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1 Introduction

Almost 30 years after its publication, the Diebold-Mariano (DM) test is still the principal

tool for comparing forecasts in empirical economic studies (Diebold and Mariano, 1995;

Harvey et al., 1997). From a probabilistic perspective, this out-of-sample predictive ability

test has been designed to compare forecasts at a single prespecified horizon. In practice,

however, it is not uncommon for the individual DM test to be used in forecast comparisons

across multiple horizons jointly on the same data set, thereby tacitly ignoring data-snooping

concerns (White, 2000).

Recently, various multiple-horizon issues have been discussed in the economic fore-

casting literature (e.g. Fosten and Gutknecht, 2021), including Quaedvlieg’s (2021) multi-

horizon predictive ability tests, which directly address the joint-hypothesis testing prob-

lem. The author introduces two concepts for comparing forecasts across multiple horizons,

termed uniform and average superior predictive ability (uSPA, aSPA), respectively. While

uSPA declares one forecasting method superior to another, if it exhibits a lower expected

loss at each individual horizon under consideration, aSPA compares the forecast-specific

weighted expected losses aggregated across all horizons. It follows directly from the formal

definitions in Section 2 that uSPA implies aSPA, but (in general) not conversely. In this

article, we focus on the clear-cut uSPA concept, which—in contrast to aSPA—does not

require the forecaster’s (subjective) choice of any weights for the multi-horizon forecast

comparisons. Because of its strict definition, uSPA might in practice lead to explicit rank-

ings between two forecasts only in rare cases, especially when a large number of forecast

horizons are analyzed. On the other hand, if the econometrician finds that one forecast

exhibits uSPA to another on a prespecified set of horizons, the ranking is unambiguous.

From this perspective, uSPA constitutes an important theoretical benchmark framework

for multi-horizon forecast comparisons.
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As the uSPA test statistic, Quaedvlieg (2021) uses the ’minimum Diebold-Mariano’

statistic, which is the minimum obtained from the set of those DM statistics that are applied

individually to each of the forecast horizons under consideration. Noting that this minimum

statistic is nonpivotal, the author implements a bootstrap procedure to obtain asymptotic

critical values. In Section 2, we argue and prove that this strategy is inappropriate, given

the mathematical structure of the parameter space under the uSPA null hypothesis. As a

result, Quaedvlieg’s uSPA tests are associated with type-I error probabilities that are far

beyond the nominal significance level. Interestingly, related issues have emerged elsewhere

in the applied statistical literature. Inter alia, in the field of neuroimaging, Nichols et al.

(2005) report the misuse of Friston et al.’s (1999) test for conjunction, where the underlying

problem—considered in a probabilistic setting different from ours—is essentially the same.

We start our analysis by establishing various convergence results for the ’minimum

Diebold-Mariano’ test statistic under conventional regularity conditions. These results

lead to an asymptotic uSPA test with critical values corresponding to the quantiles of the

standard normal distribution. We prove that this uSPA test (i) retains its nominal size,

and (ii) is size-exploiting along the boundary of the parameter subsets that characterize the

uSPA null and alternative hypotheses. (iii) Our uSPA test is consistent in the sense that

it rejects the uSPA null hypothesis with probability 1 whenever it is false, as the sample

size tends to infinity. We then establish a procedure, based on the closed skew normal

distribution (e.g. González-Faŕıas et al., 2020), for approximating the power function of

our test, which enables us to demonstrate its favorable finite-sample properties in a Monte

Carlo study. Finally, we replicate parts of Quaedvlieg’s (2021) empirical analysis and

contrast his uSPA forecast comparisons with ours.

Our article is organized as follows. Section 2 formalizes the multi-horizon uSPA frame-

work, establishes the asymptotic features of our uSPA test based on the ’minimum Diebold-

Mariano’ statistic, and characterizes the power function. Section 3 contains the simulations
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and our empirical replication, and Section 4 concludes. In the Appendix, we present proofs

of some auxiliary results and establish the procedure for approximating the power function.

2 Multi-horizon uSPA testing

2.1 Formal setup

Let {yt}t=0,±1,±2,... be a univariate or a multivariate stochastic process of interest. For the

integer-valued horizon h ≥ 1, we denote a forecast of yt based on information available at

time t − h by ŷt|t−h(θ̂), where θ̂ is a vector of estimated parameters.1 We consider two

competing forecasting methods, indexed as 1 and 2, and compare their forecasting accuracy

by taking into account the multiple horizons h = 1, . . . , H. We write the competing

h-step ahead forecasts as ŷ1
t|t−h, ŷ2

t|t−h, and the forecast losses as L1
t,h ≡ L(yt, ŷ

1
t|t−h),

L2
t,h ≡ L(yt, ŷ

2
t|t−h), where L(·, ·) is some real-valued loss function. For the loss differential,

dt,h ≡ L1
t,h − L2

t,h,

we make the following assumption.

