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1 Introduction

Owing to their impact on financial markets and the real economy, stock-market bubbles have
always attracted considerable attention in the economics, finance, and econometrics liter-
ature. A plethora of theoretical and empirical articles study the emergence of asset-price
bubbles and the behavior of agents during bubbly periods, including, among others, Tirole
(1982, 1985), Allen and Gorton (1993), Allen and Gale (2000) , Abreu and Brunnermeier
(2003), Barberis et al. (2018), Bordalo et al. (2021), Enders and Hakenes (2021), Brag-
gion et al. (2023). In this paper, we focus on the following two strands of the literature.
The first consists of econometric studies that are concerned with the empirical detection,
date-stamping and monitoring of bubbles in artificial and real-world financial data, predom-
inantly by applying cointegration-, unit-root-, and explosivity tests to a dividend-stock-price
relationship (inter alia, Diba and Grossman, 1988a; Hall et al., 1999; Phillips et al., 2011;
Homm and Breitung, 2012; Phillips et al., 2015; Shi and Song, 2016; Hafner, 2018; Harvey
et al., 2020; Kurozumi, 2020; Monschang and Wilfling, 2021; Caravello et al., 2023; Morita
et al., 2023; Lui et al., 2024; Blasques et al., 2024). The second strand includes articles
that aim to disentangle the latent bubble process from other financial/economic variables and
characteristics (usually summarized as fundamentals). Surprisingly, relatively few attempts
have so far been undertaken in this latter direction, e.g. Wu (1995), Wu (1997), Balke and
Wohar (2009), Al-Anaswah and Wilfling (2011), Lammerding et al. (2013), Rotermann and
Wilfling (2014), Chan and Santi (2021). The results of our study primarily contribute to this
area.

Several of the latter articles use specific variants of the log-linearized present-value model
with time-varying expected returns (Campbell and Shiller, 1988a, 1988b; Engsted et al.,
2012). The econometric setup consists of three unobservable variables, namely (i) the ex-
pected stock returns, (ii) the expected dividends, and (iii) the bubble values, whose dynam-
ics are specified in the transition equation of a state-space representation (e.g. Balke and
Wohar, 2009; Chan and Santi, 2021). The three latent processes are assumed to follow
low-order autoregressive patterns, in which the bubble process is sometimes enriched with
two-regime Markov-switching elements to take account of exploding and collapsing bub-
ble phases. Along with the process specifications of the observable model variables in the
measurement equation, the entire state-space framework is then estimated by maximum-
likelihood or Bayesian techniques, ultimately yielding an estimate of the bubble process.

Given the limited availability of past data, this well-designed state-space framework pro-
vides a compelling method for drawing inferences about the nature of unobservable stock
price bubbles. One aspect regarding the estimation of the bubble process with this state-
space technique, however, is worth mentioning. Since the latent expected dividend and re-
turn processes must be estimated from the data, the final estimates of the bubble process may
be exposed to potential (i) misspecifcation of the dividend and return equations, and (ii) es-
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timation errors within the state-space system. In the following analysis, we circumvent such
econometric pitfalls by using a novel and comprehensive data base that allows a more direct
extraction of bubble values (without estimation).

Our data sets include time series of EuroStoxx dividend-futures prices over the next
10 years, which have been available since 2008 for expiry dates from 2008 to 2032. The
underlying of a dividend future for a given year is the sum of the dividends paid over the
course of that year. For instance, the dividend-futures contract for 2025 entitles the holder
to receive the dividends paid in 2025 in the middle of December 2025. Additionally, we
use spot interest-rate data from the European Central Bank (ECB) to obtain risk-free rates
for given maturities. These two time series enable us to recover the fundamental value of
the EuroStoxx in a basically model-free way. The main idea is that the fundamental value
is the sum over the prices of all dividend claims. For a maturity of 1 to 10 years, we can
recover the prices of these dividend claims from the prices of the corresponding dividend
futures. For maturities of 11 years onwards (to infinity), we extrapolate the price curve of
the dividend claims, more specifcally, the curve of the forward equity yields. The difference
between the EuroStoxx and its fundamental value is then, by definition, equal to the value of
the bubble. Having revealed the entire bubble trajectory via this procedure, we are then able
(i) to analyze the statistical properties of the disentangled fundamental and bubble values,
and (ii) to fit suitable theoretical (parametric) bubble process specifications directly to the
extracted bubble trajectory.

Our data-driven approach is based on minimal assumptions only. The crucial point in-
volves our choice of the exponential function, which we use for the above-mentioned extrap-
olation. To justify our functional form, we determine the prices of dividend claims and the
equity yields in an equilibrium model. Specifically, we rely on the long-run risk model of
Bansal and Yaron (2004) with a stochastic expected growth rate of consumption and stochas-
tic volatility. The theoretical analysis yields three major findings. (i) The model-implied
equity yield curve is well fitted by the exponential function. (ii) The assumed behavior of
the dividend claims and the forward equity yield curves is in line with their properties in this
long-run risk model. (iii) Using the parameters of Bansal et al. (2016), we obtain a long-run
level of the forward equity yield of around 7.5% with an approximately exponential conver-
gence to this level. Slight variations in the parameters in particular in the mean-reversion
speed of the expected growth rate yield long-run levels for the forward equity yield between
2% and 12%, suggesting that our data-driven choice of a long-run level of around 11% is
sensitive.

The last element we need is a suitable theoretical (parametric) bubble process that we
can fit to our bubble values. In the literature, several bubble specifications have been moti-
vated within the linear present-value model under rational expectations and with a constant
discount factor (e.g. Evans, 1991; Fukuta, 1998; Rotermann and Wilfling, 2018). How-
ever, Cochrane (2011) presents overwhelming empirical significance of time-varying dis-
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count rates and vigorously advocates the inclusion of discount-rate variation into financial
and econometric modeling. In the preliminary Section 2 below, we therefore modify the
conventional constant-discount-factor present-value model by relying on stochastic discount
factors within a general asset-pricing framework. This leads directly to (i) the possibility of
time-varying discount rates without log-linearization of the basic present value model, and
(ii) a theoretical bubble process with identifiable and easily interpretable parameters (after
estimation).

The four main findings of our empirical bubble and fundamental-value analysis can be
summarized as follows. (i) The average bubble share in the EuroStoxx50 was around 22% in
the period from January 2011 to December 2023. (ii) The bubble share and the bubble values
reacted strongly to significant geopolitical events (Crimean annexation, war in Ukraine) and
the outbreak of the COVID-19 pandemic. (iii) The bubble series exhibits explosiveness
characteristics and martingale/random-walk behavior comparable to that of the EuroStoxx50
index. (iv) The estimation results obtained by fitting our theoretical bubble process to the data
indicate that the EuroStoxx50 bubble was consistent with rational expectations.

The remainder of the paper is organized as follows. Section 2 presents our stock-price
model with time-varying (stochastic) discount rates and our theoretical (parametric) bubble
process. Section 3 describes the EuroStoxx dividend futures dataset. Section 4 presents
the method for extracting the fundamental and bubble values from the data. The empirical
Section 5 analyzes the statistical properties of the EuroStoxx bubble. Section 6 concludes.

2 Stock-price model with rational bubble

2.1 A rational bubble process

To introduce our parametric bubble specification, we briefly review the linear present-value
model with constant expected returns (Campbell et al., 1997; Cuthbertson and Nitzsche,
2004), in which the price of a stock at date t, Pt, is given by the Euler equation

Pt = Et

[
1

1 + r
(Pt+1 + Dt+1)

]
=

1
1 + r

[Et(Pt+1) + Et(Dt+1)] . (1)

Et(·) denotes the conditional expectation operator based on all information available to mar-
ket participants at time t, Dt+1 is the dividend payment of the stock between t and t + 1, and
r is referred to as the required rate of return that is just sufficient to compensate investors for
the inherent riskiness of the stock. The first-order expectational difference equation (1) can
be solved routinely. If we rule out bubble solutions by imposing the transversality condition

lim
n→∞

(
1

1 + r

)n

· Et(Pt+n) = 0, (2)
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the Euler equation (1) has the unique solution

Pt = P f
t ≡

∞∑
i=1

(
1

1 + r

)i

· Et(Dt+i). (3)

In Eq. (3), P f
t is the fundamental stock-price (the stream of discounted expected future divi-

dends).
Relaxing the transversality condition (2), we obtain an entire class of solutions to Eq. (1),

which can be written as

Pt = P f
t + Bt =

∞∑
i=1

(
1

1 + r

)i

· Et(Dt+i) + Bt, (4)

where Bt in Eq. (4) may be any stochastic process satisfying the submartingale property

Et(Bt+1) = (1 + r) · Bt or, equivalently, Bt =
1

1 + r
· Et(Bt+1). (5)

Any process {Bt}, satisfying Property (5), is called a rational bubble, since its presence in
Eq. (4) is consistent with rational expectations.

