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Abstract

We analyze Australian electricity price returns and find that they exhibit multifrac-

tal structures. Consequently, we let the return mean equation follow a long memory

smooth transition autoregressive (STAR) process and specify volatility dynamics as a

Markov-switching multifractal (MSM) process. We compare the out-of-sample volatil-

ity forecasting performance of the STAR-MSM model with that of other STAR mean

processes, combined with various conventional GARCH-type volatility equations (for

example, STAR-GARCH(1,1)). We find that the STAR-MSM model competes with

conventional STAR-GARCH specifications with respect to volatility forecasting, but

does not (systematically) outperform them.
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1 Introduction

The deregulation of electricity markets and the rapid development of related financial

products have unleashed an enormous interest in establishing econometric models that

appropriately reflect the unique characteristics and dynamics of electricity price be-

havior. In particular, forecasting electricity price volatility has become a major task

for analysts, energy companies and investors, due to its dominant role in pricing and

risk management. As a result, a plethora of alternative volatility forecasting models

have been proposed in the literature, which we can roughly divide into two groups.

The first group of studies is based on non-traditional methodologies, like artificial

intelligence and hybrid approaches, including (fuzzy) neural networks, fuzzy regres-

sion, cascaded architecture of neural networks and committee machines (e.g. Amjady,

2006; Catalão et al., 2007; Vahidinasab and Kazemi, 2008; Amjadi and Hemmati,

2009; Amjadi, 2012). The second group of studies, which are more relevant to our

paper, include (i) traditional autoregressive time series models (Contreras et al., 2003;

Garcia-Martos et al., 2007; Kristiansen, 2012), (ii) generalized autoregressive condi-

tional heteroscedasticity (GARCH-type) models (Garcia et al., 2005; Chan and Gray,

2006; Koopman et al., 2007; Gianfreda, 2010; Cifter, 2013), (iii) jump-diffusion mod-

els (Huisman and Mahieu, 2003; Chan et al., 2008), (iv) autoregressive conditional

hazard models (Christensen et al., 2012), and most recently (v), multivariate models

(Raviv et al., 2015). Other authors combine traditional models with fundamentals

(Karakatsani and Bunn, 2008; Huurman et al., 2012), use high-frequency data to fore-

cast price volatility (Higgs and Worthington, 2005; Haugom et al., 2011; Gianfreda

and Grossi, 2012; Haugom and Ullrich, 2012), and study the link between fundamen-

tals, other energy markets and electricity price volatility (Goss, 2006; Gianfreda, 2010;

Jonsson and Dahl, 2016).1 However, in spite of their many context-specific advan-

tages, none of these models are truely able to simultaneously account for the numerous

empirically documented stylized facts of electricity price levels and fluctuations (like

excessive volatility, regime-dependence, asymmetries, excess kurtosis, mean reversion,

price spikes, seasonal fluctuations and, occasionally, negative prices).

1For a detailed review of the different methodologies, see Möst and Keles (2010), Zareipour (2012)
and Weron (2014).
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In this paper, we apply an alternative class of processes for modeling and forecast-

ing electricity price volatility, which originally stem from the analysis of turbulent flows

(Mandelbrot, 1974). Their adaptation to finance started with the work of Mandelbrot

et al. (1997), which led to the first generation of multifractal models. Calvet and Fisher

(2001, 2004) then introduced the second model generation, by specifying their Poisson

multifractal model and its discretized version, the Markov-switching multifractal pro-

cess.2 To date, multifractal processes have been applied successfully in the volatility

modeling and forecasting of different asset prices, including exchange rates (Calvet and

Fisher, 2004; Lux, 2008), stock prices (Lux, 2008) and commodity prices (Lux et al.,

2016; Wang et al., 2016; Segnon et al., 2017). Overall, these processes appear to be

robust tools in capturing the abovementioned stylized facts of electricity price fluctu-

ations and may therefore be considered as natural candidates for providing accurate

volatility forecasts.

In our empirical study, we use the long memory smooth transition autoregres-

sive (STAR) specification introduced by Hillebrand and Medeiros (2012) to model the

mean equation of electricity price returns, while we represent the volatility equation

by a Markov-switching multifractal (MSM) process. To the best of our knowledge,

this study is the first to combine the STAR and MSM processes in a consolidated

econometric framework, which we apply to Australian data. In contrast to previous

studies, we do not confine ourselves to forecasting electricity price volatility only for

the Australian New South, but provide an extended empirical analysis covering all five

Australian regions. Overall, our analysis proceeds in two steps. (i) We investigate

fractal structures of Australian electricity price returns (by computing the multifractal

spectrum) via the so-called multifractal detrended fluctuation analysis (MFDFA) as

proposed by Kantelhardt et al. (2002). (ii) We conduct a forecasting investigation in

order to compare the volatility forecasting performance of our combined STAR-MSM

model with the performance of several other combinations, in each of which the mean

equation still follows the STAR process, but with the volatility equation governed by

alternative GARCH-type processes.

Our analysis has two major findings. (i) Daily Australian electricity price re-

2For details on the genesis of multifractal models and applications in finance, see Lux and Segnon
(2016).
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turns exhibit multifractal structures. (ii) Incorporating multifractal structures into

the volatility equation of the data-generating electricity-price process yields volatility

forecasts that compete well with those of alternative conventional specifications, but

does not (systematically) outperform them.

The remainder of the paper is organized as follows. In Section 2, we briefly explain

our interest in Australian electricity markets. In Section 3, we analyze electricity price

changes and present the results of the Multifractal Detrended Fluctuation Analysis.

Section 4 presents our combined STAR-MSM model and briefly reviews the GARCH-

type specifications used in our subsequent volatility forecasting analysis. In Section 5,

we present our forecasting methodology and the results. Section 6 concludes.

2 Why Australian electricity markets?

The literature has extensively explored the price dynamics in the Australian electricity

markets, due to its unique characteristics in the scale of the power system and the

source of electricity generation. The National Electricity Market (NEM) is the world’s

largest interconnected power system running for more than 5,000 kilometers from North

Queensland to Tasmania and central South Australia. In view of such a large intercon-

nected power system, price volatility is high and uncertainty occurs for several reasons.

