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Abstract

We propose a new and highly flexible Bayesian sampling algorithm for nonlinear state
space models under nonparametric distributions. The estimation framework combines
a particle filtering and smoothing algorithm for the latent process with a Dirichlet
process mixture model for the error term of the observable variables. In particular, we
overcome the problem of constraining the models by transformations or the need for
conjugate distributions. We use the Chinese restaurant representation of the Dirichlet
process mixture, which allows for a parsimonious and generally applicable sampling
algorithm. Thus, our estimation algorithm combines a pseudo marginal Metropolis
Hastings scheme with a marginalized hierarchical semiparametric model. We test our
approach for several nested model specifications using simulated data and provide
density forecasts. Furthermore, we carry out a real data example using S&P 500
returns.

Keywords: Bayesian Nonparametrics, Particle Filtering, Stochastic Volatility,
MCMC, Forecasting

1. Introduction

Time-varying volatility is a well known stylized fact of financial returns and thus
not only its modeling, but especially its estimation and prediction, are of main inter-
est for practitioners and researchers. In particular, Stochastic Volatility (SV) models
are widely popular, even though direct estimation by classical Maximum-Likelihood is
often infeasible. Nevertheless, Markov Chain Monte Carlo (MCMC) methods, in com-
bination with a sampling algorithm for the latent volatility, as proposed by Jacquier
et al. (2004) or Kim et al. (1998), provide a straightforward solution.1 More recently,
Jensen and Maheu (2010) added a further degree of freedom to SV models by augment-
ing the models with nonparametric distributions based on a Dirichlet process mixture
(DPM). Thus, in addition to the stochastic latent volatility, the error term distribution

Email addresses: Fabian.Goessling@uni-muenster.de (Fabian Goessling),
Martina.Zaharieva@uni-muenster.de (Martina Danielova Zaharieva)

1See Broto and Ruiz (2004) for a survey.
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is highly flexible, which allows, in combination with a Bayesian estimation approach, to
learn about the type of distribution from the data. Quite naturally, this enormous flex-
ibility comes at the cost of high complexity as the resulting distributions are possibly
non-standard.

The main literature in the field, such as Jensen and Maheu (2010), Delatola and
Griffin (2011), Jensen and Maheu (2014), Delatola and Griffin (2013) or Virbickaitė
et al. (2014), circumvents this challenge by restricting the model to conjugate distribu-
tions and/or transformations of the model equations, but does not offer a generalized
solution. Thus, the intended flexibility of a nonparametric model with nonlinear ef-
fects of stochastic volatility is constrained by analytical feasibility. We argue that
this strongly contradicts the motivation of nonparametric/nonlinear models. We sug-
gest a new, more general estimation algorithm without artificially pruning the model’s
dynamics and flexibility.

The point of departure for the present paper is the state-space representation of
the (semiparametric) SV model. As such, an SV model is comparable, for example,
to a nonlinear dynamic stochastic general equilibrium (DSGE) model.2 For the latter,
non-conjugacy and non-standard distributions are widely accepted, and estimation is
usually conducted by means of the Metropolis-Hastings (MH) algorithm and parti-
cle filter approximations of the likelihood (Fernández-Villaverde and Rubio-Ramı́rez,
2005). We adopt the same approach and develop our sampling algorithm on an abstract
level, using generic distributions without requiring specific distributional assumptions.
This allows us to present a modular sampling algorithm which nests semiparamet-
ric SV, DSGE, classical SV or even simpler models. Moreover, our presentation is
straightforward and strips off the aura of mystery which sometimes surrounds Bayesian
nonparametric models. In particular, we use the Chinese Restaurant Process (CRP)
representation of the DPM, which enables an attractive visual representation of the
sampling steps.

In our simulation exercises, we show that the new algorithm is highly flexible,
reliable and straightforward to apply for several nested model specifications. We also
provide a real data example using the semiparametric stochastic volatility model of
Jensen and Maheu (2010) for S&P 500 data. Furthermore, we demonstrate that our
algorithm provides an intuitive way of constructing density forecasts, based on the
posterior distributions.

The remainder of the paper is as follows. Section 2 introduces the general setting
and preliminary concepts, Section 3 presents the sampling algorithm and Section 4 pro-
vides an application to the semiparametric stochastic volatility model using simulated
and real data. Section 5 concludes.