Assumption 1. For each h = 1, . . . , H, {dt,h} is assumed to be first-moment stationary.

Assumption 1 allows us to consider the expected loss differentials µh ≡ E(dt,h) for h =

1, . . . , H, which are the main building block of our forecast comparisons.

Quaedvlieg (2021) discusses two concepts of multi-horizon superior predictive ability,

termed ’average Superior Predictive Ability’ (aSPA) and ’uniform Superior Predictive Abil-

ity’ (uSPA), respectively. While aSPA compares the accuracy of the two methods across

horizons by means of the quantity µaSPA ≡
∑H

h=1whµh (with weights w1, . . . , wH summing

1Note that we compare ’forecasting methods’ in the sense of Giacomini and White (2006) rather than

’forecasting models’.
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to 1), we focus on the stronger uSPA concept, which postulates that the superior method

yields better forecasts at all forecast horizons under consideration.

Definition 1. We define Method 2 to exhibit uSPA to Method 1 if

µuSPA ≡ min {µ1, . . . , µH} > 0.

Based on Definition 1, we consider the statistical hypotheses

H0 : µuSPA ≤ 0 versus H1 : µuSPA > 0, (1)

with H0 stating that there is at least one horizon at which Method 1 performs at least as

well as Method 2. Accordingly, H1 indicates uSPA of Method 2 to Method 1.

A meaningful asymptotic statistic for the uSPA testing problem in Eq. (1) is based on

the following technical requirement (e.g. De Jong, 1997; Gonçalves and White, 2002).

Assumption 2. The loss-differential vector dt ≡ (dt,1, . . . , dt,H)
′ is near-epoch dependent

in L2+δ-norm on {Vt} with near-epoch dependent coefficients vk of size −2(q − 1)/(q − 2),

where {Vt} is α-mixing of size −(2 + δ)(q + δ)/(q− 2), for some q > 2 and 0 < δ ≤ 2, and

Var(dt,h) > 0 for all h ∈ {1, . . . , H}.

Let us define d = (d1, . . . , dH)
′ ≡ 1

T

∑T
t=1 dt (T is the size of the sample used to evaluate

the forecasts) and µ ≡ (µ1, . . . , µH)
′. Then, Assumptions 1 and 2 ensure the following

’convergence-in-distribution’ result towards the multivariate normal distribution:

√
T
(
d− µ

) d−→ N(0,Σ), (2)

with Σ ≡ limT→∞ E
[
T (d− µ)(d− µ)′

]
(e.g. Gonçalves and White, 2002). Thus, Eq. (2)

suggests testing the uSPA hypotheses in Eq. (1) via the ’minimum Diebold-Mariano’ statis-

tic

tuSPA = min

{√
T
d1
σ̂1

, . . . ,
√
T
dH
σ̂H

}
, (3)
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where σ̂h is a consistent, almost surely (a.s.) positive HAC-type estimator of σh ≡
√

(Σ)hh

(the main-diagonal elements of Σ).

In order to contrast Quaedvlieg’s (2021) test with our uSPA test (to be established in

Theorem 2 below), we introduce the following notation. We formally label the two tests,

which are both based on the tuSPA-statistic from Eq. (3), by ΥQuaed and ΥuSPA, and—when

convenient—more compactly write Υ•, where • stands for one of the subscripts ’Quaed’

or ’uSPA’. We parameterize the uSPA testing problem in Eq. (1) by µ ∈ RH ≡ Θ, and

consider the parameter subsets Θ0 =
{
µ ∈ RH : min {µ1, . . . , µH} ≤ 0

}
(representing H0)

and Θ1 = Θ \Θ0 (representing H1), respectively. Furthermore, we denote the test-specific

(i) critical (H0-rejection) region at the significance level α by Cα
Υ• , (ii) power function by

πΥ•(µ) = Pµ (’Υ• rejects H0’) = Pµ

(
tuSPA ∈ Cα

Υ•

)
for µ ∈ Θ, so that the size of the Υ•-test

can be written as supµ∈Θ0
{πΥ•(µ)}.

In our subsequent search for a valid uSPA test, the following theorem proves useful. It

provides the asymptotic distribution of the tuSPA-statistic under the condition that µ = 0.

(Its proof is closely related to that of Theorem 4 in Hansen et al. (2011).)

Theorem 1. Under Assumptions 1 and 2, consider the random vector X ≡ (X1, . . . , XH)
′ ∼

N(0,R), where R = D−1ΣD−1 with diagonal matrix D = diag(σ1, . . . , σH). Let (i) σ̂h be

a consistent estimator of σh for h = 1, . . . , H, and (ii) FR denote the distribution of

min{X1, ..., XH}. Then, provided that µ = 0, we have

tuSPA
d−→ FR.