First, some generators do not follow the dispatch instructions issued by the Australian

Energy Market Operator (AEMO) as a way to increase their revenue at the expense

of the security of the power system and price uncertainty for end-consumers.3 Price

also varies due to supply issues such as plant outages or constraints in the transmission

network that limit transport capabilities. Another unique characteristic of NEM is its

heavy dependence on coal fired generators. As the highest dependency compared to

other developed countries, 84 percent of electricity was derived from coal in 1998 and

61 percent in 2014. The adoption of a carbon tax policy, implemented between July

2012 and July 2014, increased the cost of power production from coal. Another policy

uncertainty was induced by the introduction of a greenhouse gas emissions trading

3In July 2014, an electricity generator Snowy Hydro failed to comply with dispatch instructions
issued by the Australian Energy Market Operator (AEMO), and the Australian Energy Regulator
(AER) instigated proceedings against the company. Snowy Hydro paid total penalties of $400,000,
because of the potential hazard to public safety and material risk of damaging equipment.
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scheme by 2010. The legislation was initially passed by the House of Representatives,

but rejected by the Senate. Apergis and Lau (2015) provide evidence that the Aus-

tralian electricity market is a volatile one with a high degree of market power exercised

by various generators, and one source of volatility stems from the failure to introduce

a greenhouse gas emissions trading scheme by 2010. Therefore, it is important to fore-

cast electricity price volatility in NEM, as its occurrence could be caused by demand

shocks (e.g. extreme weather conditions), supply disruption (e.g. outages of transmis-

sion lines), or political uncertainty (e.g. rejection of greenhouse gas emissions trading

scheme).

Although the literature has expressed a strong interest in studying the forecast-

ing performance of electricity spot prices (Hong, 2015; Weron, 2014; Nowotarski et

al., 2014; Nowotarski and Weron, 2015; Maciejowska et al., 2016), only a few empiri-

cal studies have focused on forecasting realized volatility in the Australian electricity

markets. Nowotarski et al. (2014) perform a backtesting analysis using seven averag-

ing and one selection scheme on day-ahead electricity prices in three major European

and US markets. While the authors find that averaging forecasting techniques out-

performs counterpart models under normal market conditions, it fails to outperform

an individual model in a more volatile environment or in the presence of price spikes.

According to Clements et al. (2015), there is ample early literature dealing with price

spikes, when forecasting spot electricity prices with various modeling approaches, in-

cluding thresholds, Bernoulli and Poisson jump processes, heavy tailed error processes,

Markov-switching, and diffusion models with time-varying intensity parameters. Ex-

amples include Misiorek et al. (2006), Knittel and Roberts (2005), Swider and Weber

(2007), Higgs and Worthington (2008), among others. There is also a strand of recent

literature focusing on forecasting the probability of such spike events, instead of simply

forecasting the level of spot prices. These authors apply a multivariate point process

to model the occurrence and size of extreme price events and conclude that physical

infrastructure is the main influential factor in determining the transmission of price

spikes in interconnected regions of the Australian electricity market (Clements et al.,

2015). Their econometric approaches also lead to improved forecast indicators, such

as forecasts and estimates of risk measures (for example value-at-risk and expected
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shortfall).

Qu et al. (2016) note that most of the early research uses the generalized autoregres-

sive conditional heteroskedastic (GARCH) model introduced by Bollerslev (1986) and

related models for estimating and forecasting electricity price volatility. The authors

use a group of logistic smooth transition heterogeneous autoregressive (LSTHAR) mod-

els to forecast realized volatility in the Australian New South Wales (NSW) electricity

market. Their modeling approaches allow simultaneously capturing of long memory

behavior, as well as sign and size asymmetries, and provide improved volatility fore-

casts.

3 Preliminary data analysis

Currently, there are five Australian states—Queensland (QLD), New South Wales

(NSW), Victoria (VIC), South Australia (SA) and Tasmania (TAS)—operating via

a nationally interconnected grid. Since December 1998, the Australian Energy Market

Operator (AEMO) has been responsible for operating Australia’s electricity markets

and power systems, and the main domestic network is known as the National Electricity

Market (NEM). In 1998, NEM started operating as a wholesale market for the supply

of electricity to retailers and end-users in Queensland, New South Wales, Victoria and

South Australia, whereas Tasmania joined the NEM only in 2005.4

Exchange between electricity producers and retailers is facilitated through a spot

and future market operated by the Australian Energy Market Operator, where the

output from all generators is aggregated and scheduled to meet the demand of end-

use customers. In our analysis, we use 5-minute intraday data, and the electricity

dispatched price was obtained from AEMO with prices quoted as Australian dollars

per megawatt hour (MWh).5 In each 24-hour period, there are 288 trading intervals,

and we transform our 1087776 intraday observations, covering the time period from 1

January 2006 00:00 until 4 May 2016 23:55 into 3777 daily prices by averaging intraday

4The NEM operates on the world’s longest interconnected power system with a distance of around
5,000 kilometers. The annual turnover of electricity traded is more than $10 billion, so as to meet the
demand of more than eight million end-user consummers.

5The data can be downloaded from http://www.aemo.com.au/Electricity/National-Electri-

city-Market-NEM/Data-dashboard.
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prices. The spot price is the unit price received by generators, by selling electricity to

the pool, where the output from all generators is aggregated and scheduled to meet

demand.

In a first step, we compute the (daily) realized variance (RV) using 5-minute (in-

traday) data. We denote the daily logarithmic dispatch prices by pt, for t = 0, 1, 2, . . ..

To formally establish the realized variance at date t, we partition the daily log dis-

patch electricity price process {pt} further, by observing n + 1 equidistantly spaced

(log) intraday prices pt:0, pt:1, . . . , pt:n (where pt:0 = pt−1:n), and then define the realized

variance at date t as

RVt =
n∑

i=1

(pt:i − pt:i−1)
2 . (1)

The stochastic properties of the realized variance RVt from Eq. (1), in particular its

use as a consistent estimator of the so-called integrated variance from continuous-time

(jump) diffusion models of the log electricity price, have been discussed extensively in

the literature (McAleer and Medeiros, 2008). However, in our subsequent empirical

analysis, we consider RVt as a proxy of the true (but practically unobservable) daily

volatility, and use RVt for assessing the accuracy of our volatility forecasts (see Section

5).

