set of error terms,
ηt whose distribution should not be restricted here. Instead, the distribution
F of the innovations ηt is constructed from m potentially different marginal
distributions with E(ηt) = 0 and E(ηtη

′
t) = Σt, according to the previous section,

and a copula C in order to model the dependence between innovations within
a trading day (i.e. between trading zones). To allow both, multiple overlaps
and high flexibility, the copula linking the individual trading zones will be
constructed using a D-vine structure. Let θt collect all marginal distribution
parameters as well as all copula parameters. For identification assume that
diag(Σt) = 1m. Accordingly, E(εt) = 0 and E(εtε

′
t) = Im and consequently the

innovations εt are uncorrelated but still dependent as the covariance matrix Σt

can only partially account for the dependence of the innovations (at least if a
non Gaussian copula is chosen). For the rest of this paper the parameter vector
of the copula and the marginal distributions are assumed to be constant over
time, i.e. θt = θ and consequently Σt = Σ. As Mt is the correlation matrix of
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the returns rt it is set equal to Σ and is assumed to be constant over time, as
well.

4.3 Stationarity

For the non overlapping specification with Ã = 0 and A being diagonal,
stationarity conditions can be found in Engle et al. (1990). The stationarity
conditions for the above specification will now be evaluated. The one step
ahead forecast of ht is given by E

[
ht|Ft−1

]
where Ft−1 denotes all information

up to t− 1, i.e Ft−1 =
{

r0, . . . , rt−1, h0, . . . , ht−1
}

. Starting at equation (12) and
taking expectations yields:

E
[

ht|Ft−1

]
= E

[
k + Aht−1 + Ãht + Br2

t + Gr2
t−1|Ft−1

]
,

and applying iterated expectations to E
[
r2

t |Ft−1
]

results in

E
[

ht|Ft−1

]
= k + Aht−1 + ÃE

[
ht|Ft−1

]
+ BE

[
ht|Ft−1

]
+ Gr2

t−1,

since diag(Ht) = ht and hence

E
[

ht|Ft−1

]
= (I − Ã− B)−1(k + Aht−1 + Gr2

t−1). (15)

Accordingly, the n ≥ 1 step ahead forecast is given by

E
[

ht|Ft−n

]
= (I − Ã− B)−1

(
k + (A + G)E

[
ht−1|Ft−n

])
, (16)

applying iterated expectations on E
[
r2

t |Ft−n
]

and E
[
r2

t−1|Ft−n
]
.

Evaluating E
[

ht−1|Ft−n

]
in (16) recursively for n→ ∞ reveals that stationarity

requires all eigenvalues of (I − Ã− B)−1(A + G) to lie inside the unit circle. If
the process is stationary, the unconditional variance is given by

h = lim
n→∞

E
[

ht|Ft−n

]
= (I − A− Ã− B−G)−1k. (17)

Equation (17) allows to control a given parametrization for non-negativity of
the unconditional variance h.

4.4 Simulation

To derive a simulation scheme for overlapping trading zones, first Cholesky
type decompositions are applied on the conditional covariance matrix Ht and
the correlation matrix M, i.e

Ht = diag(ht)
1
2 Mdiag(ht)

1
2 = LtL′

t

M = DD′
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and hence, Lt = diag(ht)
1
2 D, where both, L and D are lower triangular matrices.

Then the daily returns of all trading zones are given by rt = diag(ht)
1
2 Dε. Now,

the model can be simulated by an inner loop iterating through trading zones
and an outer loop iterating over trading days.

