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Abstract

We propose a new, rational stock-price bubble that is able to generate recurringly

explosive and stochastically deflating trajectories. Our flexible bubble process entails

stock-price volatility dynamics that are consistent with real-world data. To demon-

strate this, we fit our bubble specification to NASDAQ data and analyze the volatility

dynamics.
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1 Introduction

Evans (1991) specifies a rational, periodically collapsing stock-price bubble, which has

become a benchmark model in the theoretical and empirical literature. However, two

features inherent in Evans’ specification appear to be irreconcilable with real-world

data. (i) The Evans bubble always collapses entirely within one period, implying that

stock-price volatility also collapses within one period (Rotermann and Wilfling, 2014).

(ii) Whenever the Evans bubble bursts, it recedes to the same expected (non-zero)

value, a property that is unnecessarily restrictive.

Figure 1 about here

Allen and Gale (2000) and Kindleberger and Aliber (2005), inter alia, provide a

rationale as to why, after a crash, stock-price adjustment to a fundamentally justi-

fied level (i.e. the deflation of the bubble) typically follows a long and convoluted

process. Corroborating empirical evidence is presented in Figure 1, which displays

the monthly NASDAQ stock-market index between January 1990 and October 2013.

The two shaded areas represent the deflation processes, starting with (i) the bursting

dot-com bubble in March 2000, and (ii) the crash in the aftermath of the subprime

mortgage crisis in October 2007. Typical of most stock-price deflation processes is that

they are caused by bad news reaching investors in a highly uncertain financial-market

environment, in which panic trading reactions accelerate the downward adjustment

process. Such extreme stock-price downturns are occasionally interrupted by policy

and/or regulatory interventions, which provide room for short-term price recovery.

In this paper, we establish a flexible bubble specification that overcomes the above-

mentioned drawbacks of the Evans bubble. Our specification is consistent with ra-

tional expectations and generates recurringly explosive trajectories with stochastically
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deflating adjustments, and implies realistic stock-price volatility paths. Overall, our

contributions are threefold. (i) We establish the stochastic properties of our bubble

specification. (ii) We elaborate the impact of our bubble process on stock-price volatil-

ity. (iii) We fit our bubble specification to the NASDAQ data shown in Figure 1 and

analyze the volatility implications.

2 Previous rational bubbles

In the linear present-value model with rational expectations, the price of a stock at

date t, Pt, is given by the Euler equation

Pt =
1

1 + r
[Et(Pt+1) + Et(Dt+1)] , (1)

where Dt+1 is the stock dividend payment between t and t+1. Et(·) denotes the condi-

tional expectation operator, based on all information available to market participants

as of date t. r is the required rate of return that is just sufficient to compensate investors

for the inherent riskiness of the stock. The expectational difference equation (1) can be

routinely solved by substituting future prices forward repeatedly. Denoting the stream

of discounted expected future dividends by P f
t (the fundamental stock price) and the

bubble component by Bt, we obtain the following familiar present-value formula for

the stock-price at date t:

Pt = P f
t +Bt =

∞∑
i=1

(
1

1 + r

)i

· Et(Dt+i) +Bt. (2)

The entire class of solutions to the Euler Eq. (1) is given by Eq. (2), in which Bt is any

random variable satisfying the (discounted) martingale property

Et(Bt+1) = (1 + r) ·Bt or, equivalently, Bt =
1

1 + r
· Et(Bt+1). (3)
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Bt is called a rational bubble, because its presence in Eq. (2) is consistent with rational

expectations.

Blanchard (1979) and Blanchard and Watson (1982) propose an early bubble spec-

ification that satisfies the martingale property (3). However, their specification is not

necessarily consistent with two theoretical properties of rational stock-price bubbles. In

view of Eq. (3), Diba and Grossman (1988) argue that, in general, (i) rational bubbles

cannot start from zero, and (ii) negative bubbles are ruled out as t→ ∞.