Figure 1 about here

Figure 2 about here

Table 1 about here

Figures 1 and 2 display the daily electricity price returns (defined as the difference

between two successive daily log prices, xt = pt− pt−1) and the daily realized variances

RVt along with their autocorrelation functions for the five Australian states. Descrip-

tive statistics of the time series for all five states are reported in Table 1. We observe

negatively skewed electricity price returns in New South Wales, Queensland, Tasmania

and Victoria, and positively skewed price returns in South Australia. All return series

exhibit excess kurtosis, thus conflicting with the Normal distribution. Table 1 also

displays the tail index of the price returns, which we computed via the Hill estimator.
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All tail indices range between 1.3 and 2.1, indicating that the returns series for all five

states exhibit heavy tails with (i) finite means, but infinite variances for New South

Wales, Tasmania and Victoria (tail indices between 1 and 2), and (ii) finite means and

finite variances for Queensland and South Australia (tail indices larger than 2). In

line with these latter findings, the Jarque-Bera test (JB in Table 1) rejects the null

hypothesis of normally distributed price returns for all five Australian states.

In order to analyze long memory properties in the data, we employ the Hurst index,

computed via the detrended fluctuation analysis (DFA) described in Weron (2002). For

all five states, the Hurst index values obtained for the price returns (Hurst index1 in

Table 1) are rather close to 0, indicating strongly anti-persistent (or mean-reverting)

dynamics. We note that this anti-persistence in Australian electricity return data

contrasts with the price return dynamics frequently observed for other commodities

(where Hurst exponents are typically close to 0.5). For the realized variances, we obtain

Hurst exponents (Hurst index2 in Table 1) substantially larger than 0.5, indicating the

presence of long memory in return volatility.

Table 2 about here

The Ljung-Box Q-tests out to lag 5 (Q(5) in Table 1) reject the null hypothesis of no

autocorrelation in the electricity price returns and the Engle tests for heteroscedasticity

(ARCH-tests) indicate significant ARCH effects in the returns for all five states. The

Phillips-Perron tests (PP and PP∗) in Table 2 reject the null hypothesis of a unit

root for all states at the 1% level. These (stationarity) results for the return series

are confirmed by the Kwiatkowsky-Phillips-Schmidt-Shin tests (KPSS and KPSS∗) in

Table 2, that are unable to reject the null hypothesis of stationarity.

Table 3 about here

In order to analyze the (unconditional) variance processes of the price returns, we

apply a structural break test according to Sansó et al. (2004), which is based on the

modified iterated cumulative squares (ICSS) algorithm. This procedure accounts for

potential heteroscedasticity and excess kurtosis in the data. As reported in Table 3,
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the algortihm detects two break points in the (unconditinal) return variances for New

South Wales, 5 for Queensland, one for South Australia and Victoria, and two break

points for Tasmania. The dates, at which the break points occur, are highlighted in

Table 3. These breakpoints will become relevant in our forecasting analysis in Section

5.

Figure 3 about here

Figure 4 about here

Finally, we analyze the fractal properties of the electricity price returns via the

multifractal detrended fluctuation analysis (MFDFA), as developed by Kantelhardt et

al. (2002). The MFDFA is based on the computation of local root mean square (RMS)

for non-overlapping multiple segment sizes and allows us (i) to estimate the multifractal

spectrum of power law exponents from the electricity price returns, and (ii) to compare

its characteristics with those of monofractal time series. We first compute the q-order

Hurst exponent as slopes of regression lines for each q-order RMS. The results are

depicted in Figure 3. We observe that the slopes of the regression lines vary with q-

order, i.e. are q-order dependent. The q-order Hurst exponents (Hq) for all five states

decrease with increasing segment sample size, indicating that the small segments are

able to distinguish between the local periods with high and low volatility. Figure 4

displays the multifractal spectra for the five Australian states, each of which resembles

a large arc. This observation is in contrast with the ”small arc” spectra typically

observed for monofractal time series.

4 Econometric modeling

4.1 The STAR-MSM model

We start by spliting up the data-generating process of our date-t electricity price return

xt into a mean and a volatility equation by writing

xt = µt + ϵt. (2)
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In Eq. (2), µt represents the mean process and ϵt the volatility process with zero mean

and variance σ2
t . Since we focus on modeling and forecasting the volatility of electricity

price returns rather than return levels, we use a unique mean process throughout this

paper. In particular, we apply a special variant of the long memory smooth transition

autoregressive (STAR) model, as suggested by Hillebrand and Medeiros (2012), which

is able to reflect long memory properties in the data. The STAR specification of the

mean process can be formalized as

(1− L)dxt = ϕ0 (xt−1, η0) +

p∑
i=1

ϕi (xt−1, ηi) (1− L)dxt−i + ϵt. (3)

In Eq. (3), (1−L)d is the fractional differencing operator with parameter d ∈ (−0.5, 0.5),

defined as (1 − L)d =
∑

k=0
Γ(k−d)Lk

Γ(−d)Γ(k+1)
, where Γ(·) denotes the Gamma function.

Moreover, for i = 0, 1, . . . , p, we consider the nonlinear functions ϕi (xt−1, ηi) = ϕi0 +

ϕi1h [γ(xt−1 − c)] with h(z) = [1 + exp(z)]−1 and parameter vector ηi = (ϕi0, ϕi1, γ, c)
′.

As a benchmark for representing the volatility process ϵt from Eq. (2), we use the

Markov-switching multifractal (MSM) model that adopts a multiplicative structure

(Calvet and Fisher, 2001, 2004, 2008; Lux, 2008). In particular, the centered returns

are modeled as

xt − µt = ϵt = σ2
t · ut (4)

with {ut} being an i.i.d. standard normal process and

σ2
t = σ2

k∏
i=1

M
(i)
t . (5)

In Eq. (5), the instantaneous volatility σ2
t equals the product of a positive scale pa-

rameter σ2 and k random volatility components M
(1)
t , . . . ,M

(k)
t . The dynamics of the

MSM model arise from renewing each multiplierM
(i)
t at date t with probability γi (with

probability 1 − γi the multiplier remains unchanged), where all new multipliers at all

levels of the hierarchy are independently sampled from a common base distribution

M . In our empirical analysis below, we follow Calvet and Fisher (2004) and model

the base distribution M as a binomial random drawing of the two distinct values m0

and 2 − m0 (1 ≤ m0 ≤ 2) each with probability 0.5 (implying E(M (i)
t ) = 1 for all
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i = 1, . . . , k at every date t). Calvet and Fisher (2001) suggest a specific structure of

the transition probabilities γi, under which our discrete-time MSM converges towards

a Poisson multifractal process in continuous time. However, since the continuous-time

limit does not play any role in our analysis, we use the transition probabilities

γi = 2i−k, (6)

as proposed by Lux (2008). The probabilities from Eq. (6) entail a parsimonious overall

model specification and thus greatly facilitate parameter estimation. We obtain optimal

forecasts in the MSM model via Bayesian updating of the conditional probabilities for

the unobserved volatility states.