4.5 Identi�cation

Starting at equation (6) and solving the system in a way that only lagged volatil-
ities and past returns remain on the right hand side, one obtains:
h3,t = k3 + α32k2 + α32α21k1 + h3,t−1(α33 + α13α21α32)

+ h2,t−1(α32α22)

+ h1,t−1(α32α21α11)

+ r2
3,t−1(γ33 + γ13α21α32)

+ r2
2,t−1(γ22α32) + r2

2,t(β32)

+ r2
1,t−1(γ11α21α32) + r2

1,t(β21α32)

h2,t = k2 + α21k1 + h2,t−1(α22) + h1,t−1(α21α11) + h3,t−1(α13α21)

+ r2
3,t−1(γ13α21)

+ r2
2,t−1(γ22)

+ r2
1,t−1(γ11α21) + r2

1,t(β21)

h1,t = k1 + h1,t−1(α11) + h3,t−1(α13)

+ r2
3,t−1(γ13)

+ r2
1,t−1(γ11)

The model is identified if it is impossible to generate identical time series
of h with different parameter constellations. For h1, this is the case since
each parameter is multiplied with the respective variable, individually. The
equation for h2 reveals that potential for identification problems is given since
h1,t−1 and h3,t−1 are multiplied with products of parameters. Fortunately
increasing/decreasing α21 demands an increase/decrease of both α11 and α13

and hence affects h1. Turning to the equation for h3 and bearing in mind that α21,
α11 and α13 must not be increased/decreased there are no more free parameters
to change, resulting in identical values for h3 without affecting h1 and/or h2.
Note that identification of the GARCH parameters does not depend on whether
or not the model includes overlapping trading zones.

10



Now, consider an alternative specification in which the data generating process
is such that in the first of the above equations h3,t is a linear function of h1,t,
ie. h3,t = νh1,t, ν 6= 0. Then, multiplying α11 by δ11 can be fully compensated
by multiplying α13 by δ11

ν in the second and third equation. Consequently, the
model is no longer identified. Unfortunately, many parameter constellations
that seem to be quite innocent at first glance result in high correlations between
intra day volatilities and hence lead to poorly identified parameters. An example
of such parameterizations is given in one of the subsequent simulation studies.
Additionally, intra day correlation between volatilities is noch (substantially)
driven by intra day correlation between returns, i.e. the problem is also present
in the non overlapping specifications used by Clements et al. (2015).

5 Bayesian Inference

5.1 Di�erential Evolution MCMC

Differential Evolution MCMC (DE-MCMC) is a combination of the Differential
Evolution optimizer and Markov Chain Monte Carlo Methods that offers two
major advantages: first, DE-MCMC does not rely on a precise specification of
the proposal distribution and thus can handle large parameter spaces easily
and second, DE-MCMC profits from running many Markov Chains in parallel
and thus is perfectly suited to be used on a large scale cluster computer.
The general idea of DE-MCMC is rather simple1: N markov chains are run in
parallel with θi,j denoting the parameter vector of chain j in iteration i. Then a
value for θi+1,j is proposed by

θp,j = θij + γ(θi,a − θi,b) + ε (18)

where a and b are two different randomly drawn elements from {1, ...N}\j and
ε is drawn from a symmetric distribution with unbounded support to ensure
irreducibility of the chains. In other words, DE-MCMC randomly chooses
two different chains at each step, computes the difference of the parameter
vector of those chains, scales this difference with a factor γ, adds some random
noise ε and finally adds everything to the parameter vector of the current
chain. Then, the proposed new parameter vector is accepted with probability

1For an almost textbook like treatment of the algorithm, see the paper of Braak (2006), that
also contains some pseudo code for a basic DE-MCMC sampler.
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α = min
{

1,
p(θp,j|y)

p(θi−1,j|y)

}
2 with p(·|y) being the posterior distribution of the pa-

rameter vector θ given the data y.
For a large number of chains N and a small variance of the noise ε, the proposal
asymptotically (in this context, asymptotically refers to the number of chains
and not to sample size) looks like θp,j = θij + γε as N → ∞ with E(ε) = 0 and
Cov(ε) → 2Ω, the covariance matrix of the posterior distribution (see Braak
(2006)).
The given scheme results3 in N Markov chains with unique stationary distribu-
tion that has density p(·|y)N. Thus, once all chains converged, all draws can
be used as posterior samples leading to a large reduction in computation time.
In a simulation study on a 100-dimensional normal distribution, Braak shows
that convergence speed strongly depends on the number of chains and can be
substantially increased by choosing high numbers of chains. This underlines
that DE-MCMC is perfectly tailored for cluster computers with the ability of
evaluating many chains in parallel. This argument gets even stronger the more
complex and time consuming the evaluation of the likelihood is as the fraction
of overhead reduces, the longer each individual processor needs for computa-
tion.
Convergence of the Markov chains can be assessed by computing the between-
and within-sequence variances B and W (see Gelman et al. (2004)):