2See Flury and Shephard (2011) for an estimation approach to both model types.
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2. General Setting

2.1. Nonlinear State-Space Model

In what follows, we consider an observable variable

yt = g(st,θ, εt), εt
iid∼ G, (1)

where the latent state variable st follows the transition equation

st = f(st−1,θ, ηt), ηt
iid∼ F . (2)

Furthermore, g(·) and f(·) are potentially nonlinear functions, θ is a parameter vector
and G and F are continuous random distributions. For parsimony, we work on one-
dimensional yt and st, but the above representation applies to multivariate variables
as well. Note that a parametric assumption on G and F yields the DSGE model case,
and a nonparametric assumption on G yields the semiparametric SV model case, on
which we focus.

2.2. Dirichlet Process Mixture

The DPM represents the distribution of a random variable xt as an infinite mixture
of continuous distributions, for which the mixture component parameters come from
a discrete distribution G. In turn, G is constructed from the Dirichlet process prior
DP(α,G0) (Ferguson (1973)), where α is the concentration parameter and G0 the base
distribution of the mixture component parameters µ̃t and σ̃t, which we parameterize as
a Normal N (·) and Gamma distribution Γ(·), respectively. Throughout the paper, we
use mixtures of normals, such that the component parameters are the expected value µ̃t
and the standard deviation σ̃t. Following the literature, the hierarchical representation
is

xt|(µ̃t, σ̃2
t ) ∼ N (µ̃t, σ̃

2
t ), (3)

(µ̃t, σ̃
2
t )|G

iid∼ G, (4)

G|G0, α ∼ DP(G0, α), (5)

G0(µ̃t, σ̃
2
t ) = N (m0, v

2
0)× Γ(a0, b0), (6)

where a0, b0, m0 and v0 are hyperparameters.

2.3. Chinese Restaurant Process

Our estimation algorithm is based on the CRP representation of the DPM, which
represents the mixture components as tables in a restaurant, the component parameters
as the location inside the restaurant and observations yt with t = 1, . . . , T as customers
entering the restaurant.3 Before introducing the CRP in more detail, we clarify the
notation in order to avoid ambiguity.

3 Alternative representations are the stick-breaking representation (Sethuraman, 1994) or the
closely related Pólya urn scheme (Blackwell and MacQueen, 1973). An overview is available in Teh
(2011).
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Let zt be a label denoting which of the k ∈ {1, 2, . . . ,∞} tables (components) a
customer (observation) yt is assigned to and zt = k if customer yt sits at table k.
Furthermore, let ck be the number of customers sitting at table k in the restaurant
and define the nonparametric set φk = {µk, σk}, which contains the parameters of
component k. Thus, we have µ̃t = µzt and σ̃t = σzt . Given this notation, the CRP can
be summarized in two simple steps:

1. For t = 1:
The first customer y1 sits at the first table with probability 1. Thus we have
z1 = 1. The parameters of the first component, indexed by k = 1, are sampled
from the base distribution, i.e. φ1 ∼ G0.

2. For t = 2, . . . , T :
The t-th customer sits at any of the occupied tables k ∈ {1, . . . , n} with prob-
ability ∝ ck or at a non-occupied table with probability ∝ α. Whenever a new
table is chosen, indexed by n+ 1, sample φn+1 ∼ G0 and increment n by one. In
particular, it holds that

P (zt+1 = k|z1:t, α) =
ck

t+ α
,

P (zt+1 = n+ 1|z1:t, α) =
α

t+ α
, (7)

where z1:t = {z1, . . . , zt}.

Note that the number of possible tables is unrestricted and the corresponding discrete
density is

p(zt+1|z1:t, α) =
ck

t+ α
δ(zt+1 = k) +

α

t+ α
δ(zt+1 = n+ 1),

where δ(·) is the Dirac delta function 4. Therefore, the model capacity in terms of the
parameter space is infinite. Nevertheless, the number of occupied tables is constrained
by n ≤ T . We refer to n as the number of active tables or non-neglectable components.
Note that the process outlined above exhibits the typical rich-gets-richer property,
i.e. clustering of the customers. Furthermore, as the probability of creating a new
table is proportional to α, a small (large) value of α leads to fewer (more) non-empty
components. Thus, the value of the concentration parameter α is of major importance.
For that reason, our estimation approach additionally imposes a hyperprior on α, in
order to achieve higher flexibility. The likelihood of the indicators p(z1:T |α) can be