Proof. Given that µ = 0, Eq. (2) provides
√
T d

d−→ N(0,Σ). Since D̂ ≡ diag(σ̂1, . . . σ̂H)

is a consistent estimator of D, Slutsky’s theorem yields
√
T D̂

−1
d

d−→ N(0,R) with

R = D−1ΣD−1. Since the function M : RH → R, (x1, . . . , xH)
′ 7→ min{x1, . . . , xH} is

continuous, the continuous mapping theorem yields tuSPA
d−→ FR.
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In obtaining the critical region Cα
ΥQuaed

for his (asymptotic) ΥQuaed-test, Quaedvlieg

(2021) stipulates µ = 0 (without explicitly mentioning it). The author appropriately

notes that the tuSPA-statistic from Eq. (3)—which he uses—is nonpivotal, since its distri-

bution depends on the unknown covariance matrix Σ (cf. Theorem 1). He attempts to

tackle this nuisance-parameter problem by applying the moving block bootstrap of Künsch

(1989) and Liu and Singh (1992). However, the author’s stipulation µ = 0 produces size-

distorted ΥQuaed-tests. Formally, µ = 0 ∈ Θ0, but—as will become evident from the

proof of Theorem 2 below—when determining the critical region via the tuSPA-statistic,

there are other non-zero vectors µ∗ ∈ Θ0 with πΥQuaed
(µ∗) > πΥQuaed

(0) = α, and thus

supµ∈Θ0

{
πΥQuaed

(µ)
}
> α, meaning that Quaedvlieg’s (2021) testing methodology entails

substantial size distortions.

2.2 An asymptotic size-exploiting uSPA test

Since the uSPA null hypothesis in Eq. (1) is composite, the critical region of a tuSPA-based

decision rule should be determined under an appropriate parameter vector µ∗ ∈ Θ0, which

ensures that the size of the resulting uSPA test is equal to (or less than) the prespecified

significance level. The proof of the following theorem shows that such vectors have the

form µ∗ = (µ∗
1, . . . , µ

∗
H)

′ with µ∗
h = 0 for exactly one index h ∈ {1, . . . , H}, and µ∗

j > 0 for

all other indices j ∈ {1, . . . , H} \ {h}.

Theorem 2. Under Assumptions 1 and 2, consider the test statistic tuSPA from Eq. (3)

with critical region (u1−α,+∞), where α ∈ (0, 1) is the prespecified significance level, and

u1−α the (1 − α)-quantile of the standard normal distribution N(0, 1). Then, the resulting

asymptotic test for the uSPA hypotheses in Eq. (1), denoted by ΥuSPA, is size-α-exploiting

(i.e. πΥuSPA
(µ) ≤ α for all µ ∈ Θ0 and πΥuSPA

(µ∗) = α for at least one µ∗ ∈ Θ0).

The proof of Theorem 2 consists of two steps. (1) We prove that the tuSPA-statistic
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converges in distribution towards the standard normal for those vectors µ∗ ∈ Θ0 that

contain exactly one zero and H − 1 strictly positive elements. (2) We prove that the

N(0, 1)-limiting distribution stochastically dominates the tuSPA-distributions for all µ ∈ Θ0.

Proof of Theorem 2. Prior to establishing the two steps, let us reconsider the matrix D̂ ≡

diag(σ̂1, . . . σ̂H), with σ̂h being a consistent, a.s. positive estimator of σh (h = 1, . . . , H),

and define the random vector

Ẑ = (Ẑ1, . . . , ẐH)
′ ≡

√
T D̂

−1
d.

Let ê = (ê1, . . . , êH)
′ be the random vector, which consists ofH−1 zeros and has the element

’1’ exactly at that position where the random vector Ẑ attains its minimum. Then, the

tuSPA-statistic from Eq. (3) can be written as

tuSPA = ê′ Ẑ =
√
T ê′ D̂

−1
d. (4)

Additionally, consider the following equality, which holds for any vector e = (e1, . . . , eH)
′

and any µ = (µ1, . . . , µH)
′:

√
T
(
ê′ D̂

−1
d− e′ D̂

−1
µ
)
= ê′ D̂

−1√
T
(
d− µ

)
+
√
T
(
ê′ − e′

)
D̂

−1
µ. (5)

Below, we specify e and µ such that we are able to obtain the desired convergence result

for the tuSPA-statistic.