B =
T

N − 1

N

∑
j=1

(θ̄·j − θ̄)2, where θ̄·j =
1
T

T

∑
i=1

θi,j, θ̄ =
1
N

N

∑
j=1

θ̄·j

W =
1
N

N

∑
j=1

s2
j , where s2

j =
1

T − 1

T

∑
i=1

(θi,j − θ̄·j)
2.

Then R̂ measures the potential scale reduction of the current distribution of θ

as T → ∞ with:

R̂ =

√
T−1

T W + 1
T B

W
. (19)

Usually values of R̂ lower than 1.2 indicate convergence of the chains of a single
parameter (see Gelman et al. (2004).).

2The acceptance probability is just the ratio of the posterior distributions as the DE-MCMC
algorithm is used with a random walk proposal and thus just behaves like a random walk
Metropolis-Hastings algorithm. For a textbook treatment see Greenberg (2008).

3For a proof, see Braak (2006).
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5.2 Estimation

The previously described DE-MCMC algorithm is used for estimation by al-
tering the simulation scheme in two ways: first a block wise sampler is used
and second, the scaling parameter γ is fitted adaptively in order to achieve
block wise acceptance ratios between 30% and 40% in each chain for a rolling
window of 200 observations. The noise, added to the difference of two chains is
distributed according to a normal distribution with expectation 0 and standard
deviation equal to γ2 ensuring relatively small noise compared to the difference
of chains. Each full simulation step is split up into six blocks of which the first
three sample all GARCH parameters (except the constant) belonging to the
three trading zones. The fourth block samples a new level of the stationary
volatility using the moment conditions implied by equation (17). The fifth
block draws all marginal distribution parameters and is skipped for normally
distributed errors and the final block samples all vine copula parameters. All
prior distributions are set to uniform distributions either within the boundaries
imposed by stationarity of the GARCH model or within natural boundaries, e.g.
all correlation parameters have priors uniformly on (−1, 1). In total, 64 chains
are run in parallel on a single node of Palma-NG4.

The correlation matrix Σ of the innovations ηt is approximated by monte
carlo simulation of the underlying distribution using a sample size of 20,000.
The log-likelihood is given by the sum of the log-densities of the marginal
distributions and the log-copula-density plus the sum of the Jacobian of the
transformation (see Lee and Long (2009)) from innovations ηt to returns rt,

i.e. the sum of ln
(∣∣∣∣Σ0.5(θ)H−0.5

t (α)

∣∣∣∣) for all observations t = 1, . . . , T with α

denoting all GARCH parameters and θ denoting the parameters of the marginal
distributions and the copula. Then,

ln(L) =
T

∑
t=1

ln
(

f1(η1,t)
)
+ ... + ln

(
fm(ηm,t)

)
+ ln

(
c(F1(η1,t), ..., c(Fm(ηm,t))

)
+

+
T

∑
t=1

ln
(∣∣∣∣Σ0.5(θ)H−0.5

t (α)

∣∣∣∣).

4Palma-NG is an extension of PALMA (Paralleles Linux-System für Münsteraner Anwender)
the high performance computer of WWU. It can be used by every person that is member of
the group u0clustr (the group can be joined through meinZIV) and allows for small scale
parallelization on a single node with low effort in terms of adapting code as each node of
the cluster supports parallel computing on 64 cores. For more information see ZIV (2017) or
consider the helpful examples on I:/Jan/HPC.
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is the log-likelihood. As ηt needs to be recomputed, whenever either α or θ are
changed, each block of the DE-MCMC sampler requires a full evaluation of the
log-likelihood.