4Here, the Dirac delta function is used as an indicator function, i.e. given the statement A, we

define δ(A) =

{
1 if A is true,

0 else.
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decomposed as

p(z1:T |α) = p(zT |z1:T−1, α)p(zT−1|z1:T−2, α) . . . p(z2|z1, α)

=
T−1∏
i=1

p(zT+1−i|z1:T−i, α). (8)

Essentially, using the CRP, we study the marginalized hierarchical semiparametric
model

xt|(µ̃t, σ̃2
t ) ∼ N (µ̃t, σ̃

2
t ),

({µ̃1, σ̃
2
1}, . . . , {µ̃T , σ̃2

T})|(G0, α) ∼ P({µ̃1, σ̃
2
1}, . . . , {µ̃T , σ̃2

T}|G0, α),

G0(µ̃t, σ̃
2
t ) = N (m0, v

2
0)× Γ(a0, b0),

where P({µ̃1, σ̃
2
1}, . . . , {µ̃T , σ̃2

T}|G0, α) is the joint distribution of the component pa-
rameters constructed by the CRP. Therefore, recall that the CRP with indicators z1:T
and component parameters φ1:n straightforwardly implies the conditional distribution
P({µ̃T , σ̃2

T}|{µ̃1, σ̃
2
1}, . . . , {µ̃T−1, σ̃2

T−1}, G0, α) in closed form. Due to the exchangeabil-
ity of {µ̃t, σ̃2

t } 5, this enables us to calculate conditional distributions for all other t
as well, and is thus the impetus for the Gibbs sampling approach, which we apply in
Section 3.1.1.

3. Bayesian Inference

Let z−t denote the set of table assignments z1:T = {z1, z2, . . . , zT} without assign-
ment zt, i.e. z−t = {z1, . . . , zt−1, zt+1, . . . , zT}, analogously φ1:n,−k the set of compo-
nent parameters φ1:n except for φk, i.e. φ1:n,−k = {φ1, . . . , φk−1, φk+1, . . . , φn}. Then,
{φk,φ1:n,−k,φn+1:∞} equals the full (infinite) parameter set φ1:∞. The objective is to
sample from the joint posterior density

p(z1:T ,φ1:∞,θ, α|y1:T ),

where y1:T = {y1,y2, . . . ,yT} is the full data set. Our sampling approach extends
Algorithm 5 of Neal (2000) to latent variables. In contrast to Jensen and Maheu
(2010) or Delatola and Griffin (2011), for example, this imposes no restrictions on the
distributions with regard to conjugacy. In particular, we break the sampling algorithm
down into four major steps:

(A) DPM,

(B) latent variables,

(C) parameters,

(D) hyperparameter,

where each step deals with several conditional posteriors in the tradition of Gibbs
blocking. We discuss each step in detail in the following sections.

5For the main properties of the DPM, see e.g. Teh (2011).
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3.1. Sampling Algorithm

We initialize the algorithm by drawing from the priors of θ and α, simulating the
CRP, conditional on α, and subsequently running the particle smoothing algorithm to
obtain initial values for the latent variables.

3.1.1. Step (A): DPM

In order to obtain a posterior sample from the DPM, we require draws from the
posteriors of the table indicators z1:T and the infinite parameter set φ1:∞. In particular,
we use two Gibbs blocks, i.e. sampling from

A.1. p(z1:T |y1:T , s1:T ,φ1:∞,θ, α),

A.2. p(φ1:∞|y1:T , s1:T , z1:T ,θ, α).

To sample the table indicators (Block A.1.) we use a version of Algorithm 5 from
Neal (2000). Given the states, we iteratively draw from

p(zt|z−t,y1:T , s1:T ,φ1:∞,θ, α)

∝ p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α)p(zt|z−t, s1:T ,φ1:∞,θ, α)

for all zt with t = 1, . . . , T using an MH algorithm with a proposal equal to the prior.
Thus, the acceptance probability reduces to

min

{
1,
p(y1:T |z̃t, z−t, s1:T ,φ1:∞,θ, α)

p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α)

}
, (9)

where z̃t denotes a candidate table indicator. Conditioned on φ1:∞, states s1:T and
table assignments z1:T , the required likelihood p(y1:T |zt, z−t, s1:T ,φ1:∞,θ, α) is straight-
forward to calculate from Eq. (3).