Step 1: Consider the vectors µ∗ = (µ∗
1, . . . , µ

∗
H)

′ ∈ Θ0 with µ∗
h = 0 for exactly one index

h ∈ {1, . . . , H}, and µ∗
j > 0 for all other indices j ∈ {1, . . . , H}\{h}. We specify the vector

e = (e1, . . . , eH)
′ from Eq. (5) such that eh = 1 when µ∗

h = 0, and ej = 0 for all remaining

j ∈ {1, . . . , H} \ {h} (i.e. when µ∗
j > 0). Then, e′ D̂

−1
µ∗ = 0, and the left-hand side of

Eq. (5) coincides with the tuSPA-statistic for µ = µ∗. For the two terms on the right-hand

side of Eq. (5), we next show that

(a) ê′ D̂
−1√

T
(
d− µ∗) d−→ N(0, 1), and (b)

√
T
(
ê′ − e′

)
D̂

−1
µ∗ p−→ 0. (6)
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To prove (a), it suffices to show that ê
p−→ e, since then, in view of Eq. (2),

ê′ D̂
−1√

T
(
d− µ∗) d−→ N(0, e′D−1ΣD−1e) = N(0, 1).

Part (b) in Eq. (6) follows from the continuous-mapping theorem, if
√
T
(
ê′ − e′

) p−→ 0′.

The two claims, ê
p−→ e and

√
T
(
ê′ − e′

) p−→ 0′, are proved in the Lemmata A.1 and A.2

in Appendix A. Collecting results then establishes

tuSPA
d−→ N(0, 1) (under µ∗).

Step 2: It remains to show that the cumulative distribution function (CDF) of the N(0, 1)

distribution, denoted by Φ(t), stochastically dominates the asymptotic CDF of the test

statistic, FtuSPA
(t), under every µ ∈ Θ0.

2 We note that all parameter vectors µ ∈ Θ0 are

included in the union of the two sets

S1 ≡ {µ ∈ Θ0 : µh = 0 for at least one index h, µj ∈ R otherwise} , (Case 1)

S2 ≡ {µ ∈ Θ0 : µh < 0 for at least one index h, µj ∈ R otherwise} . (Case 2)

Prior to treating the two cases, we note the following inequality, which holds irrespective

of any specific choice of µ and for any h ∈ {1, . . . , H}:

FtuSPA
(t) = Pµ

(
min

{
Ẑ1, . . . , ẐH

}
≤ t
)

= 1− Pµ

(
min

{
Ẑ1, . . . , ẐH

}
> t
)

= 1− Pµ

(
Ẑ1 > t, . . . , ẐH > t

)
≥ 1− Pµ

(
Ẑh > t

)
= Pµ

(
Ẑh ≤ t

)
. (7)

Case 1. Consider µ ∈ S1. Without loss of generality, let µ1 = 0 and µ2, ..., µH ∈ R. Then,

choosing h = 1 in (7) and using Eq. (2), we obtain

FtuSPA
(t) ≥ Pµ

(
Ẑ1 ≤ t

)
T→∞−→ Φ(t).

2We refer to the definition of first-degree stochastic dominance between the CDFs FX and FY of two

random variables: FX(t) stochastically dominates FY (t) if FX(t) ≤ FY (t) for all t.
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Case 2. Consider µ ∈ S2. Without loss of generality, let µ1 < 0 and µ2, ..., µH ∈ R. Since

σ̂−1
1 > 0 almost surely, we also almost surely have Ẑ1 ≤ Ẑ1 −

√
T σ̂−1

1 µ1, and thus

Pµ

(
Ẑ1 ≤ t

)
≥ Pµ

(
Ẑ1 −

√
T σ̂−1

1 µ1 ≤ t
)

for all t. (8)

Choosing h = 1 in (7), and using Eqs. (8) and (2), we obtain

FtuSPA
(t) ≥ Pµ

(
Ẑ1 ≤ t

)
≥ Pµ

(
Ẑ1 −

√
T σ̂−1

1 µ1 ≤ t
)

= Pµ

(√
T σ̂−1

1

(
d1 − µ1

)
≤ t
)

T→∞−→ Φ(t),

thus completing the proof.

2.3 Power of the ΥuSPA-test

The aim of this section is twofold. (1) We show that ΥuSPA is a consistent test in the

sense of having a power function πΥuSPA
(µ) under the alternative hypothesis ’µuSPA > 0’

that converges (pointwise) to 1 as T → ∞. (2) We establish an accurate approximation of

πΥuSPA
(µ) based on the closed skew normal distribution. As a starting point, we recapit-

ulate (i) that the power function πΥuSPA
(µ) = Pµ (tuSPA > u1−α) for any µ ∈ Θ1 can be

written as

πΥuSPA
(µ) = Pµ

(
min

{
Ẑ1, . . . , ẐH

}
> u1−α

)
, (9)

and (ii) that under Assumptions 1 and 2, the proof of Theorem 1 in Section 2.1 establishes

√
T D̂

−1 (
d− µ

) d−→ N(0,D−1ΣD−1). (10)

Theorem 3. Under Assumptions 1 and 2, we have limT→∞ πΥuSPA
(µ) = 1 for all µ ∈ Θ1,

i.e. ΥuSPA is a consistent test.
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Proof. For all µ ∈ Θ1, we obtain

πΥuSPA
(µ) = Pµ

(
min{Ẑ1, . . . , ẐH} > u1−α

)
= Pµ

(
H⋂

h=1

{
Ẑh > u1−α

})