6 Simulation Studies

In this section, two simulation studies are carried out in order to investigate
the previously addressed identification problem. All estimates are based on
simulated samples consisting of three non overlapping trading zones for a
period of 2,000 trading days.
The first simulation uses the parameterization that was estimated in Clements
et al. (2015) Table 4 for a Euro-USD exchange rate data set:5

A =

0.6478 0 0.1163
0 0.8983 0
0 0 0.8299

 , B =

 0 0 0
0.0452 0 0

0 0.0000 0

 ,

G =

0.0683 0 0.0000
0 0.0176 0
0 0 0.0587

 , Ã =

 0 0 0
0.1352 0 0

0 0.1131 0

 ,

ρ =

0
0
0

 , k =

 6.4437 · 10−9

2.0239 · 10−8

−3.3753 · 10−9

 . (20)

Innovations are assumed to be multivariate normal. This parameterization
causes cross correlations between conditional volatilities to be around 95%6. As
previously mentioned, this correlation can lead to poorly identified parameters
which is the case here and can easily be seen from the joint posterior of α22 and
α21 as depicted in Figure 2. Note that although the values of α21 are substantially
larger than one, the stationarity condition still holds. From this posterior sample
its clear that once there are significant volatility transmissions from one trading

5As the constant k is omitted in the tables of Clements et al. (2015), it has been fitted in order
to match the unconditional volatilities, given in table 1 of Clements et al. (2015).

6Computing this correlation, one has to bare in mind that every trading zone has two different
time spans between a neighboring zone and itself: The time from the end of zone A to
the beginning of zone B and the time from the end of zone B to the beginning of zone A.
However, storing the conditional variances in a matrix considers only one of these times for
each zone. Hence the correlation between zones i and j with i being the earlier trading zone

can be computed by: Cor(hi, hj) =
1
2

(
Cor

(
hi,t, hj,t

)
+ Cor

(
hi,t+1, hj,t

))
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zone to another within a trading day the model fails to precisely quantify the
magnitude of transmission effects.

Figure 2: Left panel: sample from the joint posterior distribution of α22 and α21.
Right panel: sample from the joint posterior with α22 ≥ 0.8

The second simulation study is carried out with the parametrization estimated
by Clements et al. (2015) for the bond market7. Again, k has been fitted to
match unconditional volatilities of the three trading zones.

A =

0.6178 0 0.0000
0 0.9027 0
0 0 0.9502

 , B =

 0 0 0
0.0192 0 0

0 0.0112 0

 ,

G =

0.2819 0 0.0000
0 0.0818 0
0 0 0.0402

 , Ã =

 0 0 0
0.0000 0 0

0 0.0000 0

 ,

ρ =

0
0
0

 , k =

4.4129 · 10−8

1.2900 · 10−9

4.531 · 10−9

 . (21)

This setting yields much lower cross sectional correlations between the condi-
tional variances of roughly 30% and hence, estimation does not suffer from
identification problems. Consequently, posterior means of all parameters do
not deviate much from the values chosen for simulation. Posterior histograms

7They also estimated a specification for the stock market, but it is not possible to simulate data
from their parameter constellation since conditional variances become negative, frequently!
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and trace plots for all parameters are given in the appendix.
Additionally, robustness checks are carried out for the properly identified
parametrization (21) using different error distributions and different copulas
for an overlapping scenario. Simulating the model with t distributed margins
with four degrees of freedom and estimating using normal margins reveals little
to none problems. Some parameters are slightly biased (α22, γ22 and α33, γ33)
but most are unproblematic. This picture changes substantially if the wrong
copula is chosen for estimation. Simulating with a vine built of t-copula with
four degrees of freedom and a single overlap (ρ21 = 0.3) and estimating a
Gaussian copula, instead, yields some severely biased posterior distributions.
The posterior of α11 far below the value used for simulation, the posterior of
α22 is not affected but the posterior of α33 is bimodal, now, with the uttermost
mass between 0 and 0.2 whereas the true value is 0.95. All Ã and B coefficients
are either biased (α21 and β21) or bimodal and biased (α32 and β32). All G
and copula parameters are however in line with the parametrization used for
simulation.
Summarizing, if the model is properly identified, the model is quite robust
against error term misspecification. On the other hand, there are much stronger
robustness issues if the copula is chosen incorrectly.
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7 Concluding Remarks