The acceptance probability in (9) is valid, if the proposal z̃t is drawn from the con-
ditional p(zt|z−t, s1:T ,φ1:∞,θ, α). Noting that the latter distribution is by construction
independent of φ1:∞, s1:T and θ, this is equivalent to sampling from p(zt|z−t, α). Via
the CRP definition, we know that the distribution of the cluster pattern is exchange-
able, i.e. the current zt can be regarded as the last customer entering the restaurant.
Thus, a candidate table can be drawn from a multinomial distribution, constructed
from the probabilities given in Eq. (7). Hence, the current customer re-enters the
restaurant filled with the remaining T − 1 customers and gets assigned either to a new
or to an existing table. Denoting table counts, excluding the current customer by ck,−t,
the probabilities for sitting at one of the occupied tables k = 1, . . . , n and opening a
new table are given by

P (z̃t = k|z−t, α) =
ck,−t

T − 1 + α
,

P (z̃t = n+ 1|z−t, α) =
α

T − 1 + α
,
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respectively.
Block A.2. is designed to sample the infinite parameter set φ1:∞ from

p(φ1:∞|y1:T , s1:T , z1:T ,θ, α).

Any empty (non-active) tables can be neglected, since

p(y1:T |φ−k,1:n, φ̃k, s1:T , z1:T , α) = p(y1:T |φ−k,1:n,φn+1:∞, φ̃k, s1:T , z1:T , α),

i.e. a sample from the posterior of an empty table is obtained by simply drawing from
the base distribution G0 with density g0. Thus, Block A.2. iterates through all active
tables k = 1, . . . , n and samples from

p(φk|y1:T , z1:T ,φ−k,θ, α) ∝ p(y1:T |φ1:n,−k, φk, s1:T , z1:T ,θ, α)g0(φk)

using a random walk MH step with acceptance probability

min

{
1,
p(y1:T |φ1:n,−k, φ̃k, s1:T , z1:T ,θ, α)g0(φ̃k)

p(y1:T |φ1:n,−k, φk, s1:T , z1:T ,θ, α)g0(φk)

}
.

In the Chinese Restaurant interpretation, this step can be regarded as moving around
the occupied tables within the restaurant.

3.1.2. Step (B): Latent Variables

Step (B) samples from

p(s1:T |y1:T , z1:T ,φ1:∞,θ, α).

In particular, we use a particle smoother approximation and draw from a multinomial
distribution using the weights and particles from the particle smoother.

The particle filter proceeds in the spirit of Flury and Shephard (2011), see Herbst
and Schorfheide (2015) for details. The idea is to approximate all required densities
by a particle swarm defined as the set {st,wt}, in which st ∈ RNp , wt ∈ RNp and Np

is the number of particles. Iterating on forecasting and updating steps, the weights
wt enable us to track the evolution of the swarm over time. That is, we start with a
randomly drawn swarm with weights equal to unity. Subsequently, according to Bayes’
Theorem, the weights are updated conditional on the observation yt. Thus, the particle
filter approximates the integral

p(yt|y1:t−1, z1:T ,φ1:∞,θ, α)

=

∫
p(yt|st,y1:t−1, z1:T ,φ1:∞,θ, α)p(st|y1:t−1, z1:T ,φ1:∞,θ, α)dst,

by taking the mean over the appropriate set of particle weights. Given these incremen-
tal likelihoods, we are able to calculate an unbiased particle filter approximation of the
log-likelihood

log p(y1:T |z1:T ,φ1:∞,θ, α) = log p(y1|z1:T ,φ1:∞,θ, α) +
T∑
t=2

log p(yt|z1:T ,φ1:∞,θ,y1:t−1, α).
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Appendix C provides details on the particle filter.
We use the reweighting particle smoother (Doucet et al. (2000)) to obtain draws

st|y1:T for all t. The idea behind the smoothing algorithm is to reweight the particles
by Bayes’ rule, in order to obtain an approximation of the smoothed distribution of st,
which is given by

p(st|y1:T ) = p(st+1|y1:t)

∫
p(st+1|st)p(st+1|y1:T )

p(st+1|y1:t)
dst+1.