= Pµ

(
H⋂

h=1

{
Ẑh −

√
T σ̂−1

h µh > u1−α −
√
T σ̂−1

h µh

})

= 1− Pµ

(
H⋃

h=1

{
Ẑh −

√
T σ̂−1

h µh ≤ u1−α −
√
T σ̂−1

h µh

})

≥ 1−
H∑

h=1

Pµ

(
Ẑh −

√
T σ̂−1

h µh ≤ u1−α −
√
T σ̂−1

h µh

)
T→∞→ 1,

where we use the fact that (i) Ẑh −
√
T σ̂−1

h µh
d−→ N(0, 1) according to Eq. (10), and (ii)

that u1−α −
√
T σ̂−1

h µh diverges in probability to −∞.

Next, we obtain an approximation of the power function. For large (but finite) sam-

ple size T , and given expectation vector µ ∈ Θ1, Eq. (10) suggests approximating the

distribution of Ẑ =
√
T D̂

−1
d by

Ẑ
approx.∼ N

(√
T D̂

−1
µ, D̂

−1
Σ̂D̂

−1
)
. (11)

Along with recent results on the closed skew normal distribution (e.g. González-Faŕıas

et al., 2020, Lemma 2.2.1) and on the distribution of the maximum of a multivariate

normal random vector (e.g. Arellano-Valle and Genton, 2008), Eqs. (9) and (11) allow us

to obtain a straightforward approximation of the power function πΥuSPA
(µ) for µ ∈ Θ1. In

Appendix B, we outline how to compute the CDF of the minimum of a normally distributed

random vector, which gives us the approximated CDF of min{Ẑ1, . . . , ẐH} in Eq. (9). Our

Monte-Carlo simulations in Section 3 demonstrate that this technique provides accurate

approximations for typical sample sizes. Note that the technique can also be used to

approximate the rejection probabilities under parameter vectors µ ∈ Θ0.
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3 Monte-Carlo study and empirical results

Our simulation setup is a streamlined version of the setting from Quaedvlieg (2021). Instead

of separately simulating the losses of the two forecasting methods, we directly sample their

loss differentials for the forecast horizons h = 1, . . . , H. Using the notation from Section

2.1, we assume i.i.d. loss-differential vectors

dt ∼ N(µ,Σ),

with expected loss-differential vector µ = (µ1, . . . , µH)
′ and H × H covariance matrix Σ.

Note that relaxing the above i.i.d.-assumption is straightforward, but would require an HAC

covariance matrix estimator, making the simulations more complex, but without yielding

deeper insights into the mechanics of the uSPA testing procedure.

Since real-world forecast performances are likely to be positively correlated across dif-

ferent horizons, we model the covariance matrix as Σ = P + P = 2P with P being the

H ×H matrix (see Quaedvlieg, 2021)3

(P)ij =

 1 for i = j,

exp(−0.4 + 0.025max(i− 1, j − 1)− 0.125|i− j|) else.

For prespecified λ > 0 and horizon set H0 ⊆ {1, . . . , H}, we set the expected loss differen-

tials to

µh =

 λ for h ̸∈ H0,

0 for h ∈ H0.

Thus, the set H0 contains all forecast horizons for which both methods perform equally

well. When µh = λ > 0, Method 2 outperforms Method 1 at horizon h. Choosing H0 as

the empty set (∅) implies µ ∈ Θ1, while choosing H0 ̸= ∅ implies µ ∈ Θ0.

Figure 1 about here

3In contrast to Quaedvlieg (2021), who simulates the separate losses, we simulate on the basis ofΣ = 2P,

which reflects the correlation structure of the loss differentials
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Figure 1 summarizes our simulation results for the prespecified significance level α =

0.05 (the dotted horizontal lines in the four panels). In Panel (a), we depict ten simulation

settings, each reflecting a stepwise increase in the ’Number of horizons with equal expected

losses’ (H0 = {1},H0 = {1, 2}, . . . ,H0 = {1, 2, . . . , 10}) along the abscissa (where we use

the same loss-differential parameter λ = 1 and sample size T = 1000 in all settings). The

solid line represents the simulated type-I error rates of our ΥuSPA-test, the dashed line the

error rates of the ΥQuaed-test proposed in Quaedvlieg (2021). Our ΥuSPA-test is exactly

size-exploiting at the ’boundary’ of the null hypothesis, where both forecasting methods

perform equally well at a single horizon (shown in the panel for H0 = {1}). The ΥuSPA-test

becomes progressively conservative as the number of horizons in H0 increases, i.e. when the

forecasting methods perform equally well at multiple horizons. By contrast, the ΥQuaed-test

exhibits (mostly severe) size distortions, unless both forecasting methods perform equally

well at all horizons under consideration (shown in the panel for H0 = {1, . . . , 10}).