Besides the submartingale property (5), any rational bubble with respect to an asset with
limited liability has to meet two additional formal properties, as argued by Diba and Gross-
man (1988b): (i) rational bubbles cannot start from zero, and (ii) negative bubbles are ruled
out as t → ∞. The most frequently applied rational bubble, satisfying both Diba-Grossman
conditions, is the periodically collapsing Evans (1991) process. An empirical shortcoming
of the Evans bubble is that it always bursts completely from one trading unit to the next, im-
plying unrealistic (theoretical) stock-price volatility paths (Rotermann and Wilfling, 2014).

Rotermann and Wilfling (2018) propose a flexible bubble specification that generates
stock prices and (time-varying) stock-price variances with more realistic deflating behav-
ior.1 To formalize, let {ut}

∞
t=1 be an exogenous process of i.i.d. lognormally (LN) distributed

random variables, for which each variable is scaled to have unit mean.2 Then, the Roter-
mann and Wilfling (2018) bubble (RW bubble) is defined as the following mixture of two
lognormal distributions:

Bt+1 =

 1
ψ
α
π

Btut , with probability π
1
ψ

1−α
(1−π) Btut , with probability 1 − π

, (6)

with parameters ψ ≡ (1 + r)−1, α, and π, for which it is assumed that 0 < α < 1, α
π
> 1,

and 1−α
1−π < ψ. Under these restrictions, the process (6) is interpreted as follows. In State 1

1Fukuta (1998) defines an incompletely bursting bubble, which evolves over time along three potential
states (‘large-bubble’, ‘small-bubble’, ‘incomplete-burst’ state). However, within each state, the Fukuta bubble
exhibits deterministic growth, a property which frequently conflicts with empirical findings.

2Technically, we assume ut
i.i.d.
∼ LN(−ι

2

2 , ι
2).
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(occurring with probability π), the bubble grows at the expected rate α
ψπ
− 1 > r. In this state,

the bubble grows at a faster rate than the required rate of return. In State 2 (occurring with
probability 1−π), the expected bubble growth rate is 1−α

ψ(1−π) −1 < 0, i.e. in State 2, the bubble
deflates.

It is straightforward to verify that the bubble-process mixture (6), (i) meets the submartin-
gale property (5), i.e. is rational per definition, and (ii) also satisfies both Diba-Grossman
conditions. In Section 2.2, we will exploit the structure of this specification to define a ratio-
nal bubble in an asset-pricing framework with time-varying (stochastic) discount factors.

2.2 An asset-pricing view

We now drop the assumption of a constant expected rate of return. In line with Cochrane
(2005), we assume that the stock price at date t follows the asset-pricing equation

Pt = Et(Mt+1 · Xt+1), (7)

where Mt+1 is the stochastic discount factor and Xt+1 the random future payoff. By analogy
with Section 2.1, we define the future payoff to consist of the components

Xt+1 = Pt+1 + Dt+1 = P f
t+1 + Dt+1 + Bt+1 (8)

with future fundamental value P f
t+1, dividend payment Dt+1, and bubble term Bt+1. Inserting

Eq. (8) into Eq. (7), we obtain

Pt = Et

[
Mt+1

(
P f

t+1 + Dt+1

)]
+ Et (Mt+1Bt+1) = P f

t + Bt. (9)

The first term on the right side of Eq. (9) represents the current fundamental stock price,
the second term the current bubble value. In the formula for P f

t , we can (i) substitute out
future fundamental stock prices, and (ii) exploit the economic fact that expected future fun-
damental stock prices cannot grow indefinitely at faster rates than the entire payoffs. This
implies

lim
τ→∞
Et

P f
t+τ

τ∏
k=1

Mt+k

 = 0,

which yields the following representation of the current fundamenal stock price:

P f
t = Et

 ∞∑
τ=1

Dt+τ

τ∏
k=1

Mt+k

 . (10)

The current bubble value follows the condition Bt = Et(Mt+1Bt+1), which we interpret as the
stochastic-discount-factor counterpart to the rationality property stated in Eq. (5). Denot-
ing the (time-varying) risk-free interest rate at date t by rt, we now modify the RW-bubble
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specification from Eq. (6) to

Bt+1 =

 1
ψt

α
π

Btut , with probability π
1
ψt

1−α
(1−π) Btut , with probability 1 − π

, (11)

where ψt ≡ (1 + rt)−1.

Figure 1 about here

Figure 2 about here

3 EuroStoxx dividend-futures data

Our data set contains prices of dividend futures (maturing up to 10 years ahead), dividend
point indices, and index values for the EuroStoxx50. We start depicting the data with two
plots illustrating different aspects of dividend-futures prices. Figure 1 plots the prices of a
dividend future with a given expiry date over time. Figure 2 shows the prices of dividend
futures as a function of maturity on a specific trading day. Explicitly, data for EuroStoxx
dividend futures are available since 2008 for expiry years ranging from 2008 to 2032. We de-
note the day-t price of the dividend future with expiry year m by D(m)

t , so that Figure 1 shows
the 25 curves (1)

{
D(2008)

t2008
, . . . ,D(2008)

T2008

}
, (2)

{
D(2009)

t2009
, . . . ,D(2009)

T2009

}
, . . . , (25)

{
D(2032)

t2032
, . . . ,D(2032)

T2032

}
.

The observation periods (tm, . . . ,Tm) typically differ across maturities, since each dividend
future is only traded for a limited period. The panels in Figure 2 contain 16 maturity curves,
for which each panel—representing a specific trading day— displays the prices of all divi-
dend futures available on that trading day, as a function of the expiry year. For example, the
upper right panel shows dividend-futures prices on 1 October 2010 (t = 2010-10-01) for the
expiry years m = 2010, 2011, . . . , 2019, i.e. the 10-point curve

{
D(2010)

t , . . . ,D(2019)
t

}
.

Figure 3 about here

Panel (a) in Figure 3 displays the dividend point index over time. Each year, the point
index starts with the value 0 on the first Monday after the third Friday of December. From this
day onwards, all dividend payments over the year are cumulated until the third Friday of the
following December. Panel (b) shows the EuroStoxx index over the same time period, while
Panels (c) and (d) are reserved for interest-rate quantities. In particular, we use spot rates
calculated from ECB data for the parameters of the Svensson-approximation (available on a
daily basis). The approximation is for AAA bonds only, and should thus provide accurate
proxies of the risk-free interest rates. Subsequently, we denote the risk-free term-L interest
rate by r[L]

t . Panel (c) displays the time series for the 1-year risk-free rate
{
r[1]

1 , r[1]
2 , . . . , r[1]

T

}
,
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while Panel (d) contains the yield curves
{
r[L]

t

}
for varying terms L (in years) on the selected

days t ∈ {2007-12-31, 2019-12-30, 2023-12-01}.3

Figure 4 about here

In line with Eqs. (3) and (10), the data presented in Figures 1 to 3 constitute our quan-
titative basis in determining fundamental stock-price values. To extract the price D̃(m)

t of the
dividend claim with maturity in year m, we take the dividend futures price D(m)

t as an approx-
imation of the dividend forward price, ignoring any correlation between dividend prices and
interest rates. Discounting the futures price then yields the price of the dividend claim, i.e.

D̃(m)
t =

D(m)
t(

1 + r[L∗]
t

)L∗ , (12)

where L∗ is the number of years between day t and the expiry day of the dividend future with
expiry year m. Figure 4 displays the logarithm of the prices of the dividend claims, ln

[
D̃(m)

t

]
,

using the maturity curves D(m)
t from Figure 2. In the next section, the slopes at the right end

of the discounted maturity curves in Figure 4 become important,

s[M∗]
t = ln

[
D̃(M)

t

]
− ln

[
D̃(M−1)

t

]
, (13)

where M is the expiry year of the longest-running dividend future at day t and M∗ the asso-
ciated maturity.