4.2 Alternative volatility equations

4.2.1 GARCH-type models

Since the seminal papers of Engle (1982) and Bollerslev (1986), GARCH (generalized

autoregressive conditional heteroscedasticity) models have become the most prominent

tool for modeling and forecasting the time-varying conditional variance σ2
t in Eq. (4).

In order to account for specific volatility characteristics (asymmetries, long memory),

a multitude of alternative GARCH specifications has been suggested in the literature.

While Hentschel (1995) establishes a nesting framework for many of these distinct

GARCH models, we focus on six GARCH specifications in our forecasting analysis

below and briefly review their probabilistic structure and the corresponding forecasting

formulae.

The best-known specification is the standard GARCH(1,1) model, for which the

conditional variance is parameterized as

σ2
t = ω + αϵ2t−1 + βσ2

t−1, (7)

with ω > 0, α > 0, β > 0 and α + β < 1 (Bollerslev, 1986). For the GARCH(1,1)

model, h-step ahead forecasts of the conditional variance σ2
t are given by the formula

σ̂2
t+h = σ̄2 + (α + β)h

(
σ2
t − σ̄2

)
, (8)

10



where σ̄2 = ω/ (1− α− β) denotes the unconditional variance of the process.

The GJR-GARCH(1,1) model, suggested by Glosten et al. (1993), extends the

standard GARCH model by capturing asymmetric leverage effects, a phenomenon fre-

quently observed in real-world data. Its conditional variance is specified as

σ2
t = ω + αϵ2t−1 + γϵ2t−1I (ϵt−1 < 0) + βσ2

t−1, (9)

where I(.) denotes the indicator function, which takes on the value 1 if the market is

shocked by bad news (ϵt−1 < 0), and is 0 otherwise (in the case of good news). In

Eq. (9), the parameter γ quantifies the magnitude of the asymmetric leverage effect.

For the GJR-GARCH(1,1) model the h-step ahead forecasts are given by

σ̂2
t+h = σ̄2 +

(
α + β +

γ

2

)h (
σ2
t − σ̄2

)
, (10)

where σ̄2 = ω/(1− α− β − γ/2) is the unconditional variance of the process.

Another GARCH variant to account for asymmetric effects of bad and good news

on conditional volatility is Nelson’s (1991) exponential GARCH (EGARCH) model.

Setting zt = ϵt/σt and assuming that zt follows a standard normal distribution, we

define the logarithmic conditional variance in an EGARCH(1,1) model as

ln(σ2
t ) = ω + α (|zt−1| − E[|zt−1|]) + γzt−1 + β ln(σ2

t−1). (11)

We note that the EGARCH(1,1) specification does not impose any restrictions on the

parameters from Eq. (11), since it models ln(σ2
t ) instead of σ2

t . The parameter γ is able

to capture asymmetric leverage effects, since in the case of γ < 0 positive (negative)

values of zt−1 have a decreasing (an increasing) effect on conditional volatility. For the

EGARCH(1,1) model, the h-step ahead forecast is given

ln(σ̂2
t+h) = σ̄2 + βh

[
ln(σ2

t )− σ̄2
]
, (12)

where σ̄2 = (ω − γ/
√
2/π)/(1− β).

The asymmetric power ARCH (APARCH) model, introduced by Ding et al. (1993),

allows us to model the leverage effect and a few other characteristics frequently encoun-

tered in the dynamics of real-world financial returns. Here, the conditional standard
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deviation σt raised to the power δ > 0 is modeled as

σδ
t = ω + α (|ϵt−1| − γϵt−1)

δ + βσδ
t−1, (13)

where the parameter γ again represents a leverage coefficient. Within this model class,

the h-step ahead forecast formula is given by

σ̂δ
t+h = κ+ (αc+ β)h

(
σδ
t − κ

)
, (14)

where κ = ω(1− αc− β)−1 is the unconditional variance to the power δ and

c =
1√
2π

[
(1 + γ)δ + (1− γ)δ

]
2

δ−1
2 Γ

(
δ + 1

2

)
.

In our preliminary data analysis in Section 3, we employed the Hurst index to indicate

that long memory is likely to be present in the volatility process of electricity price

changes. In order to incorporate long memory into the family of GARCH processes,

Baillie et al. (1996) proposed the fractionally integrated GARCH (FIGARCH) model,

the formulation of which is based on a fractional differentiation parameter d ∈ [0, 1]

(FIGARCH(1,d,1)). Without going into technical details, the conditional variance σ2
t

of the FIGARCH model class can be expressed as

σ2
t =

ω

1− β
+ η1ϵ

2
t−1 + η2ϵ

2
t−2 + . . . , (15)

with ω >, β < 1, and where the parameters η1, η2, . . . can be computed recursively

from a system of equations, which depend on the fractional differentiation parameter

d.6 From Eq. (17) an obvious 1-step ahead forecast of σ2
t is given by

σ̂2
t+1 = ω(1− β)−1 + η1ϵ

2
t + η2ϵ

2
t−1 + . . . . (16)

Using σ̂2
t+1 from Eq. (16), we write the h-step ahead forecasts of the FIGARCH(1,d,1)

model as

σ̂2
t+h = ω (1− β)−1 +

h−1∑
i=1

ηiσ̂
2
t+h−i +

∞∑
j=0

ηh+jϵ
2
t−j. (17)

6Besides the stated inequality conditions, the parameters ω and β need to satisfy further technical
restrictions (see Baillie et al., 1996).
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The infinite sum on the right side of Eq. (17) clearly reflects the long memory properties

of volatility forecasts in the FIGARCH model.