Panel (b) displays type-I error rates of both uSPA tests for various settings at the

boundary between Θ0 and Θ1. The feature common to all our boundary settings is that

both forecasting methods perform equally well at the single horizon h = 1, while Method 2

outperforms Method 1 at all other horizons h = 2, . . . , H, i.e. H0 = {1} throughout. The

boundary settings now differ in their number of H (’Maximal forecast horizon H’) along

the abscissa. In our simulations, we again used the uniform loss differential parameter

λ = 1 and the sample size T = 1000 in all settings. As shown in Panel (b), the ΥuSPA-test

(solid line) always retains the nominal size α = 0.05. By contrast, the type-I error rates

increase drastically in H for the distorted test suggested in Quaedvlieg (2021).

Finally, Panels (c) and (d) convey an impression of the power of our ΥuSPA-test. The

three lines in Panel (c) display the power as a function of the loss-differential parameter

λ for the sample sizes T = 500, 1000, 2000, where we used the same λ-value at all forecast

horizons h = 1, . . . , H with H = 5. It is important to note that we did not derive the
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three power lines by simulation, but calculated them via our approximation procedure

from Section 2.3. The superimposed points on the power line for sample size T = 500

represent the power, as computed by Monte-Carlo simulations (with 100 000 replications),

indicating high accuracy of our power approximation. In Panel (d), the loss-differential

parameters are λ1 ∈ [0, 0.3] for horizon h = 1, and λ = 1 for horizons h = 2, . . . , 5. Since

the ΥQuaed-test does not maintain the nominal size, a power comparison with our ΥuSPA-test

is not meaningful.

Figure 2 about here

As an empirical application, we replicate the results presented in Quaedvlieg (2021, Fig-

ure 3) who compares the performance of direct forecasts (Method 1) versus iterated forecasts

(Method 2) via one-sided multiple uSPA-tests for maximal horizons ranging from 2 to 24

months (H = 2, . . . , 24). Referring to technical details from Marcellino et al. (2006), we

analyze the four time series IVSRRQ (ratio for manufacturing and trade), FYGM6 (interest

rate), LHNAG (civilian labour-force employment), and FYAAAC (bond yield).4 Figure 2 repro-

duces the uSPA-plots in Quaedvlieg (2021, Figure 3), where the (red) dots represent the

values of the tuSPA-statistic for the distinct maximal forecast horizons H. By construction,

the tuSPA-realizations are positive, if the iterated forecasts outperform the direct forecasts.

Thus, the dots in the four panels in Figure 2 show that the iterated forecasts are better

for IVSRRQ (with a single exception for H = 24) and FYGM6, while direct forecasts perform

better for LHNAG and FYAAAC.

In the four panels of Figure 2, the solid (blue) lines represent Quaedvlieg’s (2021) critical

values, the dashed (blue) lines the critical values of our ΥuSPA-test, both at the 5% level.

A mere visual inspection reveals the far-reaching consequences of using the correct critical

4We used the data, the Ox-code for the data transformations and the computation of the test statistics,

and the bootstrapped critical values from the JBES-site of Quaedvlieg (2021).
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region Cα
ΥuSPA

. Quaedvlieg (2021) reports that the tuSPA-statistics for IVSRRQ and FYGM6

in the Panels (a) and (b) are significantly larger than his critical values for all maximal

horizons H, and interprets this finding as statistical support in favour of iterated forecasts.

By contrast, using the correct critical region Cα
ΥuSPA

shows that the test statistics are

insignificant at all maximal horizons, except for H = 2 in Panels (a) and (b). Thus, there

is actually no statistically significant evidence of uSPA. In a similar vein, for LHNAG in Panel

(c), Quaedvlieg erroneously interprets the negative tuSPA-values at long horizons (H ≥ 14)

as significant evidence in favour of iterated forecasts, even though negative values of the

test statistic indicate that direct forecasts are superior. And finally, for the FYAAAC series

in Panel (d), the one-sided test in the other direction is no longer significant at any horizon,

when using the correct ΥuSPA critical values.

4 Conclusion

In this article, we address the joint-hypothesis-testing problem that typically arises when

comparing two competing forecasts across multiple forecast horizons. We propose a test for

uniform Superior Predictive Ability, based on a ’minimum Diebold-Mariano’ test statistic

with asymptotic critical values corresponding to the quantiles of standard normal distribu-

tion. Our test is consistent and size-exploiting along the boundary of the parameter subsets

belonging to the uSPA null and alternative hypotheses. We provide an algorithm for ac-

curately approximating the power function and demonstrate the favorable probabilistic

properties of our test.