We can give the geometric entitity s[M∗]
t in Eq. (13) the following finance rationale. To

determine the fundamental stock-price, we have to extrapolate the log-price curves in Figure
4. Instead of directly working with the dividend-claim price levels, we find it more conve-
nient to express the dividend-claim prices via the forward equity yields e[k]

t , where k refers
to the period from k − 1 to k, and then to extrapolate the forward equity yields.4 Analogous
to the forward interest rates for a bond, the forward equity yields for a stock market index
follow from

D̃(m)
t = Dt · exp

− m∗∑
k=1

e[k]
t

 , (14)

where m is the expiry year and m∗ is the associated maturity. The forward equity yield e[M∗]
t

then equals the negative slope of the log dividend price curve from Eq. (13), i.e.

e[M∗]
t = −

(
ln

[
D̃(M)

t

]
− ln

[
D̃(M−1)

t

])
= −s[M∗]

t . (15)
3From now on, we adopt the following notation: superscripts in round brackets, (·), denote prospective dates

(such as expiry dates). Superscripts in squared brackets, [·], denote maturities/terms.
4For the definition of equity yields, see e.g. van Binsbergen et al. (2013).
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Figure 5 about here

Figure 5 shows that the slopes of the longest running dividend future with maturity
M∗ = 10 years, s[10]

t , are volatile, especially at the beginning of the observation period.
Positive slopes can be ruled out according to economic theory, as they imply divergence of
the fundamental value. Data about the new 10-year dividend futures—which are introduced
after the third Friday of December each year—are dubious until trading starts properly in
January. The December prices of the 10-year dividend futures are often set exactly equal to
the prices of the 9-year futures. We therefore disregard the prices of the 10-year futures in
any December. The left vertical dashed line in Figure 5 indicates the first day (4 May 2009)
of 10 futures being traded (rather than just 7 futures before that day). The slope volatility
evidently decreases drastically after that day, but is still larger than after January 2011, when
the market seems to be more mature. The right vertical dashed line in Figure 5 marks 3
January 2011, where our observation period starts. The horizontal dashed line marks the
average slope over the period starting on 3 January 2011,

s̄[10] =
1

3309

3309∑
t=1

s[10]
t = −0.0319.

We interpret this value as the unconditional (stationary) slope coefficient for the 10-year
maturity.

4 Extraction of fundamental stock-price values

In this section, we describe our approach to extracting the fundamental stock-price values
from the dividend-futures data set, using the theoretical models from Section 2. To this end,
we partition the fundamental value into three components, with the first two components
being directly observable from our data set (Section 4.1), while the third is unobservable
and needs to be extrapolated (Section 4.2). We base this extrapolation on insights from a
long-run risk model (Section 4.2.2).

4.1 Fundamental-value partitioning

In line with Eq. (10), we compute the fundamental stock-price value at date t, P f
t , as the

sum of all discounted dividend-futures prices (D̃(m)
t ) over infinitely many maturities m∗ =

1, 2, . . .. Since our data set only provides dividend-futures prices for the maturities m∗ =
1, . . . 10 years, we need to extrapolate the (unobservable) prices for m∗ ≥ 11. We consider
the following partitioning of the fundamental value,

P f
t = fv1t + fv2t + fv3t, (16)
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with the components,

(1) fv1t, calculated with dividend-futures prices of the current year (observable),

(2) fv2t, calculated with prices for m∗ = 2, . . . , 10 (observable),

(3) fv3t, calculated with extrapolated prices for m∗ ≥ 11 (unobservable).

Our data set enables us to approximate fundamental values P f
t according to Eq. (16) for the

period between 3 January 2011 and 13 December 2023 (3309 daily observations).
In order to compute the observable component fv1t, we consider the discounted value of

the dividend future expiring in the current year m, reduced by the share of dividends that has
already been paid out up to day t,

fv1t = D̃(m)
t ·

D(m)
t − dt

D(m)
t

. (17)

At the beginning of year m, we have dt = 0 so that fv1t = D̃(m)
t . As the dividend payments

accumulate over the course of the year, dt → D(m)
t , so that fv1t → 0 at the end of year m. The

second observable component, fv2t, simply equals the sum of the discounted futures prices
for maturities of 2 to 10 years,

fv2t =

9∑
k=1

D̃(m+k)
t , (18)

where m again denotes the current year.

4.2 Extrapolated component

4.2.1 Basic assumption

To obtain the component fv3t, we need to extrapolate the remaining discounted dividend-
futures prices for maturities of 11 years up to infinity. Denoting the expiry year of the longest
running dividend future (which is actually observed) by M with associated maturity M∗ = 10
years, we write

fv3t =

∞∑
k=1

D̃(M+k)
t . (19)

Eq. (13) now allows us to write

ln
[
D̃(M+k)

t

]
= ln

[
D̃(M)

t

]
+

k∑
n=1

s[M∗+n]
t , (20)

and we make the basic assumption that the slope of the discounted maturity curves ap-
proaches an average long-run value s̄[∞] exponentially, i.e.

s[M∗+n]
t =

(
s[M∗]

t − s̄[∞]
)
· exp (−κn) + s̄[∞], (κ ≥ 0). (21)
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In Eq. (21), κ ≥ 0 determines the speed of convergence towards s̄[∞], and we have the limiting
cases s[M∗+n]

t = s[M∗]
t for n = 0, and s[M∗+n]

t = s̄[∞] for n→ ∞.
Using Eqs. (20) and (21), we can now express the third component fv3t in Eq. (19) as

follows:

fv3t =

∞∑
k=1

D̃(M+k)
t =

∞∑
k=1

D̃(M)
t · exp

 k∑
n=1

s[M∗+n]
t


= D̃(M)

t

∞∑
k=1

exp

 k∑
n=1

[(
s[M∗]

t − s̄[∞]
)
· exp (−κn) + s̄[∞]

]
= D̃(M)

t

∞∑
k=1

exp

ks̄[∞] +
(
s[M∗]

t − s̄[∞]
) k∑

n=1

exp (−κn)

 . (22)

Since the finite sum inside the exponential expression in Eq. (22) equals 1−e−κk
eκ−1 , we have

fv3t = D̃(M)
t

∞∑
k=1

exp
ks̄[∞] +

s[M∗]
t − s̄[∞]

eκ − 1

(
1 − e−κk

)
= D̃(M)

t

∞∑
k=1

exp
ks̄[∞] +

s[M∗]
t − s̄[∞]

eκ − 1
− e−κk

s[M∗]
t − s̄[∞]

eκ − 1


= D̃(M)

t exp
 s[M∗]

t − s̄[∞]

eκ − 1

 ∞∑
k=1

exp
ks̄[∞] − e−κk

s[M∗]
t − s̄[∞]

eκ − 1

 .
In our empirical analysis, we truncate the infinite sum on the right side of the last equation at
an appropriately selected large value k̄, such that the sum of the remaining elements becomes
negligible. Thus, we compute the third component as

fv3t = D̃(M)
t exp

 s[M∗]
t − s̄[∞]

eκ − 1

 k̄∑
k=1

exp
ks̄[∞] − e−κk

s[M∗]
t − s̄[∞]

eκ − 1

 . (23)

The computation of fv3t in Eq. (23) requires specific choices for the convergence speed κ
and the long-run value s̄[∞]. We next address this issue on the basis of a long-run risk model.

4.2.2 Equity yields in a long-run risk model

According to Section 4.2.1, the extraction of the fundamental stock-price value P f
t is based

on an extrapolation of the curve of dividend prices. We can describe this latter curve via the
term structure of forward equity yields, e[n]

t , defined as

e[n]
t ≡ D̃[n]

t = Dt · exp

− n∑
k=1

e[k]
t

 , (24)
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where—in line with Eq. (14)—D̃[n]
t denotes the price of the dividend claim with maturity in

n periods, and e[k]
t is the forward equity yield at time t for the future period from maturity

k − 1 to maturity k.5

Table 1 about here

To get an idea of the characteristics of the prices of dividend claims, D̃[n]
t ,and the term

structure of forward equity yields, e[n]
t , we rely on an equilibrium asset pricing model. Specif-

ically, we use the standard long-run risk model from Bansal and Yaron (2004), in which the
expected growth rates of consumption and volatility are stochastic. The dynamics of con-
sumption C, dividends D, and the state variables are given by

∆ ln Ct+1 = µc + xt + σc

√
Vtϵc,t+1 (25)

∆ ln Dt+1 = µd + ϕd xt + σdc

√
Vtϵc,t+1 + σdd

√
Vtϵd,t+1 (26)

xt+1 = ρxxt + σx

√
Vtϵx,t+1 (27)

Vt+1 = (1 − ρv)V̄ + ρvVt + σvϵv,t+1 (28)

where x denotes expected consumption growth and V is the local variance. The innova-
tions ϵc, ϵd, ϵx, ϵv are independent and standard normally distributed. Table 1 contains our
parametrization of the model, which is from Bansal et al. (2016). Appendix A presents the
formulas for the standard asset pricing moments like the price-dividend ratio, the risk-free
rate and the equity risk premium, as well as for the prices of dividend claims and the corre-
sponding term structure of forward equity yields.