We refer to Särkkä (2013) for a textbook treatment.

3.1.3. Step (C): Parameters

The third block is a canonical random walk MH algorithm, which samples from

p(θ|y1:T , z1:T ,φ1:∞, α) ∝ p(y1:T |z1:T ,φ1:∞,θ, α)p(θ).

For brevity, we refer to Greenberg (2008) for details. Note that we integrate out the
latent states and use the incremental likelihoods generated by the particle filter in order
to obtain an unbiased approximation to the likelihood. That is, Step (C) is equivalent
to the pseudo-marginal method discussed for example, by Pitt et al. (2012) or Doucet
et al. (2015).

3.1.4. Step (D): Hyperparameter

The last step samples the concentration parameter α. Conditional on the indicators
z1:T , the posterior of α is independent of y1:T , φ1:∞ and θ, i.e.

p(α|y1:T , z1:T ,φ1:∞,θ) = p(α|z1:T ) ∝ p(z1:T |α)p(α),

implying that the concentration parameter depends exclusively on the clusters. Fur-
thermore, the CRP yields a straightforward rule for calculating the conditional density
of the cluster pattern (likelihood of z1:T given α) from Eq. (7), which we use to calculate
the acceptance probability

min

{
1,
p(z1:T |α̃)p(α̃)

p(z1:T |α)p(α)

}
for a random walk MH algorithm. Note that the indicators z1:T are labels, and are
exchangeable (label switching), as only the cluster pattern matters for the probability
p(z1:T |α). The issue of label switching in the context of Dirichlet process mixtures is
addressed in more detail by Jensen and Maheu (2010).

3.2. Savage-Dickey Density Ratio

Even though our approach deviates from the conjugate priors used in the literature,
we are able to calculate the Bayes factors in favor of nested models using the Savage-
Dickey density ratio (Dickey (1971)), as in Jensen and Maheu (2010). Nevertheless, a
slightly more general definition is required to preserve interpretability.
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Consider the nested model specification, M2 : α = α0, for which the limiting cases
α0 = {0,∞} correspond to a normally distributed error term and a t-distributed error
term, respectively. Denoting the unrestricted model by M1, the Bayes factor is

BF(α = α0) =
p(y1:T |M2)

p(y1:T |M1)

=
p(α = α0|y1:T ,M1)

p(α = α0)
,

i.e. the ratio of the posterior density of α to its prior, both evaluated at α0. As the
hypothesis of α0 → ∞ is not operational, we follow Jensen and Maheu (2010) and
define the transformed variable

u =
α

α + 1
,

and thus u→ 1 (u→ 0) as α→∞ (α→ 0). Note that u is the probability of a second
component. Using the transformation, it holds that

BF(u = u0) =
p(u = u0|y1:T ,M1)

p(u = u0)
.

In contrast to Jensen and Maheu (2010), we do not impose the restriction p(u) =
U(0, 1), such that the approximation of the Savage-Dickey ratio by the posterior draws
of u has to be corrected using the prior density of u, which is calculated from the prior
of α using the transformation rule

p(u) =
p(α = u

1−u)

(1− u)2
.

Thereupon, plots of the rescaled posterior of u carry the same information as in Jensen
and Maheu (2010) and can be interpreted equivalently. In particular, the value of the
Savage-Dickey ratio can be interpreted as the Bayes factor in favor of the nested models
defined by the value on the abscissa.

3.3. Density Forecast

In line with Jensen and Maheu (2010), we construct the posterior density forecast

p(yT+1|y1:T ) =

∫
p(yT+1|y1:T ,φ1:∞,θ, z1:T , sT+1, α)p(φ1:∞,θ, z1:T , α|y1:T ) dφ1:∞ dθ dsT+1 dz1:T ,

by means of the MCMC output

p̂(yT+1|y1:T ) =
1

N

N∑
i=1

pN (yT+1|y1:T ,φ
(i)
1:∞,θ

(i), s
(i)
T+1, z

(i)
1:T+1, α

(i)),

where pN (·) is the density of the normal distribution.
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Given draw i = 1, . . . , N from the posterior of φ1:∞, θ and z1:T , we run the particle
smoother and draw a latent state sT . Given sT , we can generate a draw sT+1 with
the transition Eq. (2). Subsequently, we iterate the CRP forward conditional on z1:T ,
which either yields zT+1 ∈ z1:T or a new component with probability ∝ α. In the latter
case, we sample µ̃T+1 and σ̃2

T+1 from the base distribution G0. In either case, given the
drawn component parameters µ̃T+1 and σ̃2

T+1, it is straightforward to draw yT+1 using
the observation Eq. (1).