Evans (1991) overcomes Diba and Grossman’s fundamental critique by introducing

his renowned rational bubble

Bt =

{
1
ψ
Bt−1ut , if Bt−1 ≤ τ

[κ+ 1
πψ

(
Bt−1 − κψ

)
νt]ut , if Bt−1 > τ

, (4)

where ψ ≡ (1 + r)−1, κ and τ are real constants to be chosen such that 0 < κ <

(1 + r)τ , and {ut}∞t=1 is an exogenous process of i.i.d. random variables with ut > 0

and Et−1(ut) = 1 for all t. The variables {ut} are assumed to be lognormally (LN)

distributed and scaled to have unit means, i.e. we assume ut = exp(yt − ι2/2) with

{yt}∞t=1 being i.i.d. N(0, ι2).1 {νt}∞t=1 constitutes an exogenous i.i.d. Bernoulli process

independent of {ut}∞t=1 with Pr(νt = 1) = π and Pr(νt = 0) = 1 − π for 0 < π ≤ 1.

The event {νt = 1} signifies that the bubble will continue to grow, whereas the bubble

bursts in the case of {νt = 0}.

We note that the Evans bubble (4) features two different rates of growth. For

Bt−1 ≤ τ , the bubble grows at the mean rate 1
ψ
− 1 = r. For Bt−1 > τ , the bubble

grows at the faster rate 1
πψ

− 1 > r (whenever π < 1), but collapses with probability

1 − π per period. As mentioned above, the Evans bubble (i) collapses entirely within

one period, and (ii) necessarily returns to the same (positive) expected level κ after

bursting, from where the process recommences.

1In other words, {ut} represents an i.i.d. lognormal process with ut ∼ LN(−ι2

2 , ι2).
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An alternative process, providing a more flexible deflating behavior than the Evans

bubble (4), is the incompletely bursting one proposed by Fukuta (1998), which consists

of three potential states:

Bt =


1
ψ
α1

π1
Bt−1 , with probability π1

1
ψ
α2

π2
Bt−1 , with probability π2

1
ψ

1−α1−α2

1−π1−π2Bt−1 , with probability 1− π1 − π2

, (5)

where it is assumed that 0 < α1 < 1, 0 < α2 < 1, 0 < 1−α1 −α2 < 1, and additionally

for the state probabilities, (1−α1−α2)/(1−π1−π2) < α2/π2 < α1/π1. The parameter

restrictions imply that in States 1 and 2, we have Bt > Bt−1, whereas in State 3, we

have Bt < Bt−1. Fukuta (1998) refers to State 1 as the ”large bubble state”, State 2

as the ”small bubble state”, and State 3 as the ”incomplete burst state”. The major

empirical drawback of Fukuta’s specification is that, within each of the three states,

the bubble is subject to deterministic growth.

3 A new rational bubble

We now introduce a new rational bubble, which is strictly positive, recurringly explosive

and stochastically deflating. With the same notation as for the Evans and the Fukuta

bubbles from Eqs. (4) and (5), our specification consists of two distinct states:

Bt =

{
α
ψπ
Bt−1ut , with probability π

1−α
ψ(1−π)Bt−1ut , with probability 1− π

. (6)

Via the Bernoulli process {νt}, this mixture of distributions can be written in one single

equation as

Bt =

[([
α

ψπ
− 1− α

ψ(1− π)

]
νt +

1− α

ψ(1− π)

)
Bt−1

]
ut, (7)

where we assume that 0 < α < 1. This latter constraint ensures that the bubble never

collapses to zero and can thus reinflate.

Additionally, we stipulate α
π
> 1 and 1−α

1−π < ψ, ensuring the following neat interpre-
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tation of our two bubble states. In State 1, which occurs with probability π, the bubble

grows with the mean factor α
ψπ

, implying the mean growth rate α
ψπ

−1 = α
π
−1+ α

π
·r > r

(i.e. a faster growth rate than the required rate of return). State 2, occurring with prob-

ability 1−π, models the deflation of the bubble with mean deflation factor 1−α
ψ(1−π) < 1,

or equivalently, with negative mean growth rate 1−α
ψ(1−π) − 1 < 0. Hinging on the spe-

cific parameter constellation, the quantitative extent of the bubble deflation can range

between a ”small/moderate correction” and a ”big crash” within one or arbitrarily

many periods. In contrast to Fukuta’s specification (5), our model allows for stochas-

tic bubble growth/deflation within each state via the random variable ut in Eq. (6). In

addition to its realistic trajectories, our specification is also more parsimonious than

the Evans and Fukuta models.