For the base parameter set, the equity risk premium is 6.24%, and the risk-free rate
1.6%. The dividend claims for the first 10 years account for around 34% of the price of the
fundamental value of the stock. The forward equity yield converges to some long-run level
around 7.5% , which is independent of the current values of the state variables.

The convergence of the forward equity yield to some long-run limit follows from the pric-
ing formulas for the dividend claim. The limiting forward equity yield (given in Eq. (A.31) in
the Appendix) is independent of the current values of the state variables x and V . For a better
economic intuition, note that the forward equity yield for time T follows from the expected
behavior of consumption and dividends at T , which in turn is driven by the state variables at
time T . Since the distribution of these state variables converges to their stationary distribu-
tion when T goes to infinity, their behavior no longer depends on the current levels of x and
V . This implies that the limiting forward equity yield also no longer depends on the current
levels, and becomes constant.

Figure 6 about here

5Recall from Eq. (15) that the forward equity yield is equal to the negative slope of the log dividend price
curve, e[n]

t = −s[n]
t .
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As established in Section 4.2.1 in Eqs. (19) – (23), we endeavor to approximate the for-
ward equity curve by means of an exponential function and the appropriate choice of the two
parameters ē = −s̄[∞] (the long-term level) and κ (the speed of convergence). Figure 6 shows
the combinations (ē, κ) for a variety of parameter sets of the long-run risk model described
above. The basic parameters used in Figure 6 are given by the benchmark parameters from
Table 1. To generate the scatterplot in Figure 6, we then vary (i) the mean-reversion speeds
ρx, ρv, and (ii) the volatilities σx, σv of the state variables, each by plus-minus two standard
errors. Blue (yellow) points in the scatterplot correspond to parameter combinations (ē, κ)
that are close to (far away from) the benchmark case. The limiting level ē of the forward eq-
uity yield curve varies between 0.025 (=2.5%) and 0.15 (=15%), the speed of convergence κ
between 0.023 and 0.035.

4.3 Aggregated fundamental values

In accordance with the parameter scales of the theoretical long-run risk model, we now
choose appropriate values for κ and ē = −s[∞] in order to extrapolate the third component
of the fundamental value, fv3t, via Eq. (23) with the dividend-futures data. For this pur-
pose, we extrapolated the third component fv3t with (κ, ē) values from a dense grid over
κ ∈ [0.023, 0.035] and ē ∈ [0.025, 0.15]. For many of the (κ, ē)-combinations on the grid, the
resulting aggregate fundamental P f

t = fv1t + fv2t + fv3t exceeds the EuroStoxx index on some
trading days, implying negative bubble values Bt on those days. Since negative (rational)
bubble values are ruled out by the Diba and Grossman (1988b) conditions (Section 2.1), we
focused on (κ, ē)-combinations that entail positive bubble values throughout the sampling
period. The red dots in Figure 6 delineate the border between (κ, ē)-combinations resulting
in (at least one) negative bubble values (to the left of the border) and combinations that yield
exclusively positive bubble values (to the right). Among the admissible combinations, we
selected the specific values κ = 0.0295 and ē = 0.11, which are represented by the red cross
in Figure 6. Since this combination is inside the light blue area, we interpret this parameter
choice as being consistent with the long-run risk model of Bansal and Yaron (2004), Bansal
et al. (2016).

Figure 7 about here

Figure 7 shows the three fundamental components fv1t, fv2t, fv3t over time. Panel (a) re-
veals that the component fv1t (dividends accruing in the current year) is almost negligible.
The component fv2t (dividends accruing up to 10 years into the future) in Panel (b) is sig-
nificant, but still only accounts for a limited part of the aggregated fundamental values P f

t .
Obviously, it is the extrapolated component fv3t in Panel (c) that makes up the largest portion
of P f

t .
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5 Bubble component

Figure 8 about here

5.1 Explorative data analysis

Figure 8 shows (1) the EuroStoxx50 (Pt, left axis), (2) the aggregated fundamental (P f
t , left

axis), (3) the bubble component (Bt = Pt − P f
t , left axis), and (4) the share of the bubble

component in the index, calculated as Bt/Pt (right axis), in a single line graph. In ‘normal’
phases of the market, the bubble share in the index fluctuates between 13% (0.1-quantile:
0.136) and 33% (0.9-quantile: 0.321) around a mean value of 22% (arithmetic mean: 0.218,
median: 0.214). Figure 8 shows three important events in which the bubble share—and also
the nominal bubble values themselves—decline towards zero. (1) The bubble share begins
to decline shortly after the annexation of Crimea (March 18, 2014) and reaches its historic
low of 0.003 (= 0.3%) on January 12, 2015, shortly before the signing of the Minsk-II
agreement on February 12, 2015. (2) On March 18, 2020, seven days after the World Health
Organization (WHO) classified COVID-19 as a pandemic, the bubble share fell to 0.009
(= 0.9%). (3) Shortly after the start of the war in Ukraine on February 24, 2022, the bubble
share fell to 0.14 (= 14%) on March 7, 2022 due to the perceived increase in geopolitical
risks.

Figure 9 about here

Table 2 about here

Figure 9 shows the histograms of the daily bubble and fundamental returns. Both return
series can be well fitted by t-distributions with 2.2 (bubble) and 3.5 (fundamental) degrees
of freedom; see Table 2. The bubble returns are quite volatile with an estimated annualized
standard deviation of 1.905. The estimated annualized volatility for the fundamental returns
is 0.307, which is much lower than the volatility of the bubble returns, but still higher than the
volatility of the EuroStoxx index returns (0.201). This could explain the negative correlation
of −0.418 between the bubble and the fundamental returns shown in the lower block of Table
2. The first-order autocorrelation coefficients of the bubble and the fundamental returns are
negative (−0.314,−0.185), while the autocorrelation of the index returns is close to zero
(−0.001).

Table 3 about here

Table 3 shows the results of some selected tests for explosiveness and variance-ratio
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applied to the EuroStoxx50, the fundamental and bubble series and the corresponding log
values. The RADF and SADF tests for explosiveness, adopted from Phillips et al. (2011) and
Phillips et al. (2015), are based on (appropriately defined) sequences of t-(ADF-)statistics of
the parameter θ estimated from the specification

yt = c + θ · yt−1 +

k∑
i=1

ϕi · ∆yt−i + ϵt, (29)

where yt represents the series Pt, P
f
t , Bt (and their logs), k is a given lag order, ∆ is the

difference operator, and ϵt
i.i.d.
∼ (0, σ2). The general aim is to test the unit-root null hypothesis

H0 : θ = 1 (time series is not explosive, indicated by ‘No’ in Table 3) versus the right-tailed
alternative H1 : θ > 1 (time series is explosive, indicated by ‘Yes’ in Table 3).

While the RADF test is based on the maximum ADF statistic from a rolling window,
the SADF test statistic is the supremal (maximum) ADF statistic from an (appropriately
defined) expanding window. The critical values of both tests were determined by bootstrap
simulations for which we used the routines implemented in the EViews 14 software. In
particular, we (1) performed all tests by setting the lag order k in Eq. (29) to 4, and (2)
obtained the ‘Yes/No’ explosiveness-decisions by testing at the 5% significance level. In
Table 3, the realizations of the RADF/SADF test statistics are given in round brackets below
the ‘Yes/No’ decisions, where *, **, *** denote significance at the 10, 5, and 1% levels,
respectively.

The specific results in terms of explosiveness in Table 3 appear to be somewhat am-
biguous. According to the RADF tests, neither the EuroStoxx50 nor the fundamental series
(nor their logs) display significant explosive behavior. In contrast, the bubble series Bt and
log(Bt) display explosive behavior at the 1% level. However, when using the SADF tests,
explosiveness in the bubble series is no longer statistically detectable.