4.2.2 The Markov-Switching GARCH Model

Besides the (single-regime) GARCH-type models discussed so far, a large strand of

theoretical and empirical literature on two-regime Markov-switching GARCH (MS-

GARCH) models has evolved, taking into account sudden (stochastic) changes in the

level of the conditional variance. In most applications, it is assumed that the data-

generating process of the conditional variance is affected by a non-observable two-state

first-order Markov-process St, that is, at any point in time, we either have St = 1 or

St = 2. The stochastic switches between Regimes 1 and 2 are usually modeled by con-

stant transition probabilities and for each of the two distinct regimes, the conditional

variance equation is governed by a regime-specific set of parameters. Recently, Re-

her and Wilfling (2016) present an overview of alternative Markov-switching GARCH

approaches and implement of a rich class of Markov-switching GARCH models.

As described in Reher and Wilfling (2016), it is generally difficult to obtain ana-

lytic expressions for multiple state-ahead volatility forecasts within a Markov-switching

GARCH framework. An exception is the two-regime Markov-switching GARCH(1,1)

model proposed by Klaassen (2002), which models the conditional variance as

σ2
t−1{ϵt|S̃t} = ωSt + αStϵ

2
t−1 + βStEt−1

[
σ2
t−1{ϵt−1|S̃t−1}|St

]
, (18)

where S̃t denotes the regime path {St−1, St−2, . . . }, and ωSt > 0, αSt , βSt ≥ 0. The

expectation on the right side of Eq. (18) makes use of the regime path S̃t and is

conditioned on the information set ℑt−1 = {ϵt−1, ϵt−2, . . . } and St. Under this setup,

Klaassen (2002) obtains the h-step-ahead volatility forecast of his MSGARCH(1,1)

model as

σ̂2
t,t+h =

2∑
i=1

Pr (St+h = i|ℑt) σ̂
2(i)
t,t+h, (19)

where (i) Pr (St+h = i|ℑt) represents the conditional probability of being in Regime i

at date t+ h, and (ii) σ̂
2(i)
t,t+h is the h-step-ahead volatility forecast in Regime i made at

13



date t, which can be computed recursively as

σ̂
2(i)
t,t+h = ω(i) +

(
α(i) + β(i)

)
E
(
σ
2(i)
t,t+h−1|δt+h

)
. (20)

5 Volatility-forecasting performance

5.1 Methodology

In this section, we evaluate the quality of volatility forecasts for the alternative models

presented in Section 4. To this end, we divided each of our five regional data sets

into appropriate in-sample and out-of-sample periods and then applied a daily rolling

window, in order to fix the number of observations used for the estimation of the

respective models over time. We estimated all econometric specifications with the

maximum likelihood techniques as suggested in the original articles. To initialize the

rolling window for each region, we separated the in-sample from the out-of-sample

period at the first break point detected in the five sub-data sets via the modified

ICSS algorithm as proposed by Sansó et al. (2004). Table 3 reports all break points

detected via this algorithm in the date format ”dd/mm/yyyy”. Thus, the initializing in-

sample (out-of-sample) periods are given by (i) 01/01/2006 – 01/11/2009 (02/11/2009

– 04/05/2016) for New South Wales and Tasmania, (ii) 01/01/2006 – 15/02/2010

(16/02/2010 – 04/05/2016) for Queensland, (iii) 01/01/2006 – 10/02/2010 (11/02/2010

– 04/05/2016) for South Australia, and (iv) 01/01/2006 – 22/04/2010 (23/04/2010 –

04/05/2016) for Victoria.

For each state, we computed the model-specific volatility forecasts for the four

alternative forecast horizons h = 1, 5, 10, 20 trading days. In a first step, we assess

forecast accuracy on the basis of the two most frequently used measures, the root

mean squared error (RMSE) and the mean absolute error (MAE), which are given

respectively by

RMSE =

√√√√T−1

T∑
t=1

(
σ̂2
t,M − RVt

)2
, (21)

MAE = T−1

T∑
t=1

∣∣σ̂2
t,M − RVt

∣∣ , (22)

14



where σ̂2
t,M denotes the volatility forecast for date t (given the forecast horizon h), M

the specific model from which the forecast is obtained (e.g. σ̂2
t,GARCH(1,1)), RVt is the

actually observed realized variance at date t, and T denotes the number of out-of-

sample observations.

In a second step, we make statistical inferences about the relative forecasting per-

formance of our alternative volatility models by reporting the results of the equal pre-

dictive ability (EPA) test suggested by Diebold and Mariano (1995), and the superior

predictive ability (SPA) test from Hansen (2005). The EPA test enables us to compare

the forecasting accuracy of two competing models (say M1 and M2) by considering the

loss differential

dt = g(et,M1)− g(et,M2), (23)

where et,M1 = σ̂2
t,M1

−RVt and et,M2 = σ̂2
t,M2

−RVt are the model-specific forecast errors

at date t and the loss function g(·) either denotes the squared error loss g(et,Mi
) = e2t,Mi

or the absolute error loss g(et,Mi
) = |et,Mi

|. Then, the null hypothesis of the EPA

test states that there is no difference in the forecast accuracy between two competing

models:

H0 : E (dt) = 0 for all t. (24)

For large sample sizes, an appropriate test statistic of the EPA test is given by

EPA =
d̄√√√√1/T
N∑

k=−N

γ̂(k)

, (25)

where d̄ = 1/T
∑T

t=1 dt, N is the nearest integer larger than T 1/3 and

γ̂(k) =
1

T

T∑
t=|k|+1

(dt − d̄)(dt−|k| − d̄).

Following Diebold and Mariano (1995), the test statistic EPA is approximately stan-

dard normally distributed under the null hypothesis in large samples .

In contrast to the EPA test, the SPA test suggested by Hansen (2005) allows

us to compare a benchmark forecast model M0 with K competitive forecast mod-

els M1, . . . ,MK under a given loss function. In line with Eq. (23), we define the

15



loss differential between the benchmark model M0 and the alternative model Mk ∈
{M1, . . . ,MK} as

dt,Mk
= g(et,M0)− g(et,Mk

). (26)

Based on theseK loss differentials, we can state the null hypothesis that the benchmark

model M0 is not inferior to any of the other K competing models as

H0 : max{E(dt,M1), . . . ,E(dt,MK
)} ≤ 0 for all t. (27)

In order to express the test statistic of the SPA test, we define the sample mean of

the kth loss differential as d̄Mk
= 1/T

∑T
t=1 dt,Mk

and consider the estimated variance

V̂ar(
√
T · d̄Mk

) for k = 1, . . . , K. We note that this latter variance is estimated by using

a bootstrap method (Hansen, 2005). One way to test the null hypothesis from Eq. (27)

is now to consider the test statistic

SPA = max


√
T d̄M1

V̂ar
(√

T · d̄M1

) , . . . , √
T d̄MK

V̂ar
(√

T · d̄MK

)
 , (28)

the p-values of which can be obtained via a stationary bootstrap procedure.