3.4. Nested Models

Besides the full semiparametric model, which we study in detail in Section 4, our
sampling algorithm nests several model specifications and is easily adapted.

If G is nonparametric, and st observable, we can use Steps (A), (C) and (D) without
the filtering step. This case corresponds to a standard DPM model, where, for example,
a density estimate is required (Walker (2007)). Appendix A provides an example.

If we assume a parametric distribution G and latent st, we only require the particle
filter in combination with Step (C). This is, for example, the case in DSGE models, see
e.g. Fernández-Villaverde et al. (2016) and Herbst and Schorfheide (2015), or standard
SV models as shown in Appendix B.

4. Semiparametric Stochastic Volatility Model

The semiparametric stochastic volatility model of Jensen and Maheu (2010) is a
suitable application of the sampling algorithm, as it incorporates the flexibility of
the nonparametric error term into a nonlinear state-space representation of the time-
varying volatility model. In particular, the model is defined by

yt = exp(st/2)εt, εt ∼ G, (10)

st = ρst−1 + ηt, ηt ∼ N (0, σ2
η), (11)

where the log volatility st is the latent state variable, G an unknown distribution and
θ = {ρ, ση}. Note that we set the unconditional expectation of the latent volatility
equal to zero, such that the level of the volatility is captured by the nonparametric G,
ensuring identification of the SV model.

4.1. Simulated Data

Prior to adopting our sampling algorithm to real-world data, we implement the ap-
proach using simulated data. We simulate 1500 data points of the stochastic volatility
model according to Eqs. (10) and (11) with parameter values ρ = 0.95 and σ2

η = 0.04
and a mixture distribution for the simulated error term given by

εt
iid∼

{
N (0.2825, 0.3) with prob. 0.8,

N (−1.3000, 1.3) with prob. 0.2,

10
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Figure 1: Simulated return data (a) and histogram of returns (b).

which scales the distribution of the observation to have zero mean, unit variance,
negative skewness (≈ −1.3) and high kurtosis (≈ 8). Figure 1 plots the simulated data
set.

We run the algorithm for 15000 iterations after a burn-in phase of 5000 iterations,
using flat priors on the θ parameters and parameterizing G0 as N (0, 3) × Γ(1, 1) and
p(α) = Γ(1, 1). Table 1 gives the posterior means and 90% Bayesian intervals. The
posterior mean of the persistence parameter ρ is quite close to the true value, while
the volatility ση of the log-volatility is slightly underestimated.

True Post. Mean Interval (0.05,0.95)

ρ 0.95 0.9546 (0.9000, 0.9821 )
σ2
η 0.04 0.0333 (0.0128, 0.0837 )
α - 1.2751 (0.4495, 2.4261 )
n - 9.9943 (5, 17 )

Table 1: Simulated data: Posterior means and a 90% Bayesian interval.

Figure 2 presents the graphical posterior summary. The trace plots in panels (a)
and (b) and the marginal posteriors in (c) and (d) indicate that the sampling algo-
rithm has converged to the posterior distribution. The Bayes factor (panel (e)) has
the highest support at u = 0.8, which is in line with the underlying mixture model.
The log-predictive density (blue line) in panel (i) exhibits the desired properties, i.e.
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Figure 2: Simulated data application of the semiparametric stochastic volatility model): (a) trace
plots of ρ (in blue) and ση (in red), (b) trace plots of α, (c), (d) and (e) priors (in blue) and marginal
posteriors of ρ, ση and Bayes factors, (f) mixture weights, (g) and (h) trajectories of the mixture
parameters µk and σk, (i) posterior log-predictive density (blue line) and true log-predictive density
(dashed black line).

asymmetry and fat tails. Furthermore, the log-predictive density resembles the true
predictive density (dashed black line) with a slightly more pronounced right tail, which
we attribute to the smaller information set. Note that the true number of mixture com-
ponents is two, while the average number of components n is around ten. However,
most of these components are negligibly small, as can be seen in panel (f).
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4.2. Real Data Application

Given the encouraging results from the simulation exercise, we turn to a real data
application. We use daily S&P 500 percentage returns from 03.08.2009 to 01.05.2015
(depicted in Figure 3). The objective is to obtain a posterior sample of the parametric
part of the model and to construct a one-step-ahead density forecast.
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Figure 3: S&P 500 price (a), return data (b) and histogram of returns (c).