An obvious follow-up task is to analyze multi-horizon extensions of the model confidence

sets (MCS) of Hansen et al. (2011) (Fosten and Gutknecht, 2021; Quaedvlieg, 2021). Since

our uSPA decision rule requires no computational effort, it is in principle a natural candidate

for embedding in MCS algorithms. However, due to its strict definition, the uSPA concept
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often fails to provide statistically significant rankings of forecasts for multiple horizons

in empirical applications, as shown in Section 3. We therefore recommend establishing

alternative multi-horizon ranking concepts in future research. Here, we briefly sketch the

following.

A major advantage of the uSPA concept over its aSPA counterpart is that uSPA does

not require the forecaster to take an explicit stance on the choice of weights in the ranking

rule. A concept with the same feature, which we call ’majorized Superior Predictive Ability’

(mSPA), can be defined by comparing the forecast-specific partial sums of the ordered

forecast losses across all horizons. Formally, let µi
h denote the expected loss of Method

i (i = 1, 2) for horizon h (h = 1, . . . , H), and consider the vectors (µi
1, . . . µ

i
H)

′ and their

increasing rearrangements (µi
(1), . . . µ

i
(H))

′. We then define Method 2 to exhibit mSPA to

Method 1, if
∑k

j=1 µ
1
(j) ≥

∑k
j=1 µ

2
(j) for k = 1, . . . , H with strict inequality for at least

one k. This mSPA formulation is based on Marshall et al.’s (2011, pp. 10-12) definition

of ’weak supermajorization’ and is similar to the concept of generalized Lorenz dominance

(Shorrocks, 1983; Chang et al., 2022). It follows by induction that uSPA implies mSPA.

On the other hand, mSPA can provide explicit multi-horizon forecast rankings in many

cases where uSPA does not. We leave the derivation of a multiple-horizon mSPA test and

its embedding in MCS algorithms to future research.

A Proof(s) and remark(s)

Lemma A.1. Given the assumptions and notation from Step 1 in the proof of Theorem 2,

it follows that ê
p−→ e.

Proof. Without loss of generality, let µ∗
1 = 0 and µ∗

h > 0 for h = 2, . . . , H. The lemma is

proved, if for the vectors ê and e, we have elementwise

êh
p−→ eh for h = 1, . . . , H.
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We start with the first element e1 = 1. The event {ê1 = 1} coincides with the event that

the first element in Ẑ = (Ẑ1, . . . Ẑh)
′ is the smallest element. Thus,

Pµ∗(ê1 = 1) = Pµ∗(Ẑ1 < Ẑ2, . . . , Ẑ1 < ẐH)

= 1− Pµ∗

({
Ẑ1 ≥ Ẑ2

}
∪ . . . ∪

{
Ẑ1 ≥ ẐH

})
≥ 1−

[
Pµ∗(Ẑ1 ≥ Ẑ2) + . . .+ Pµ∗(Ẑ1 ≥ ẐH)

]
. (A.1)

It remains to show that limT→∞ Pµ∗(Ẑ1 ≥ Ẑh) = 0 for h = 2, . . . , H. Now,

Pµ∗(Ẑ1 ≥ Ẑh) = Pµ∗

(√
T
d1
σ̂1

≥
√
T
dh
σ̂h

)
= Pµ∗(d1σ̂h − dhσ̂1 ≥ 0).

Note that d1
p−→ 0, dh

p−→ µ∗
h > 0, σ̂1

p−→ σ1 > 0 and σ̂h
p−→ σh > 0, implying

limT→∞ Pµ∗(Ẑ1 ≥ Ẑh) = 0. Taking the limit and inserting in Eq. (A.1) yields ê1
p−→ e1 = 1.

Similarly, we show the componentwise convergence of ê towards the remaining elements

e2 = e3 = . . . = eH = 0. For h = 2, . . . , H,

Pµ∗(êh = 1) = Pµ∗(Ẑh < Ẑ1, . . . , Ẑh < Ẑh−1, Ẑh < Ẑh+1, . . . , Ẑh < ẐH)

= Pµ∗(Ẑh < Ẑ1) · Pµ∗(Ẑh < Ẑ2, . . . , Ẑh < Ẑh−1, Ẑh < Ẑh+1, . . . , Ẑh < ẐH |Ẑh < Ẑ1)

≤ Pµ∗(Ẑh < Ẑ1). (A.2)

Using the same reasoning as above, it follows that limT→∞ Pµ∗(Ẑh < Ẑ1) = 0. Taking the

limit and inserting in Eq. (A.2) yields êh
p−→ eh = 0 for h = 2, . . . , H.

Lemma A.2. Given the assumptions and notation from Step 1 in the proof of Theorem 2,

it follows that
√
T
(
ê′ − e′

) p−→ 0′.