It remains to prove the rationality of our bubble by verifying the martingale prop-

erty (3). Using (i) the stochastic independence of the processes {ut} and {νt}, (ii) the

conditional unit-mean assumption for all ut, and (iii) the Bernoulli distribution for all

νt, we readily obtain from the representation (7)

Et(Bt+1) = Et

{[([
α

ψπ
− 1− α

ψ(1− π)

]
νt+1 +

1− α

ψ(1− π)

)
Bt

]
ut+1

}
= (1 + r) ·Bt.

Figure 2 about here

Figure 2 displays four simulated trajectories of our stochastically deflating bubble

process (6). In each simulation, we set ψ = 0.9804 (which corresponds to a required

rate of retrun of 2%), but choose distinct combinations of the parameters ι2, α and

π. We initiate all bubble processes with the starting value B0 = 0.5. The trajectories

consist of 250 observations, representing a time span of approximately 21 years, based

on monthly data. All trajectories exhibit two or three major bubbles, all differing from

each other (i) in their respective stochastic growth rates during the build-up phases,
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and (ii) in their stochastic deflation rates during the downturns.

4 Bubbles and stock-price volatility

Rotermann and Wilfling (2014) analyze stock-price volatility in the presence of the

Evans bubble (4). Assuming that the dividend payments in Eq. (2) follow a driftless

random walk,

Dt = Dt−1 + εt,

with {εt} being an i.i.d. Gaussian white-noise process with mean zero and variance σ2,

the authors first show that the variance of the stock price Pt from Eq. (2), conditional

on all information available to market participants as of date t− 1, is given by

Vart−1(Pt) = Vart−1(Bt) + σ2/r2. (8)

Based on Eq. (8), the authors finally derive two main results on conditional stock-price

volatility under the Evans bubble. (i) The Evans bubble triggers excess stock-price

volatility. (ii) At the beginning of the bubbly period (i.e. before the Evans bubble

becomes explosive), stock-price volatility is relatively low, whereas towards the end

of the bubble and its bursting, stock-price volatility is typically high and reaches its

maximum value one period after the crash.

While these two theoretical properties are consistent with empirical findings (Brun-

nermeier and Oehmke, 2013; Kindleberger and Aliber, 2005, pp. 24-37), conditional

stock-price volatility dynamics under the Evans bubble exhibits a major drawback.

The one-period collapse of the Evans bubble {Bt} carries over to conditional stock-price

volatility, which also collapses within one period after having attained its maximum

value (Rotermann and Wilfling, 2014, Eq. (10)).

In order to assess conditional stock-price volatility under our new rational bubble,
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we use its representation (7) to obtain the conditional bubble variance as

Vart−1(Bt) = Vart−1

[(
α

ψπ
− 1− α

ψ(1− π)

)
Bt−1νtut +

1− α

ψ(1− π)
Bt−1ut

]

=

(
αBt−1

ψπ
− (1− α)Bt−1

ψ(1− π)

)2

· Vart−1(νtut)

+

(
(1− α)Bt−1

ψ(1− π)

)2

· Vart−1(ut)

+ 2

(
α

ψπ
− 1− α

ψ(1− π)

)
· 1− α

ψ(1− π)
·B2

t−1 · Covt−1(ut, νtut). (9)

The distributional assumptions from Sections 2 and 3 enable us to find the variance-

covariance terms in Eq. (9). Inserting Eq. (9) into Eq. (8), we obtain the conditional

stock-price variance under our bubble specification (6):

Vart−1(Pt) =

[
(α− π)2

ψπ(1− π)2
·
(
exp{ι2} − π

)
+

(1− α)2 + 2(α− π)(1− α)

ψ2(1− π)2
·
(
exp{ι2} − 1

)]
·B2

t−1 +
σ2

r2
. (10)

We note that the parameter restrictions stipulated in Section 3 imply 0 < π < α < 1,

ensuring that the term in squared brackets in Eq. (10) is strictly positive. Thus, Eq. (10)

constitutes a strictly monotone increasing relationship between the conditional stock-

price variance Vart−1(Pt) and Bt−1.