Table 4 about here

5.2 Out-of-sample forecasting results

Table 4 reports the root mean squared (RMSE) and mean absolute forecast errors

(MAE) for all seven volatility specifications across the five Australian states, where the

forecast horizons were chosen as 1, 5, 10 and 20 trading days. Prima facie, the forecast

errors appear to be rather similar for all volatility models, except for the MSGARCH

model, for which the forecast errors are substantially higher for the (long) forecast hori-

zon h = 20 in 4 of 5 Australian states. Overall, the forecast error analysis in Table 4

suggests that six out of seven volatility models exhibit quasi indistinguishable forecast-

ing performance across all Australian states and over all forecasting horizons. Overall,

it appears difficult to identify a particular volatility specification that unambiguously

and systematically outperforms all other models for all forecasting horizons.
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Table 5 about here

Table 6 about here

In order to compare the volatility forecasting performance among the distinct spec-

ifications on a statistical basis, we apply EPA and SPA tests as presented in Section

5.1. We report the test results in Tables 5 and 6, in the computation of which we

used 5000 bootstrap samples to find p-values of the SPA tests. For the EPA tests in

Table 5, we choose the MSM model as the benchmark specification (Model 2), against

which we compare all other specifications. Only in very few cases does the MSM model

significantly outperform any of the other specifications at the 5% level. In particular,

this is the case for (i) the EGARCH model in New South Wales for the horizons h = 5

(squared error loss) and h = 1 (absolute error loss), (ii) the FIGARCH model in South

Australia for the horizon h = 1 (absolute error loss) and in Tasmania for all hori-

zons under both error losses, and (iii) the MSGARCH model in New South Wales,

South Australia, Victoria for the horizon h = 20 under both error losses. In total, this

amounts to a significant EPA volatility-forecasting outperformance of the MSM model

over any other specification in only 7 % (17 out of 240) of the cases analyzed.

We emphasize that the EPA analysis from Table 5 only provides pairwise perfor-

mance comparisons of the MSM model with each of the other specifications. It does

not provide an overall evaluation of the MSM volatility forecasting performance, when

compared with all other volatility specifications simultaneously. Statistical evidence

on this latter issue is reported by the results of the SPA tests in Table 6, where the

null hypothesis states that the benchmark model is not inferior to any of the other six

competing models. When considering the MSM specification as the benchmark model,

the SPA tests in Table 6 always reject the null hypothesis across all 5 states and for

all forecast horizons under both error losses (that is, in 40 out of 40 tests) at the 5 %

level. This yields the robust result that for each of the 40 volatility forecast settings

(that is, across 5 states, 4 forecast horizons, 2 error loss functions) there is at least one

competing specification that significantly outperforms the MSM model. Viewed from

this angle, it is interesting to note that the standard GARCH model performs best

with 13 out of 40 (13/40) rejections of the null hypothesis at the 5 % level, followed by
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MSGARCH (18/40), APARCH (25/40), GJR (32/40), EGARCH (35/40), FIGARCH

(37/40), and MSM (40/40).

6 Conclusion

In this paper we analyze electricity price returns using a unique intraday data set cov-

ering 5-minute electricity prices for five Australian states. In a multifractal detrended

fluctuation analysis, we find that electricity price returns exhibit multifractal behavior

and therefore model the returns as a smooth transition autoregressive process with a

Markov-switching multifractal volatility component (STAR-MSM model).

We implement a forecasting analysis, in which we compare the out-of-sample volati-

lity-forecasting performance of our STAR-MSM model with that of several alternative

conventional GARCH specifications. Although multifractal structures are statistically

verifiable in the Australian data, incorporating them into the volatility processes of

electricity price returns does not appear to substantially improve volatility forecasts,

compared to those obtained from conventional GARCH models. A useful line of future

research could therefore entail the specification of alternative multifractal volatility

processes with improved predictive content for electricity prices.
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Tables and Figures



Table 1: Descriptive statistics for electricity price returns

NSW QLD SA TAS VIC
Nb. of observations 3776 3776 3776 3776 3776
Minimum -4.034 -4.145 -3.985 -3.298 -3.993
Maximum 4.064 4.045 4.396 2.674 3.618
Mean 4.605E-05 3.020E-4 2.120E-4 3.496E-4 2.079E-4
Std 0.335 0.406 0.468 0.289 0.335
Skewness -0.489 -0.201 0.343 -0.366 -0.161
Kurtosis 42.943 26.599 25.065 31.476 36.308
Tail index 1.388 2.085 2.007 1.948 1.721
JB 2.512E+5 8.765E+4 7.668E+4 1.277E+5 1.746E+5

(0.001) (0.001) (0.001) (0.001) (0.001)
Hurst index1 0.157 0.147 0.118 0.178 0.138
Hurst index2 0.812 0.859 0.750 0.850 0.760
Q(5) 329.221 343.307 382.147 324.342 341.068

(0.000) (0.000) (0.000) (0.000) (0.000)
ARCH-test 458.950 429.267 526.464 153.509 382.584

(0.000) (0.000) (0.000) (0.000) (0.000)

Note: Hurst index1 denotes the Hurst values for electricity price returns, Hurst index2 for the realized
variances. p-values are in parantheses. The five Australian states are abbreviated as NSW (Nouth
South Wales), QLD (Queensland), SA (South Australia), TAS (Tasmania), VIC (Victoria).
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Table 2: Unit root and stationarity tests for electricity price returns

H0 : I(1) H0 : I(0)
States PP PP∗ KPSS KPSS∗

New South Wales −233.362 −233.398 0.016 0.021
Queensland −195.861 −195.910 0.014 0.014
South Australia −258.811 −258.871 0.017 0.021
Tasmania −184.912 −184.912 0.022 0.036
Victoria −140.435 −140.462 0.009 0.010

Note: PP and PP∗ are the Phillips-Perron adjusted t-statistics of the lagged dependent variable in
a regression with (i) intercept and time trend, and (ii) intercept only. The respective critical values
at the 1% level are −3.960 and −3.432. KPSS and KPSS∗ are the Kwiatkowski, Phillips, Schmidt,
and Shin test statistics using residuals from regressions with (i) intercept and time trend, and (ii)
intercept only. The respective critical values at the 1% level are 0.216 and 0.739.
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Table 3: Structural breaks in the variance processes of electricity price returns