Note that the returns exhibit the typical patterns, such as heteroscedasticity and
volatility clustering. Additionally, the descriptive statistics displayed in Table 2 provide
further evidence of non-Gaussian behavior, in particular the negative skewness and high
kurtosis. Therefore, applying the highly flexible semiparametric SV model is a natural
choice.

Mean Median St. Dev. Skewness Kurtosis

0.0524 0.0736 0.9987 -0.4630 7.2468

Table 2: Descriptive statistics of the S&P 500 percentage returns.

We run the algorithm for 15000 iterations with a burn-in phase of 5000 and adopt
the same priors as in Section 4.1.
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Figure 4: S&P 500 data application of the semiparametric stochastic volatility model: (a) trace plots
of ρ (in blue) and ση (in red), (b) trace plots of α, (c), (d) and (e) priors (in blue) and marginal
posteriors of ρ, ση and Bayes factors, (f) mixture weights, (g) and (h) trajectories of the mixture
parameters µk and σk, (i) posterior log-predictive density.

The posterior means and 90% Bayesian intervals are reported in Table 3 and the
complete posterior summary is shown in Figure 4. Panel (a) shows the trace plots of
the θ parameters, ρ and ση, indicating the convergence of the chain. Subplots (c) and
(d) give the corresponding marginal posteriors, where the horizontal blue line indicates
the prior. The trajectory of the concentration parameter α can be seen in panel (b),
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and the Bayes factor is depicted in panel (e). Note that the Bayes factors for u0 > 0.8
are zero, which supports the hypothesis of a mixture. Panel (f) plots the mixture
weights, and (g) and (h), the trajectories of the mixture parameters µk and σk. Those
plots do not have a direct interpretation related to the model and enable us only to
observe the characteristics of the DPM, such as the mixing pattern. Lastly, panel (i)
shows the posterior log-predictive density, which captures the high kurtosis and the
slight asymmetry observed from the raw data. In a sensitivity analysis (not reported
here) we ran the algorithm in eight parallel chains with random starting values drawn
from the priors, and confirmed that each chain produced comparable results.

Post. Mean Interval (0.05,0.95)

ρ 0.9505 (0.9168, 0.9770 )
σ2
η 0.0849 (0.0404, 0.1564 )
α 1.1781 (0.3575, 2.3076 )
n 9.1611 (4, 16 )

Table 3: S&P Data: Posterior means and a 90% Bayesian interval.

5. Conclusion

We presented a new, flexible and general sampling algorithm for nonlinear, semi-
parametric state-space models. In particular, our framework integrates complex meth-
ods, such as the DPM, into a simple and intuitive estimation algorithm. As we do
not rely on specific distributional assumptions or conjugacy of the priors, our approach
is the first to allow for a comparison of the influence of prior distributions on semi-
parametric SV models. Furthermore, possible extensions include the estimation of
multidimensional distributions and/or leverage effects. We leave both extensions for
future research.
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Appendices

A. Observable State & Nonparametric Distribution

Consider the model

yt = εt, εt ∼ G,

where G is a unknown distribution. In this case, we have no latent states and a
nonparametric model, and use the present model to illustrate the nonparametric part
of the sampler. We simulate a sample of T = 50 observations from the following
mixture of normals

yt
iid∼


N (−20, 1) with prob. 0.2

N (0, 5) with prob. 0.5

N (5, 1) with prob. 0.3

.