The last two columns of Table 3 show the results of some variance ratio (VR) tests in
order to answer the question of whether the data in the series follow a martingale and/or a
random walk. Specifcally, we use the routines in Eviews 14, which are built upon the test
variants from Lo and MacKinlay (1988, 1989). The null hypothesis of these VR tests is
that the series is a martingale/random walk. Technically, we first compute individual VR
tests for the respective periods 2, 5, 10, 30 (with the test statistics z2, z5, z10, z30) and then
conduct the multiple VR test using the joint test statistic max{|z2|, |z5|, |z10|, |z30|} proposed by
Chow and Denning (1993). In Table 3, we obtain the VR ’Yes/No’ decisions by conducting
the multiple Chow-Denning test at the 5% level. Interestingly, the EuroStoxx50 data (and
its log) are consistent with a martingale and/or random-walk, while the fundamental series
(and its log) differs significantly from both process types. Similarly, the bubble series (Bt)
deviates significantly from a martingale/random walk, while the log bubble may be viewed
as consistent with a martingale (when tested at the 5% level).
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5.2 Estimation of bubble specification

We now turn to estimating of the (flexibilized) Rotermann and Wilfling (2018) bubble spec-
ification from Eq. (11). The logarithmic bubble bt = log(Bt) is distributed as the following
mixture of two normal distributions,

bt+1 =

N(bt + ln[α/(ψtπ)] − σ2/2, σ2) , with probability π

N(bt + ln[(1 − α)/(ψt(1 − π))] − σ2/2, σ2) , with probability 1 − π
, (30)

where (i) ψt = (1 + rt)−1 with rt denoting the one-period (risk-free) interest rate, and (ii) the
parameters (to be estimated) α, π, σ, which should be subject to the rationality conditions
0 < α < 1, (α/π) > 1 and 1 − α < ψt(1 − π) for all t. The log-likelihood function is given by

ln [L(α, π, σ)] =
T∑

t=2

ln
[
π · f1(bt|bt−1) + (1 − π) · f2(bt|bt−1)

]
, (31)

with f1(·|·) and f2(·|·) denoting the density functions of the two Gaussian mixture compo-
nents.

Table 4 about here

In a first step, we maximize the log-likelihood (31) with respect to α, π, σ, using a numer-
ical algorithm that considers inequality constraints and bounds on the parameters (module
fmincon from the R-package pracma). The maximum log-likelihood value is 4370.768. Not
surprisingly (given the constraints), the lower block of Table 4 confirms that (i) all rational-
ity restrictions are fulfilled at all points in time, and (ii) the optimum is in the interior of
the parameter space. In a second step, we examine whether the constrained estimates differ
significantly from their unconstrained counterparts. To this end, we re-estimated the bub-
ble specification without imposing the rationality conditions in the bottom block of Table
4 (keeping the conditions α, π ∈ (0, 1), σ > 0). These ‘unrestricted’ estimates are found
to be identical to the restricted estimates in Table 4 (with the same maximum log-likelhood
value 4370.768). Obviously, the rationality conditions from above are not binding, i.e. the
estimated bubble process satisfies the rationality conditions without enforcing them.

6 Conclusion

In this article, we extract the bubble and fundamental components of the EuroStoxx50 index
for the period from January 2011 to December 2023 (3309 trading days). Our econometric
method combines a theoretical bubble specification and a novel data set of dividend futures
prices. Our data-driven methodology refrains from estimating highly parameterized equa-
tions and thus avoids estimation errors, but relies on extrapolating the forward equity yield
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curve. The impact of our extrapolation on the extracted bubble values is an interesting ques-
tion that we leave for future research.

The (statistical) properties of the extracted EuroStoxx50 bubble are in close agreement
with the relevant economic/financial intuition. During the observation period, the bubble
share in the index fluctuated around 22% and reacted sharply to significant external events,
such as the two military attacks on Ukraine (annexation of Crimea in 2014, start of war in
2022) and the outbreak of COVID-19 (in spring 2020). Obviously, market participants re-
sponded to the increasing perceived geopolitical risks and/or the uncertain economic outlook
by valuing the EuroStoxx50 index primarily on the basis of fundamentals, and largely push-
ing speculative motives into the background. Apart from such ex-post evidence, we believe
that our bubble extraction methodology can provide additional useful information to eco-
nomic agents. With the available dividend-futures data set, the method can be adapted for
real-time monitoring of fundamental and bubble values with little computational effort.

In Section 5.1 (Table 3), we test the EuroStoxx and its fundamental and bubble compo-
nents for explosiveness. The RADF and SADF tests and their many variants have become
important and widely used tools for detecting explosive bubble-like behavior in financial time
series. Several authors have mentioned that the specific test result (explosiveness ‘Yes/No’)
often crucially depends ‘[. . .] on the way the [testing] procedures are implemented and on the
maintained assumptions about the underlying data-generating mechanism’ (Caravello et al.,
2023). In view of this, a future research direction could be to check a large set of bubble
trajectories extracted with our methodology for specific statistical properties. Heteroscedas-
ticity patterns (conditional and unconditional) should play a major role in this context, as
time-varying volatility has been a key argument for the introduction of recent test variants
(e.g. Harvey et al., 2020). The detected statistical properties could assist econometricians in
selecting a suitable test variant from the many available.

Appendix

A Long-run risk model

A.1 Model setup

We consider a long-run risk model, following Bansal and Yaron (2004), with stochastic
expected growth and stochastic volatility. The dynamics of aggregate consumption are

∆ ln Ct+1 = µc + xt + σc

√
Vtϵc,t+1, (A.1)

with expected consumption growth rate x and the local variance V given by

xt+1 = ρxxt + σx

√
Vtϵx,t+1, (A.2)

Vt+1 = (1 − ρv)V̄ + ρvVt + σvϵv,t+1, (A.3)
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where ϵc, ϵx, and ϵv are independent standard normally distributed random variables.
The representative investor has Epstein-Zin preferences with relative risk aversion γ and

intertemporal elasticity of substitution ψ. We assume γ, ψ > 1, which implies a preference
for early resolution of uncertainty. We set θ = 1−γ

1− 1
ψ

.

The log pricing kernel m is given by

mt+1 = θ ln δ −
θ

ψ
∆ ln Ct+1 − (1 − θ) ln Rc,t+1, (A.4)

where Rc,t+1 is the return on the consumption claim. For this return, we rely on the Campbell-
Shiller approximation

ln Rc,t+1 = κc,0 + κc,1wt+1 − wt + ∆ ln Ct+1, (A.5)

where w is the log price-consumption ratio. The linearization coefficients κc,0 and κc,1 are
given by

κc,0 = −κc,1 ln κc,1 − (1 − κc,1) ln(1 − κc,1), (A.6)

κc,1 =
eE[w]

1 + eE[w] . (A.7)

For w, we rely on the affine guess wt = Ac,0 + Ac,xxt + Ac,vVt.
Next, we present the results which we need for analyzing dividend claims. A more

detailed derivation can be found in the Online Appendix.

A.2 Consumption claim

The consumption claim has to satisfy the Euler equation,

E
[
emt+1+ln Rc,t+1

]
= 1. (A.8)

Plugging the Campbell-Shiller approximation (A.5) for the return and the functional form
(A.4) of the stochastic discount factor into the Euler equation (A.8) allows us to solve for the
coefficient functions of the wealth-consumption ratio:

Ac,0 =
ln δ +

(
1 − 1

ψ

)
µc + κc,0 + κc,1Ac,V(1 − ρv)V̄ + 0.5θκ2

c,1A2
c,Vσ

2
v

1 − κc,1
, (A.9)

Ac,x =
1 − 1

ψ

1 − κc,1ρx
, (A.10)

Ac,V =
0.5(1 − γ)

(
1 − 1

ψ

)
σ2

c + 0.5θκ2
c,1A2

c,xσ
2
x

1 − κc,1ρv
. (A.11)
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A.3 Stochastic discount factor

The stochastic discount factor is given in (A.4). Plugging in the Campbell-Shiller equation
(A.5) for the return on the consumption claim and the affine functional form of the wealth-
consumption ratio yields

mt+1 = m0 + mxxt + mvVt − λc

√
Vtϵc,t+1 − λx

√
Vtϵx,t+1 − λvϵv,t+1, (A.12)

where

m0 = θ ln δ − γµC + (θ − 1)κc,0 − (θ − 1)(1 − κc,1)Ac,0 + (θ − 1)κc,1Ac,V(1 − ρv)V̄ ,

mx = (1 − θ)(1 − κc,1ρx)Ac,x − γ,

mv = (1 − θ)(1 − κc,1ρv)Ac,V . (A.13)

The market prices of risk are

λc = γσc,

λx = (1 − θ)κc,1Ac,xσx,

λv = (1 − θ)κc,1Ac,Vσv.