The paper at hand is an extension to the volatility transmission literature. The
artificial assumption of non overlapping trading zones is set aside and a vine
copula GARCH model is put in place. Stationarity conditions for the GARCH
specifications are developed and both, identification and robustness issues are
examined. The introduced model is highly flexible as no assumptions are made
on error term distributions or copula families and has been estimated using a
Bayesian sampler that profits from being run in parallel on a cluster computer.
The results of Clements et al. (2015) need to be reviewed, in particular against
the background of potential identification issues concerning their specification
and the assumption of non overlapping trading zones.
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8 Appendix

8.1 Posterior Distributions and Trace Plots of the �rst simulation study

Figure 3: Posterior distributions of all A and Ã parameters. The red lines display the true
values.

Figure 4: Trace plot of α11 using 64 chains in parallel.
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Figure 5: Trace plot of α22 using 64 chains in parallel.

Figure 6: Trace plot of α33 using 64 chains in parallel.

Figure 7: Trace plot of α13 using 64 chains in parallel.
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Figure 8: Trace plot of α21 using 64 chains in parallel.

Figure 9: Trace plot of α32 using 64 chains in parallel.
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Figure 10: Posterior distributions of all B and G parameters. The red lines display the true
values.
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Figure 11: Trace plot of β21 using 64 chains in parallel.

Figure 12: Trace plot of β32 using 64 chains in parallel.

Figure 13: Trace plot of γ11 using 64 chains in parallel.
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Figure 14: Trace plot of γ22 using 64 chains in parallel.

Figure 15: Trace plot of γ33 using 64 chains in parallel.

Figure 16: Trace plot of γ13 using 64 chains in parallel.
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Figure 17: Posterior distributions of all copula parameters. The red lines display the true values.

Figure 18: Trace plot of ρ1 using 64 chains in parallel.

24



Figure 19: Trace plot of ρ2 using 64 chains in parallel.

Figure 20: Trace plot of ρ3 using 64 chains in parallel.
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Figure 21: Posterior distributions of all k parameters. The red lines display the true values.

8.2 Posterior Distributions and Trace Plots of the second simulation study
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Figure 22: Trace plot of k1 using 64 chains in parallel.

Figure 23: Trace plot of k2 using 64 chains in parallel.

Figure 24: Trace plot of k3 using 64 chains in parallel.
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Figure 25: Posterior distributions of all A and Ã parameters. The red lines display the true
values.

Figure 26: Trace plot of α11 using 64 chains in parallel.
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Figure 27: Trace plot of α22 using 64 chains in parallel.

Figure 28: Trace plot of α33 using 64 chains in parallel.

Figure 29: Trace plot of α13 using 64 chains in parallel.
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Figure 30: Trace plot of α21 using 64 chains in parallel.

Figure 31: Trace plot of α32 using 64 chains in parallel.
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Figure 32: Posterior distributions of all B and G parameters. The red lines display the true
values.
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Figure 33: Trace plot of β21 using 64 chains in parallel.

Figure 34: Trace plot of β32 using 64 chains in parallel.

Figure 35: Trace plot of γ11 using 64 chains in parallel.
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Figure 36: Trace plot of γ22 using 64 chains in parallel.

Figure 37: Trace plot of γ33 using 64 chains in parallel.

Figure 38: Trace plot of γ13 using 64 chains in parallel.
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Figure 39: Posterior distributions of all copula parameters. The red lines display the true values.

Figure 40: Trace plot of ρ1 using 64 chains in parallel.
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Figure 41: Trace plot of ρ2 using 64 chains in parallel.

Figure 42: Trace plot of ρ3 using 64 chains in parallel.
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Figure 43: Posterior distributions of all k parameters. The red lines display the true values.
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Figure 44: Trace plot of k1 using 64 chains in parallel.

Figure 45: Trace plot of k2 using 64 chains in parallel.

Figure 46: Trace plot of k3 using 64 chains in parallel.
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