State No. of break points Date (dd/mm/yyyy) Standard deviation
New South Wales 2 01/01/2006 – 01/11/2009 0.374

02/11/2009 – 22/02/2010 1.080
23/02/2010 – 04/05/2016 0.208

Queensland 5 01/01/2006 – 15/02/2010 0.501
16/02/2010 – 13/11/2014 0.251
14/11/2014 – 20/03/2015 0.834
21/03/2015 – 02/04/2015 0.257
03/04/2015 – 28/03/2016 0.637
29/03/2016 – 04/05/2016 0.637

South Australia 1 01/01/2006 – 10/02/2010 0.574
11/02/2010 – 04/05/2016 0.382

Tasmania 2 01/01/2006 – 01/11/2009 0.354
02/11/2009 – 22/02/2010 0.150
23/02/2010 – 04/05/2016 0.247

Victoria 1 01/01/2006 – 22/04/2010 0.430
23/04/2010 – 04/05/2016 0.246

Note: The bold dates represent the structural break points obtained from the modified iterated
cumulated squares algorithm suggested by Sansó et al. (2004).
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Table 4: Root mean squared errors (RMSE) and mean absolute errors (MAE)

Model Forecast horizon (trading days)
1 5 10 20 1 5 10 20

RMSE MAE
New South Wales

MSM 31.833 31.852 31.872 31.768 5.857 5.886 5.925 5.967
GARCH 31.803 31.839 31.850 31.742 5.836 5.824 5.835 5.841
GJR 31.744 31.848 31.865 31.760 5.827 5.849 5.888 5.925
EGARCH 33.452 31.857 31.874 31.769 6.240 5.886 5.921 5.962
APARCH 31.837 31.853 31.872 31.763 5.851 5.875 5.904 5.922
FIGARCH 31.782 31.842 31.855 31.754 5.839 5.848 5.874 5.903
MSGARCH 31.820 31.849 31.880 41.041 5.828 5.838 5.961 54.323

Queensland
MSM 118.556 118.570 118.564 118.585 27.251 27.263 27.273 27.386
GARCH 118.535 118.546 118.518 118.499 27.221 27.164 27.104 27.082
GJR 118.533 118.550 118.528 118.518 27.218 27.181 27.138 27.147
EGARCH 118.541 118.567 118.558 118.578 27.234 27.229 27.223 27.333
APARCH 118.550 118.556 118.541 118.548 27.229 27.196 27.157 27.212
FIGARCH 118.549 118.568 118.561 118.577 27.243 27.234 27.234 27.334
MSGARCH 118.551 118.551 118.539 118.543 27.202 27.199 27.190 27.256

South Australia
MSM 67.834 67.848 67.856 70.455 18.093 18.107 18.136 18.974
GARCH 67.816 67.834 67.839 70.420 18.069 18.065 18.068 18.864
GJR 67.789 67.823 67.847 70.436 18.056 18.076 18.105 18.926
EGARCH 67.819 67.848 67.857 70.458 18.073 18.105 18.137 18.979
APARCH 67.820 68.429 68.168 71.668 18.073 18.453 51.186 43.110
FIGARCH 67.828 67.850 67.856 70.456 18.105 18.113 18.134 18.963
MSGARCH 67.828 67.832 67.862 72.751 18.049 18.036 18.380 171.060

Tasmania
MSM 21.333 21.357 21.373 21.423 8.675 8.700 8.711 8.763
GARCH 21.320 21.346 21.358 21.403 8.653 8.666 8.666 8.708
GJR 21.319 21.344 21.355 21.401 8.651 8.660 8.658 8.701
EGARCH 21.325 21.350 21.364 21.410 8.658 8.680 8.684 8.726
APARCH 21.328 21.347 21.357 21.396 8.662 8.673 8.667 8.693
FIGARCH 21.341 21.364 21.380 21.431 8.685 8.711 8.723 8.775
MSGARCH 21.310 21.325 21.326 45.982 8.620 8.624 8.600 10.348

Victoria
MSM 58.437 58.444 58.454 61.463 10.305 10.325 10.369 11.218
GARCH 58.424 58.431 58.434 61.427 10.284 10.265 10.255 11.018
GJR 58.418 58.430 58.446 61.450 10.279 10.292 10.314 11.125
EGARCH 58.254 58.444 58.455 61.464 10.305 10.319 10.359 11.210
APARCH 58.433 58.443 68.761 67.490 10.297 10.306 13.916 13.880
FIGARCH 58.431 58.442 58.450 61.454 10.299 10.315 10.353 11.194
MSGARCH 58.430 58.432 58.429 71.413 10.260 10.248 10.435 75.927

Note: The volatility models are abbreviated as MSM (Markov-switching multifractal), GARCH (gen-
eralized autoregressive conditional heteroscedatsicity), GJR (Glosten-Jagannathan-Runkle GARCH),
EGARCH (exponential GARCH), APARCH (asymmetric power ARCH), FIGARCH (fractionally in-
tegrated GARCH), MSGARCH (Markov-switching GARCH).
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Table 5: Equal predicitve ability (EPA) tests (p-values)

Model 1 Model 2 Forecast horizon (trading days)
1 5 10 20 1 5 10 20

Squared error loss Absolute error loss
New South Wales

GARCH MSM 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000
GJR 0.946 0.971 1.000 1.000 1.000 1.000 1.000 1.000
EGARCH 0.081 0.036 0.176 0.258 0.039 0.499 0.833 0.845
APARCH 0.198 0.421 0.554 0.995 0.999 1.000 1.000 1.000
FIGARCH 0.959 1.000 0.997 0.999 1.000 1.000 1.000 1.000
MSGARCH 0.993 0.923 0.151 0.010 1.000 1.000 0.221 0.009

Queensland
GARCH MSM 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000
GJR 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.000
EGARCH 0.965 0.870 0.907 0.920 1.000 1.000 1.0000 1.000
APARCH 0.985 1.000 1.000 1.000 1.000 1.000 1.0000 1.000
FIGARCH 0.939 0.819 0.771 0.921 0.998 1.000 1.0000 1.000
MSGARCH 0.963 1.000 1.000 1.000 1.000 1.000 1.0000 1.000