A.4 Fundamental price of the stock

The dynamics of the dividends are given by

∆ ln Dt+1 = µd + ϕd xt + σdc

√
Vtϵc,t+1 + σdd

√
Vtϵd,t+1. (A.14)

The stock has to satisfy the Euler equation

E
[
emt+1+ln Rd,t+1

]
= 1. (A.15)

Plugging the Campbell-Shiller approximation for the return (analogous to (A.5)), a linear
guess for the log price-dividend ratio wd = Ad,0 + Ad,xxt + Ad,vVt, and the dynamics of the
state variables into the Euler equation (A.15) yields

Ad,0 =
m0 + κd,0 + κd,1Ad,V(1 − ρv)V̄ + µd + 0.5

(
κd,1Ad,vσv − λv

)2

1 − κd,1
, (A.16)

Ad,x =
mx + ϕd

1 − κd,1ρx
, (A.17)

Ad,V =
mv + 0.5 (σdc − λc)2 + 0.5

(
κd,1Ad,xσx − λx

)2
+ 0.5σ2

dd

1 − κd,1ρv
. (A.18)
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A.5 Dividend claims

The price of the dividend claims, i.e. the claims to only one future dividend, follows recur-
sively. For the first dividend claim, we obtain

D̃[1]
t = DtEt

[
emt+1+∆ ln Dt+1

]
= Dteds[1]

0 +ds[1]
x xt+ds[1]

v Vt , (A.19)

where

ds[1]
0 = m0 + µd + 0.5(−λv)2, (A.20)

ds[1]
x = mx + ϕd, (A.21)

ds[1]
v = mv + 0.5(σdc − λc)2 + 0.5(−λx)2 + 0.5(σdd)2. (A.22)

For the (n + 1)st dividend claim, we obtain

D̃[n+1]
t = Et

[
emt+1 D̃[n]

t+1

]
= Dteds[n+1]

0 +ds[n+1]
x xt+ds[n+1]

v Vt , (A.23)

where

ds[n+1]
0 = m0 + µd + ds[n]

0 + ds[n]
v (1 − ρv)V̄ + 0.5(ds[n]

v σv − λv)2, (A.24)

ds[n+1]
x = mx + ϕd + ds[n]

x ρx, (A.25)

ds[n+1]
v = mv + ds[n]

v ρv + 0.5(σdc − λc)2 + 0.5(ds[n]
x σx − λx)2 + 0.5(σdd)2. (A.26)

The forward equity yields are

e[n+1]
t = ds[n+1]

0 − ds[n]
0 +

(
ds[n+1]

x − ds[n]
x

)
xt +

(
ds[n+1]

v − ds[n]
v

)
Vt. (A.27)

The limiting values for n→ ∞ are

lim
n→∞

ds[n+1]
0 − dsn

0 = m0 + µd + ds[∞]
v (1 − ρv)V̄ + 0.5(ds[∞]

v σv − λv)2, (A.28)

lim
n→∞

ds[n]
x =

mx + ϕd

1 − ρx
, (A.29)

lim
n→∞

ds[n]
v =

mv + 0.5(σd − λc)2 + 0.5(ds[∞]
x σx − λx)2 + 0.5(σdd)2

1 − ρv
. (A.30)

The limit of the forward equity yield for n→ ∞ is thus given by

e∞t = lim
n→∞

ds[n+1]
0 − ds[n]

0 , (A.31)

and no longer depends on the state variables.
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Tables and Figures



Table 1: Parameters of long-run risk model: Benchmark

Parameter Value Parameter Value Parameter Value Standard error
γ 9.67 µc 0.0016 ρx 0.9762 (0.0035)
ψ 2.18 µd 0.0016 σx 0.0318 (0.0053)
β 0.9990 ϕd 4.51 ρv 0.9984 (0.0007)

σdc 2.3715 V̄ 0.00702

σdd 4.0 σv 2.12e-6 (5.32e-7)

Notes: The parameters are from Bansal et al. (2016). The decision interval is ∆t = 1/11. For the
mean reversion speed and the volatilities of the state variables, we also give the standard errors.
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Table 2: Descriptive statistics and correlations

Descriptive statistics (estimates)

Bubble returns Fundamental returns Index returns

t-distr. dgf 2.200 3.500

Ann. std. dev. 1.905 0.307 0.201

AR(1) coef. −0.314 −0.185 −0.001
Correlations of returns (estimates)

P f
t Bt Pt fv2 fv3

P f
t 1.000 −0.418 0.573 0.449 0.945

Bt 1.000 0.223 −0.012 −0.459
Pt 1.000 0.441 0.468
fv2 1.000 0.197
fv3 1.000

Notes: P f
t , Bt, Pt, fv2, fv3 denote the fundamental value, the bubble component, and the

index values of the EuroStoxx, respectively. fv2, fv3 are fundamental-value components
from Eqs. (18), (23).
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Table 3: Explosiveness and Variance Ratio (VR) tests

Tests for explosiveness Variance ratio tests
RADF SADF Martingale Random walk

Eurostoxx50 (Pt) No No Yes Yes
(1.50) (1.40) (0.72) (1.02)

log(Pt) No Yes Yes Yes
1.86) (1.79∗∗) (0.75) (1.17)

Fundamental (P f
t ) No No No No

(1.82) (0.57) (7.40∗∗∗) (11.17∗∗∗)

log(P f
t ) No No No No

(2.20) (0.92) (6.88∗∗∗) (10.59∗∗∗)
Bubble (Bt) Yes No No No

(3.79∗∗∗) (−0.55) (9.36∗∗∗) (14.36∗∗∗)
log(Bt) Yes No Yes No

(6.95∗∗∗) (0.60) (1.82) (18.05∗∗∗)

Notes: Pt, P
f
t , Bt respectively denote the index values of Eurostoxx50, the fundamental

and the bubble series.
For the RADF and SADF tests, the null hypothesis is that the series is not explosive.

For all tests, Eq. (29) is specified with k = 4 lags. Throughout the entire table, the entries
in round brackets are the realizations of the corresponding test statistics. *, **, *** denote
significance at the 10, 5, and 1% levels. For RADF/SADF the test decision is classified as
‘Yes (series is explosive)’, if the realized test statistic is significant at the 5% level.

The null hypothesis of the variance ratio tests is that the series is a martingale/random
walk. For both VR tests, we show (in round brackets) the multiple Chow and Denning (1993)
maximum test statistic, computed from the individual VR tests for the periods 2, 5, 10, 30
(see Section 5.1). We classify the test decision as ‘No (series is not a martingale/random
walk)’ if the multiple Chow-Denning maximum test statistic is significant at the 5% level.
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Table 4: Estimation of the Rotermann and Wilfling (2018) bubble

Parameter Estimate Standard error
α 0.9994 0.0003
π 0.9986 0.0007
σ 0.0639 0.0008
Max. logl-value: 4370.768
Rationality conditions:
α/π 1.0009
1 − α
1 − π 0.3847
Range ψt (0.99989, 1.00003)

Notes: α, π, σ, ψt are as in the parametric bubble specification
from Eq. (30).

27



m=2028 m=2029 m=2030 m=2031 m=2032

m=2023 m=2024 m=2025 m=2026 m=2027

m=2018 m=2019 m=2020 m=2021 m=2022

m=2013 m=2014 m=2015 m=2016 m=2017

m=2008 m=2009 m=2010 m=2011 m=2012

2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020 2010 2015 2020

80
120
160

80
120
160

80
120
160

80
120
160

80
120
160

Date t

D
t(m

)

Figure 1: Dividend-futures prices

28



t=2023−10−02

t=2020−10−01 t=2021−10−01 t=2022−10−03

t=2017−10−02 t=2018−10−01 t=2019−10−01

t=2014−10−01 t=2015−10−01 t=2016−10−03

t=2011−10−03 t=2012−10−01 t=2013−10−01

t=2008−10−01 t=2009−10−01 t=2010−10−01

2010 2015 2020 2025 2030

2010 2015 2020 2025 2030 2010 2015 2020 2025 2030

105
108
111
114

95
100
105
110

708090100110120

90
100
110
120

90
100
110
120

100
105
110
115

80
90

100
110

90
100
110

100
110
120

100
105
110

130
140
150

80
90

100
110
120

107.5
110.0
112.5
115.0

105
110
115
120
125

74
76
78
80
82

120
130
140
150

Expiry year m

D
t(m

)