Proof. Without loss of generality, let µ∗
1 = 0 and µ∗

h > 0 for h = 2, . . . , H. As in Lemma A.1,

we prove the componentwise convergence of
√
T
(
ê′ − e′

)
, starting with the first element
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√
T (ê1 − 1). For ϵ > 0, we have

Pµ∗

(∣∣∣√T (ê1 − 1)− 0
∣∣∣ > ϵ

)
≤ Pµ∗

(∣∣∣√T (ê1 − 1)− 0
∣∣∣ > 0

)
= Pµ∗ (|ê1 − 1| > 0)

= Pµ∗(ê1 = 0) = 1− Pµ∗(ê1 = 1). (A.3)

From the proof of Lemma A.1, we have limT→∞ Pµ∗(ê1 = 1) = 1. Taking the limit and

inserting in Eq. (A.3) yields
√
T (ê1 − e1)

p−→ 0.

Similarly, for h = 2, . . . , H, we obtain

Pµ∗

(∣∣∣√T (êh − 0)− 0
∣∣∣ > ϵ

)
≤ Pµ∗

(∣∣∣√T (êh − 0)− 0
∣∣∣ > 0

)
= Pµ∗ (|êh| > 0) = Pµ∗(êh = 1). (A.4)

From the proof of Lemma A.1, we have limT→∞ Pµ∗(êh = 1) = 0. Taking the limit and

inserting in Eq. (A.4) establishes
√
T (êh − eh)

p−→ 0 for h = 2, . . . , H.

B Minimum of multivariate normal distribution

Consider a random vector X = (X1, . . . , XH)
′ ∼ N(ν,Ψ) and its minimal element Xmin =

min{X1, . . . , XH}. The CDF of the minimum, FXmin
(z), is given by

FXmin
(z) =

H∑
h=1

FXh|Xh=Xmin
(z) · P(Xh = Xmin), (B.1)

where FXh|Xh=Xmin
(z) is the conditional CDF of Xh given that Xh is the minimal element of

X. For the computation of the summands on the right side of Eq. (B.1), we use well-known

results on the closed skew normal distribution (González-Faŕıas et al., 2020; Arellano-Valle
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and Genton, 2008). Let us define the (H ×H) matrices

A1 =


1 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

...

−1 0 0 . . . 1

 , A2 =


0 1 0 . . . 0

1 −1 0 . . . 0

0 −1 1 . . . 0
...

...
...

...

0 −1 0 . . . 1

 , . . . ,

AH−1 =


0 0 . . . 1 0

1 0 . . . −1 0

0 1 . . . −1 0
...

...
...

...

0 0 . . . −1 1

 , AH =


0 0 . . . 0 1

1 0 . . . 0 −1

0 1 . . . 0 −1
...

...
...

...

0 0 . . . 1 −1

 ,

where, at each step of the matrix sequence, the first column of A1 is successively shifted

one column to the right. Then, for h = 1, . . . , H,

AhX ∼ N(νAh ,ΨAh)

with νAh = Ahν = (νAh
1 , . . . , νAh

H )′ and

ΨAh = AhΨA′
h =


(ΨAh)11 . . . (ΨAh)1H

...
. . .

...

(ΨAh)H1 . . . (ΨAh)HH

 .

Following González-Faŕıas et al. (2020, Lemma 2.2.1), the H summands FXh|Xh=Xmin
(z) ·

P(Xh = Xmin) in Eq. (B.1) can be obtained from the CDF of the multivariate normal

distribution

N





νAh
1

−νAh
2

−νAh
3

...

−νAh
H


,



(ΨAh)11 −(ΨAh)12 −(ΨAh)13 . . . −(ΨAh)1H

−(ΨAh)21 (ΨAh)22 (ΨAh)23 . . . (ΨAh)2H

−(ΨAh)31 (ΨAh)32 (ΨAh)33 . . . (ΨAh)3H

...
...

...
...

−(ΨAh)H1 (ΨAh)H2 (ΨAh)H3 . . . (ΨAh)HH




,

evaluated at (z, 0, . . . , 0)′. We note that evaluating the CDF of a multivariate normal

distribution is numerically challenging in high dimensions. An R code to compute the
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distribution of the minimum, based on the package mvtnorm, is available from the authors

upon request.
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Figure 1: Size and power of tests. (a) Type-I error rate at significance level α = 0.05 for

maximal horizon H = 10. The abscissa indicates the number of forecast horizons with

equal expected losses. For all other horizons, the expected loss differential is λ = 1. The

sample size is T = 1000. (b) Type-I error rate at significance level α = 0.05 for different

maximal forecast horizons H. The expected loss differential is 0 at horizon h = 1, and

λ = 1 at horizons h = 2, . . . , H. The sample size is T = 1000. (c) Power function of the

ΥuSPA-test at significance level α = 0.05 for maximal forecast horizon H = 5, when all

expected loss differentials are λ. (d) Power function of the ΥuSPA-test at significance level

α = 0.05 for maximal forecast horizon H = 5, when the expected loss differential is λ1 at

horizon h = 1, and λ = 1 at horizons h = 2, . . . , H.
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Figure 2: Multi-horizon uSPA-tests for individual series.
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