We use Steps (A) and (D), as no filter/smoother is required. Furthermore, the like-
lihood (conditional on the table assignments) is given in closed form. We scale the
random walk proposals to achieve an acceptance ratio of roughly 0.33. We choose
non-informative priors, i.e. the base distribution G0(·) is N (0, 3) × Γ(1, 1), while the
concentration parameter for the CRP α has the Gamma prior Γ(1, 1). We run the
algorithm for 20000 iterations and drop the first 5000 from the calculations. Figure
A.1 shows the posterior of the concentration parameter α and the resulting predictive
density. The first two panels show the trace plot of α (a), and the Bayes factors (panel
(b)). Lastly, panel (c) compares the data histogram to the posterior predictive density
obtained from the DPM. It is evident that the infinite mixture succeeds in identifying
the distinct components and provides a flexible forecast, even given the small sample
size.
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Figure A.1: Density estimation: (a) trace plot of α, (b) Bayes factors and (c) data histogram and
posterior predictive density (blue line).
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B. Latent State & Parametric Distribution

The second example is the stochastic volatility model with parametric error terms.

yt = exp(st/2)εt, εt ∼ N (0, σ2
y),

st = ρst−1 + ηt, ηt ∼ N (0, σ2
η).

Our sampling algorithm proceeds as in Flury and Shephard (2011). We use Step (C)
and the particle-filter approximation of the likelihood to sample the parameter set
θ = {ρ, ση, σy}. We view this second example as a test of the particle filter’s capability
to deal with the latent state variable. We set the parameters to ρ = 0.95, ση = 0.2 and
σy = 1.2, simulate 1000 data points from the model and report the marginal posterior
densities in Figure B.1. Panel (a) shows the full chain trajectories of ρ (in blue), ση (in
red) and σy (in yellow) followed by the corresponding marginal posterior distributions
(panels (b), (c) and (d)), where the blue line indicates the flat prior and the red circles
the true values. The last panel (e) shows the posterior predictive density obtained from
our estimation. Once more, we used 20000 iterations, where only the last 15000 are
used as posterior sample. The posterior means and the 90% Bayesian intervals of the
model parameters are reported in Table (B.1).

True Post. Mean Interval (0.05,0.95)

ρ 0.95 0.9334 (0.8758, 0.9747 )
σ2
η 0.04 0.0561 (0.0238, 0.1171 )
σ2
y 1.44 1.4509 (1.1121, 1.9055 )

Table B.1: Simulated data: Posterior medians and a 90% Bayesian interval.
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Figure B.1: Classical stochastic volatility model: (a) trace plots of ρ (in blue), ση (in red) and σy
(in yellow), (b), (c) and (d) Marginal posterior of distributions of ρ, ση and σy (with priors in blue
and true values indicated with red circles); (e) posterior log-predictive density (blue line) and true
log-predictive density (dashed black line).
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C. Particle Filter

For parsimony, we omit the parameter set from the conditioning set, i.e. we write
p(st|yt) = p(st|yt, θ). Except for minor changes, our notation follows Herbst and
Schorfheide (2015).

1. Initialization
Generate a particle swarm {s0,W0} by means of Np i.i.d. draws from a prior
distribution and set the initial weights W0 = 1Np , where 1Np is a Np × 1 vector
of ones.

2. Recursion. For t = 1, . . . , T :

a. Forecast st
Iterate st−1 forward using the state-transition equation

st = f(st−1,θ, εs).

The swarm {st,Wt−1} approximates the forecast density p(st|y1:t−1).

b. Forecast yt
The forecast density of yt is

p(yt|y1:t−1) =

∫
p(yt|st,y1:t−1)p(st|y1:t−1) dst

with each incremental weight p(yt|st,y1:t−1) = wt computed from the obser-
vation equation g(·) and the distribution G. Consequently

p̂(yt|y1:t−1) =
1

Np

w′tWt−1

is the approximate predictive density.

c. Updating
Bayes’ theorem yields the updated density

p(st|y1:t) = p(st|y1:t−1, yt) =
p(yt|st,y1:t−1)p(st|y1:t−1)

p(yt|y1:t−1)
,

which is approximated by the swarm {st,W̃t = wt·Wt−1

p̂(yt|y1:t−1)
}.

d. Resampling
If the variation of the particles approaches a lower limit defined by the
effective sample size

ÊSSt = Np/

(
W̃′

tW̃t

Np

)
,

all particles st are resampled from a multinomial distribution using weights
W̃t. In the case of resampling, set Wt = 1, and Wt = W̃t otherwise.
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