Figure 2: Maturity curves

29



0

40

80

120

160

2010 2015 2020

(a) Dividend point index

1,500
2,000

3,000

4,000

5,000

2010 2015 2020

(b) EuroStoxx index

-0.01
0.00
0.01
0.02
0.03
0.04
0.05

2010 2015 2020

(c) 1-year risk-free rate

-0.01
0.00
0.01
0.02
0.03
0.04
0.05

5 10 15 20

(d) Yield curves

Term L

2007-12-31

2023-12-01

2019-12-30

Figure 3: Dividend point index, EuroStoxx index, risk-free rate, yield curves

30



t=2023−10−02

t=2020−10−01 t=2021−10−01 t=2022−10−03

t=2017−10−02 t=2018−10−01 t=2019−10−01

t=2014−10−01 t=2015−10−01 t=2016−10−03

t=2011−10−03 t=2012−10−01 t=2013−10−01

t=2008−10−01 t=2009−10−01 t=2010−10−01

2010 2015 2020 2025 2030

2010 2015 2020 2025 2030 2010 2015 2020 2025 2030

4.5
4.6
4.7

4.4
4.5
4.6
4.7

4.34.44.54.64.74.8

4.6
4.7
4.8

4.34.44.54.64.74.8

4.4
4.5
4.6
4.7

4.34.44.54.64.7

4.4
4.5
4.6
4.7

4.6
4.7
4.8

4.65
4.70

4.7
4.8
4.9
5.0

4.3
4.5
4.7

4.60
4.65
4.70
4.75

4.604.654.704.754.804.85

4.36
4.38
4.40
4.42

4.5
4.6
4.7
4.8
4.9

Expiry year m

ln
(D

t~
(m

) )

Figure 4: Logarithm of discounted maturity curves

31



-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

2008 2010 2012 2014 2016 2018 2020 2022

s t
[1

0]
 (=

 -e
t[1

0]
)

4 May 2009 3 January 2011

Figure 5: Slope of discounted maturity curves for 10-year dividend futures

32



Figure 6: Forward equity yields of dividend futures

The scatterplot shows the combinations of the limiting forward equity yield ē and the con-
vergence speed κ for the approximated forward equity yield curve from the long-run risk
model. The benchmark parameters, taken from Bansal et al. (2016), are given in Table 1.
We vary the mean reversion speeds ρx, ρv and the volatilities σx, σv by up to ± standard er-
rors. The deviation of the parameters from the benchmark is largest for the yellow points,
and smallest for the blue points. The red dots refer to our empirical data. They represent
(κ, ē)-combinations, for which the (empircally) extracted bubble is positive at all points.

33



0

40

80

120

2012 2014 2016 2018 2020 2022

(a) First fundamental component

400

600

800

1,000

1,200

2012 2014 2016 2018 2020 2022

(b) Second fundamental component

400

800

1,200

1,600

2,000

2,400

2012 2014 2016 2018 2020 2022

(c) Third fundamental component

Figure 7: Fundamental components (a) fv1t, (b) fv2t, (c) fv3t under the parameters κ =
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B Long-run risk model

B.1 Model setup

We consider a long-run risk model, following Bansal and Yaron (2004), with stochastic
expected growth and stochastic volatility. The dynamics of aggregate consumption are

∆ ln Ct+1 = (µc + xt)dt + σc

√
Vtϵc,t+1 (B.1)

where the expected growth rate x and the local variance V are given by

xt+1 = ρxxt + σx

√
Vtϵx,t+1 (B.2)

Vt+1 = (1 − ρv)V̄ + ρvVt + σvϵv,t+1 (B.3)

ϵc, ϵx, and ϵv are independent standard normally distributed random variables.
The representative investor has Epstein-Zin preferences with relative risk aversion γ and

intertemporal elasticity of substitution ψ. We assume γ, ψ > 1, which implies a preference
for early resolution of uncertainty. We set θ = 1−γ

1− 1
ψ

.

The log pricing kernel m is given by

mt+1 = θ ln δ −
θ

ψ
∆ ln Ct+1 − (1 − θ) ln Rc,t+1 (B.4)

where Rc,t+1 is the return on the consumption claim. We rely on the Campbell-Shiller ap-
proximation

ln Rc,t+1 = κc,0 + κc,1wt+1 − wt + ∆ ln Ct+1 (B.5)

where w is the log price-consumption ratio. The linearization coefficients κc,0 and κc,1 are
given by

κc,0 = −κc,1 ln κc,1 − (1 − κc,1) ln(1 − κc,1) (B.6)

κc,1 =
eE[w]

1 + eE[w] (B.7)

For w, we rely on the affine guess wt = Ac,0 + Ac,xxt + Ac,vVt.

B.2 Consumption Claim

The consumption claim has to meet the Euler equation

E
[
emt+1+ln Rc,t+1

]
= 1 (B.8)
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Plugging the Campbell-Shiller approximation for the return into the exponent yields

mt+1 + ln Rc,t+1 (B.9)

= θ ln δ −
θ

ψ
∆ ln Ct+1 + θ ln Rc,t+1 (B.10)

= θ ln δ −
θ

ψ
∆ ln Ct+1 + θκc,0 + θκc,1wt+1 − θwt + θ∆ ln Ct+1 (B.11)

= θ ln δ + (1 − γ)∆ ln Ct+1 + θκc,0 + θκc,1wt+1 − θwt (B.12)

With the linear guess for w and the dynamics of the state variables, this gives

mt+1 + ln Rc,t+1 (B.13)

= θ ln δ + (1 − γ)∆ ln Ct+1 + θκc,0 + θκc,1wt+1 − θwt (B.14)

= θ ln δ + (1 − γ)
[
µc + xt + σc

√
Vtϵc,t+1

]
+ θκc,0

+ θκc,1

[
Ac,0 + Ac,x

(
ρxxt + σx

√
Vtϵx,t+1

)
+ Ac,V

(
(1 − ρv)V̄ + ρvVt + σvϵv,t

)]
− θ

[
Ac,0 + Ac,xxt + Ac,VVt

]
(B.15)

Plugging into the Euler equation and calculating the expectation gives

θ ln δ + (1 − γ)µc + (1 − γ)xt + 0.5(1 − γ)2σ2
cVt + θκc,0

+ θκc,1Ac,0 + θκc,1Ac,xρxxt + 0.5θ2κ2
c,1A2

c,xσ
2
xVt

+ θκc,1Ac,V(1 − ρv)V̄ + θκc,1Ac,VρvVt + 0.5θ2κ2
c,1A2

c,Vσ
2
v

− θAc,0 − θAc,xxt − θAc,VVt = 0 (B.16)

Sorting terms gives

θ ln δ + (1 − γ)µc + θκc,0 + θκc,1Ac,0 (B.17)

+ θκc,1Ac,V(1 − ρv)V̄ + 0.5θ2κ2
c,1A2

c,Vσ
2
v − θAc,0 = 0 (B.18)

(1 − γ) + θκc,1Ac,xρx − θAc,x = 0 (B.19)

0.5(1 − γ)2σ2
c + 0.5θ2κ2

c,1A2
c,xσ

2
x + θκc,1Ac,Vρv − θAc,V = 0 (B.20)

Solving for the coefficients gives

Ac,0 =
ln δ +

(
1 − 1

ψ

)
µc + κc,0 + κc,1Ac,V(1 − ρv)V̄ + 0.5θκ2

c,1A2
c,Vσ

2
v

1 − κc,1
(B.21)

Ac,x =
1 − 1

ψ

1 − κc,1ρx
(B.22)

Ac,V =
0.5(1 − γ)

(
1 − 1

ψ

)
σ2

c + 0.5θκ2
c,1A2

c,xσ
2
x

1 − κc,1ρv
(B.23)
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B.3 Stochastic discount factor

The stochastic discount factor can thus be written as

mt+1

= θ ln δ −
θ

ψ
∆ ln Ct+1 + (θ − 1) ln Rc,t+1

= θ ln δ −
θ

ψ
∆ ln Ct+1 + (θ − 1)

[
κc,0 + κc,1wt+1 − wt + ∆ ln Ct+1

]
= θ ln δ − γ∆ ln Ct+1 + (θ − 1)κc,0 + (θ − 1)κc,1wt+1 − (θ − 1)wt

= θ ln δ − γµC − γxt − γσc

√
Vtϵc,t+1 + (θ − 1)κc,0

+ (θ − 1)κc,1Ac,0 + (θ − 1)κc,1Ac,x

[
ρxxt + σx

√
Vtϵx,t+1

]
+ (θ − 1)κc,1Ac,V

[
(1 − ρv)V̄ + ρvVt + σvϵv,t+1

]
− (θ − 1)Ac,0 − (θ − 1)Ac,xxt − (θ − 1)Ac,VVt

= θ ln δ − γµC − γxt − γσc

√
Vtϵc,t+1 + (θ − 1)κc,0

+ (θ − 1)κc,1Ac,0 + (θ − 1)κc,1Ac,x

[
ρxxt + σx

√
Vtϵx,t+1

]
+ (θ − 1)κc,1Ac,V

[
(1 − ρv)V̄ + ρvVt + σvϵv,t+1

]
− (θ − 1)Ac,0 − (θ − 1)Ac,xxt − (θ − 1)Ac,VVt (B.24)