The monotone increasing relationship between Vart−1(Pt) and {Bt−1} causes a one-

to-one propagation of the stochastic bubble deflation on conditional stock-price volatil-

ity dynamics. To illustrate this, we reconsider the NASDAQ index shown in Figure 1.

Using monthly dividend data provided by Datastream, we estimated the parameters of

our (unobservable) bubble specification (6) for the NASDAQ via a sequential Monte

Carlo method—the particle filter—as introduced by Gordon et al. (1993). More specifi-

cally, to estimate our latent bubble process {Bt}, along with the parameters σ2, ψ, ι2, π,
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and α, we transformed the present-value formula (2), plus our bubble specification (6),

into a nonlinear state-space representation, which we estimated using the Expectation

Maximization (EM) algorithm as proposed by Schön et al. (2011).2

Table 1 about here

Table 1 displays the parameter estimates and standard errors, which we computed

with the stable estimator of the information matrix, as established in Duan and Fulop

(2011). We note that the parameter estimates satisfy the technical restrictions α
π
> 1

and 1−α
1−π < ψ, as imposed in Section 3.

Figure 3 about here

Figure 3 displays the estimated, stochastically deflating bubble trajectory {Bt}

(thin line) along with the associated conditional variance path Vart−1(Pt) (bold line).3

Three aspects concerning the conditional volatility trajectory, all stemming from Eq.

(10), are worth mentioning. (i) The empirically consistent deflating behavior of our

bubble (6) yields a conformable volatility trajectory, thus avoiding the one-period

volatility collapse inherent in the Evans bubble. (ii) The stock-price variance Vart−1(Pt)

attains its (local) maximal values at that moment, when Bt−1 takes on its largest val-

ues. This means that stock-price volatility is typically maximal at the moment the

bubble bursts (the beginning of the crisis). In Figure 3, we indicate the two bubble

bursts by the vertical lines tagging the dates ”March 2000” and ”November 2007”. (iii)

Stock-price volatility starts deflating with a lag of one period after the bubble started

deflating.

2Technical details of our estimation procedure are available upon request.
3We divided the NASDAQ time series by 10, in order to achieve numerical stability of the EM

algorithm.
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5 Conclusion

This paper establishes a new rational, recurringly explosive bubble that (i) is empiri-

cally plausible and parsimoniously parameterized, and (ii) merges all essential features

of rational bubble specifications hitherto existing in the literature. In contrast to the

benchmark Evans (1991) process, our bubble (i) restarts to grow from a variable base

level after a crash, and (ii) generates stochastically deflating trajectories. In particular,

these longer-lasting bubble deflation processes lead to stock-price volatility paths that

are strongly consistent with real-world data. As an example, we use a particle-filter

technique to extract the latent bubble component from NASDAQ data and analyze

the volatility implications.

In the literature, the dominant approach to assessing bubbles consists of applying

fixed-sample and sequential cointegration tests to a dividend stock-price relationship

(see Phillips et al., 2015a, 2015b; and the literature cited there). These indirect bubble

tests are designed to provide agents with binary yes/no information on whether the

market is currently on an explosive bubble path. In this paper, we bring a complemen-

tary perspective to these mere time-series bubble tests, by estimating structural bubble

specifications with real-world data. A useful line of future research could entail estab-

lishing a fully-fledged estimation framework with the objective of empirically assessing

the dynamic properties of stock-market bubbles (such as mean bubble growth/deflation

rates, bursting probabilities).
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Tables and Figures

Table 1
Estimation results for the NASDAQ using the particle filter

Parameter Estimate Standard error

σ2 0.4476 0.0014
ψ 0.9840 1.7480×10−5

ι2 0.0061 7.6905×10−7

π 0.9595 0.0011
α 0.9675 8.6242×10−4

α
π

1.0083

1−α
1−π 0.8024
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Figure 1. NASDAQ stock‐market index, January 1990 – October 2013 
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Figure 2. Bubble trajectories simulated according to Eq. (6) 
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Figure 3. NASDAQ, estimated bubble trajectory (thin line) and conditional variances (bold 

line) according to Eq. (10) 
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