South Australia
GARCH MSM 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000
GJR 0.990 0.908 0.999 0.997 1.000 1.000 0.998 1.000
EGARCH 0.988 0.399 0.214 0.073 1.000 0.707 0.380 0.240
APARCH 0.956 0.171 0.155 0.156 0.994 0.114 0.089 0.120
FIGARCH 0.936 0.114 0.491 0.335 0.000 0.081 0.578 0.771
MSGARCH 0.982 1.000 0.447 0.047 1.000 1.000 0.058 0.020

Tasmania
GARCH MSM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GJR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
EGARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
APARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FIGARCH 0.000 0.000 0.000 0.012 0.000 0.000 0.001 0.024
MSGARCH 1.000 1.000 1.000 0.061 1.000 1.000 1.000 0.056

Victoria
GARCH MSM 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000
GJR 0.998 0.914 1.000 1.000 1.000 1.000 1.000 1.000
EGARCH 0.728 0.480 0.398 0.257 0.499 0.993 1.000 0.992
APARCH 0.897 0.952 0.158 0.159 1.000 1.000 0.147 0.155
FIGARCH 0.997 0.968 0.933 0.931 0.993 1.000 1.000 0.998
MSGARCH 1.000 1.000 0.999 0.036 1.000 1.000 0.162 0.032

Note: p-values obtained for the null hypothesis that, for a given forecast horizon, there is no difference
in forecast accuracy between Model 1 and Model 2 versus the one-sided alternative that the forecasts
from Model 1 are inferior to those from Model 2. The volatility models are abbreviated as MSM
(Markov-switching multifractal), GARCH (generalized autoregressive conditional heteroscedatsicity),
GJR (Glosten-Jagannathan-Runkle GARCH), EGARCH (exponential GARCH), APARCH (asym-
metric power ARCH), FIGARCH (fractionally integrated GARCH), MSGARCH (Markov-switching
GARCH).
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Table 6: Superior predicitve ability (SPA) tests (p-values)

Benchmark model Forecast horizon (trading days)
1 5 10 20 1 5 10 20

Squared error loss Absolute error loss
New South Wales

MSM 0.040 0.001 0.000 0.000 0.000 0.000 0.000 0.000
GARCH 0.155 0.830 1.000 1.000 0.057 1.000 1.000 1.000
GJR 0.912 0.004 0.000 0.000 0.630 0.000 0.000 0.000
EGARCH 0.085 0.000 0.000 0.000 0.044 0.000 0.000 0.000
APARCH 0.053 0.002 0.001 0.000 0.000 0.000 0.000 0.000
FIGARCH 0.088 0.170 0.054 0.001 0.019 0.000 0.000 0.000
MSGARCH 0.072 0.010 0.000 0.004 0.450 0.001 0.000 0.000

Queensland
MSM 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GARCH 0.215 0.878 1.000 1.000 0.004 1.000 1.000 1.000
GJR 0.981 0.000 0.000 0.000 0.007 0.000 0.000 0.000
EGARCH 0.207 0.000 0.000 0.000 0.000 0.000 0.000 0.000
APARCH 0.034 0.000 0.001 0.000 0.000 0.000 0.000 0.000
FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSGARCH 0.085 0.156 0.003 0.000 1.000 0.000 0.000 0.000

South Australia
MSM 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GARCH 0.143 0.674 0.927 0.870 0.001 0.000 1.000 1.000
GJR 1.000 0.863 0.000 0.000 0.255 0.000 0.000 0.000
EGARCH 0.081 0.000 0.000 0.000 0.000 0.000 0.000 0.000
APARCH 0.117 0.180 0.113 0.130 0.001 0.060 0.055 0.084
FIGARCH 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSGARCH 0.112 0.656 0.552 0.015 0.745 1.000 0.003 0.001

Tasmania
MSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GARCH 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GJR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
APARCH 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSGARCH 1.000 1.000 1.000 0.065 1.000 1.000 1.000 0.041

Victoria
MSM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GARCH 0.165 0.777 0.555 0.742 0.000 0.000 0.906 0.872
GJR 0.253 0.733 0.000 0.000 0.001 0.000 0.000 0.000
EGARCH 0.748 0.000 0.000 0.000 0.362 0.000 0.000 0.000
APARCH 0.060 0.000 0.191 0.258 0.000 0.000 0.096 0.128
FIGARCH 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSGARCH 0.182 0.329 0.923 0.000 0.645 1.000 0.000 0.000

Note: p-values obtained for the null hypothesis that the benchmark model is not inferior to any of the
other competing models. The volatility models are abbreviated as MSM (Markov-switching multifrac-
tal), GARCH (generalized autoregressive conditional heteroscedatsicity), GJR (Glosten-Jagannathan-
Runkle GARCH), EGARCH (exponential GARCH), APARCH (asymmetric power ARCH), FI-
GARCH (fractionally integrated GARCH), MSGARCH (Markov-switching GARCH).
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Figure 1: Daily electricity price returns (left panels) and autocorrelation functions (right 
panels) 



0

100

200

300

400

500

600

700

800

2006 2008 2010 2012 2014 2016

New South Wales

-.02

.00

.02

.04

.06

.08

.10

.12

10 20 30 40 50 60 70 80 90 100

New South Wales

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

2006 2008 2010 2012 2014 2016

Queensland

-.04

.00

.04

.08

.12

.16

.20

10 20 30 40 50 60 70 80 90 100

Queensland

0

200

400

600

800

1,000

1,200

1,400

2006 2008 2010 2012 2014 2016

South Australia

-.04

.00

.04

.08

.12

.16

.20

10 20 30 40 50 60 70 80 90 100

South Australia

0

100

200

300

400

500

2006 2008 2010 2012 2014 2016

Tasmania

.00

.05

.10

.15

.20

.25

.30

.35

.40

10 20 30 40 50 60 70 80 90 100

Tasmania

0

400

800

1,200

1,600

2,000

2006 2008 2010 2012 2014 2016

Victoria

-.02

.00

.02

.04

.06

.08

.10

.12

.14

10 20 30 40 50 60 70 80 90 100

Victoria

 
 

Figure 2: Daily realized variances (left panels) and autocorrelation functions (right panels) 
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Figure 3: The scaling functions (Fq) and the q-order Hurst exponents (Hq) for the electricity price returns
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Figure 4: Multifractal spectra of the electricty price returns
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