= θ ln δ − γµC + (θ − 1)κc,0 − (θ − 1)(1 − κc,1)Ac,0 + (θ − 1)κc,1Ac,V(1 − ρv)V̄

+
[
(θ − 1)κc,1Ac,xρx − (θ − 1)Ac,x − γ

]
xt

+
[
(θ − 1)κc,1Ac,Vρv − (θ − 1)Ac,V

]
Vt

− γσc

√
Vtϵc,t+1 − (1 − θ)κc,1Ac,xσx

√
Vtϵx,t+1 − (1 − θ)κc,1Ac,V

− (θ − 1)Ac,0 − (θ − 1)Ac,xxt − (θ − 1)Ac,VVt (B.25)

= θ ln δ − γµC + (θ − 1)κc,0 − (θ − 1)(1 − κc,1)Ac,0 + (θ − 1)κc,1Ac,V(1 − ρv)V̄

+
[
(1 − θ)(1 − κc,1ρx)Ac,x − γ

]
xt + (1 − θ)(1 − κc,1ρv)Ac,VVt

− γσc

√
Vtϵc,t+1 − (1 − θ)κc,1Ac,xσx

√
Vtϵx,t+1 − (1 − θ)κc,1Ac,Vσvϵv,t+1 (B.26)

In the following, we abbreviate mt+1 as

mt+1 = m0 + mxxt + mvVt − λc

√
Vtϵc,t+1 − λx

√
Vtϵx,t+1 − λvϵv,t+1 (B.27)

where

m0 = θ ln δ − γµC + (θ − 1)κc,0 − (θ − 1)(1 − κc,1)Ac,0 + (θ − 1)κc,1Ac,V(1 − ρv)V̄

mx = (1 − θ)(1 − κc,1ρx)Ac,x − γ

mv = (1 − θ)(1 − κc,1ρv)Ac,V (B.28)
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and where the market prices of risk are

λc = γσc

λx = (1 − θ)κc,1Ac,xσx

λv = (1 − θ)κc,1Ac,Vσv

B.4 Dividend Claim

The dynamics of the dividends are given by

∆ ln Dt+1 = µd + ϕd xt + σdc

√
Vtϵc,t+1 + σdd

√
Vtϵd,t+1 (B.29)

The dividend claim has to meet the Euler equation

E
[
emt+1+ln Rd,t+1

]
= 1 (B.30)

With the Campbell-Shiller approximation for the return, the linear guess for the log price-
dividend ratio wd, and the dynamics of the state variables, this gives

mt+1 + ln Rd,t+1 (B.31)

= m0 + mxxt + mvVt − λc

√
Vtϵc,t+1 − λx

√
Vtϵx,t+1 − λvϵv,t+1

+ κd,0 + κd,1wd,t+1 − wd,t + ∆ ln Dt+1 (B.32)

= m0 + mxxt + mvVt − λc

√
Vtϵc,t+1 − λx

√
Vtϵx,t+1 − λvϵv,t+1

+ κd,0 + κd,1

[
Ad,0 + Ad,x

(
ρxxt + σx

√
Vtϵx,t+1

)
+ Ad,V

(
(1 − ρv)V̄ + ρvVt + σvϵv,t

)]
−

[
Ad,0 + Ad,xxt + Ad,VVt

]
+ µd + ϕd xt + σdc

√
Vtϵc,t+1 + σdd

√
Vtϵd,t+1 (B.33)

= m0 + κd,0 + κd,1Ad,0 + κd,1Ad,V(1 − ρv)V̄ − Ad,0 + µd

+
[
mx + κd,1Ad,xρx − Ad,x + ϕd

]
xt +

[
mv + κd,1Ad,vρv − Ad,v

]
Vt

+ (σdc − λc)
√

Vtϵc,t+1 +
(
κd,1Ad,xσx − λx

) √
Vtϵx,t+1

+
(
κd,1Ad,vσv − λv

)
ϵv,t+1 + σdd

√
Vtϵd,t+1 (B.34)

Plugging into the Euler equation and calculating the expectation gives

m0 + κd,0 − (1 − κd,1)Ad,0 + κd,1Ad,V(1 − ρv)V̄ + µd

+
[
mx − (1 − κd,1ρx)Ad,x + ϕd

]
xt +

[
mv − (1 − κd,1ρv)Ad,v

]
Vt

+0.5 (σdc − λc)2 Vt + 0.5
(
κd,1Ad,xσx − λx

)2 Vt

+0.5
(
κd,1Ad,vσv − λv

)2
+ 0.5σ2

ddVt = 0 (B.35)

40



Sorting terms gives

m0 + κd,0 − (1 − κd,1)Ad,0 + κd,1Ad,V(1 − ρv)V̄ + µd + 0.5
(
κd,1Ad,vσv − λv

)2
= 0 (B.36)

mx − (1 − κd,1ρx)Ad,x + ϕd = 0 (B.37)

mv − (1 − κd,1ρv)Ad,v + 0.5 (σdc − λc)2 + 0.5
(
κd,1Ad,xσx − λx

)2
+ 0.5σ2

dd = 0 (B.38)

Solving for the coefficients gives

Ad,0 =
m0 + κd,0 + κd,1Ad,V(1 − ρv)V̄ + µd + 0.5

(
κd,1Ad,vσv − λv

)2

1 − κd,1
(B.39)

Ad,x =
mx + ϕd

1 − κd,1ρx
(B.40)

Ad,V =
mv + 0.5 (σdc − λc)2 + 0.5

(
κd,1Ad,xσx − λx

)2
+ 0.5σ2

dd

1 − κd,1ρv
(B.41)

B.5 Dividend Strips

The price of the dividend strips follows recursively. For the first dividend claim, we obtain

DS t+1
t = DtEt

[
emt+1+∆ ln Dt+1

]
(B.42)

= Dtem0+mx xt+mvVt+µd+ϕd xt+0.5(σdc−λc)2Vt+0.5(−λx)2Vt+0.5(−λv)2+0.5(σdd)2Vt (B.43)

= Dteds1
0+ds1

x xt+ds1
vVt (B.44)

where

ds1
0 = m0 + µd + 0.5(−λv)2 (B.45)

ds1
x = mx + ϕd (B.46)

ds1
v = mv + 0.5(σdc − λc)2 + 0.5(−λx)2 + 0.5(σdd)2 (B.47)

For the (n + 1)st dividend claim, we obtain

DS t+n+1
t = Et

[
emt+1 DS t+n+1

t+1

]
(B.48)

= DtEt

[
emt+1+∆ ln Dt+1+dsn

0+dsn
x xt+1+dsn

vVt+1
]

(B.49)

= Dtedsn+1
0 +dsn+1

x xt+dsn+1
v Vt (B.50)

where

dsn+1
0 = m0 + µd + dsn

0 + dsn
v(1 − ρv)V̄ + 0.5(dsn

vσv − λv)2 (B.51)

dsn+1
x = mx + ϕd + dsn

xρx (B.52)

dsn+1
v = mv + dsn

vρv + 0.5(σdc − λc)2 + 0.5(dsn
xσx − λx)2 + 0.5(σdd)2 (B.53)
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The limiting values for n→ ∞ are

lim
n→∞

dsn+t
0 − dsn

0 = m0 + µd + ds∞v (1 − ρv)V̄ + 0.5(ds∞v σv − λv)2 (B.54)

lim
n→∞

dsn
x =

mx + ϕd

1 − ρx
(B.55)

lim
n→∞

dsn
v =

mv + 0.5(σd − λc)2 + 0.5(ds∞x σx − λx)2 + 0.5(σdd)2

1 − ρv
(B.56)

The term limn→∞ dsn+t
0 − dsn

0 is the limiting slope of the log dividend price curve.
We can now write

dsn+1
0 − dsn

0 (B.57)

= m0 + µd + ds∞v (1 − ρv)V̄ + 0.5(ds∞v σv − λv)2 (B.58)

− ds∞v (1 − ρv)V̄ − 0.5(ds∞v σv − λv)2 + dsn
v(1 − ρv)V̄ + 0.5(dsn

vσv − λv)2

= m0 + µd + ds∞v (1 − ρv)V̄ + 0.5(ds∞v σv − λv)2 (B.59)

+ (dsn
v − ds∞v )(1 − ρv)V̄ + 0.5

(
σ2

v(dsn
v)2 − 2σvdsn

vλv − σ
2
v(ds∞v )2 + 2σvds∞v λv

)
= m0 + µd + ds∞v (1 − ρv)V̄ + 0.5(ds∞v σv − λv)2 (B.60)

+ (dsn
v − ds∞v )

[
(1 − ρv)V̄ − σvλv

]
+ 0.5σ2

v

[
(dsn

v)2 − (ds∞v )2
]
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