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Abstract

This paper suggests a model of explosive earnings dynamics where positive deviations

tend to increase the growth rate even further. This “Matthew effect” can explain a number

of empirical regularities. First, we show that the explosive model might resemble a model

with heterogeneous earnings profiles in terms of its covariance structure. Second, we derive

the optimal consumption and savings behaviour under explosiveness and compare it to other

models. Third, we present a panel test against explosiveness and apply it to German and

U.S. earnings data. We find that the null hypothesis of no explosiveness can be rejected.

However, the proportion of explosive profiles is small.

JEL codes: J31, D91, C33

Keywords: labour income, idiosyncratic risk, explosive stochastic processes

1 Introduction

Income and earnings dynamics receive a lot of attention not only in the economics literature but

also in public debate. There is a widespread concern internationally about the rise in earnings

inequality since the 1980s. In real terms, workers at the bottom of the distribution have lost

in many countries during the last decades, while we witnessed a large increase in the share of

earnings accruing to the top decile and, even more pronounced, the top percentile, especially

in English-speaking countries (Atkinson, Piketty and Saez 2011). Earnings risk is an important

part of the overall economic risk facing individuals and households. Although earnings risk is to
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a large extent idiosyncratic, it is commonly considered as uninsurable due to the obvious moral

hazard problem.

There are two main approaches to modelling earnings dynamics, and both have a long tradi-

tion. On the one hand, earnings are regarded as following a deterministic path over the life-cycle

which is disturbed by random shocks with weak or moderate persistence. Since different indi-

viduals are assumed to have different expected earnings profiles, this class of models is often

termed “heterogeneous income profiles” (Guvenen 2009). Evidence in favour of the heteroge-

neous model is found e.g. in Lillard and Weiss (1979), Baker (1997), Haider (2001), Guvenen

(2009), Browning, Ejrnæs and Alvarez (2010).

On the other hand, many studies consider earnings shocks as having a unit root, e.g. MaCurdy

(1982), Abowd and Card (1989), Baker and Solon (2003), Meghir and Pistaferri (2004), Hryshko

(2012). Random changes are not only transitory (although transitory shocks may of course also

be present) but have a permanent effect for the rest of the working life. Heterogeneity of deter-

ministic growth rates is often ruled out in these models (Baker and Solon (2003) and Hryshko

(2012) embed both heterogeneity and unit roots in their models). Due to the restricted hetero-

geneity (Guvenen 2009) labels these models as “restricted income profiles”. It is surprisingly

difficult to distinguish clearly between the heterogeneous and the unit root model on a statistical

basis (Ejrnæs and Browning 2014). Despite the fact that earnings dynamics has been investi-

gated in a huge number of papers, no consensus has been reached yet as to the preferable model

specification.

This paper suggests a new simple model: explosive earnings dynamics. Positive deviations

tend to boost the growth rate such that the deviation from a common trend will get even larger.

In the same way, negative shocks will let the growth rate drop. In sociology, such self-reinforcing

inequalities where the rich get richer and the poor get poorer are sometimes called “Matthew

effect” (after Matthew 13:12: “Whoever has will be given more, and they will have an abundance.

Whoever does not have, even what they have will be taken from them”). Explosiveness is

ruled out in previous studies on earnings dynamics even though the extreme divergence of some

earnings profiles has been noted before (Guvenen, Karahan, Ozkan and Song 2015). From a

formal point of view, we relax the restriction that the persistence parameter must not be larger

than unity but keep the restriction that there is no deterministic growth rate heterogeneity.

We investigate the properties of the explosive model and show that it combines many features

of the heterogeneous and the unit root models. While long run earnings predictions are subject to

large and ever increasing uncertainty as in the unit root case, heterogeneity in expected earnings
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profiles emerges after some initial shocks as in the heterogeneous case. The explosive model can

mimic the variances and covariances of the heterogeneous model closely, both in earnings levels

and differences. Hence, observations that seem to corroborate the heterogeneous model may in

fact stem from an explosive process.

An important implication of the stochastic properties of the earnings process is the optimal

consumption and savings behaviour. It is well known (Zeldes 1989) that no closed form solution

of this stochastic dynamic optimization problem is available. Instead we solve it numerically

in a simplified setting that allows to compare the three models. If earnings follow an explosive

process, the optimal consumption and savings behaviour is similar to the heterogeneous model

in certain situations (in particular, if the individual happens to experience a series of positive

shocks early in their working life), but more resembles the unit root case if the starting periods

are less favourable. On the micro level, some individuals will behave as if they are liquidity

constrained, while others follow the classic pattern of building up wealth when young in order

to smooth consumption over their life cycle. How an individual behaves does not depend on

preferences (which we assume to be identical for all) but on the realizations of their earnings

process.

We suggest to use a panel unit root test against the alternative of explosiveness to distinguish

between the earnings models. Statistical tests against explosiveness exist for univariate time

series (Phillips, Wu and Yu 2011) but have not been applied to earnings or other panel data.

Gustavsson and Österholm (2014) investigate the issue of unit roots in a panel data set but

estimate the persistence parameter separately for each individual. Following a suggestion by

Hanck (2013) we construct a panel unit root test based on Simes’ (1986) intersection test, and

apply the test procedure to earnings data from the cross-national equivalent files of the German

Socio-Economic Panel (GSOEP) and the U.S. Panel Study of Income Dynamics (PSID) data

sets. We find that the null hypothesis of stationarity or unit roots can be rejected in both

countries. Statistically significant explosiveness can be found in the data at least for a fraction

of the population.

A well specified statistical models of earnings dynamics is of interest for economists and

policy makers for several reasons. An appropriate description of consumption behaviour has

to be based on a correctly specified earnings model. How individuals respond to variations in

their earnings depends to a large degree on the persistence of shocks and whether there are

deterministic components. The more uncertain future earnings, the higher the incentive to build

a wealth buffer stock. Evidence about the correct specification of earnings models can also help
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validate economic theories that endogenize earnings such as Mincer’s (1958) classical human

capital theory. From a policy point of view, it is important to understand the nature of earnings

profiles. If shocks are permanent – and not insurable – policy makers should aim to introduce

or facilitate risk sharing mechanisms. On the other hand, if the evolution of earnings is mainly

deterministic an obvious policy response is to improve education in order to shift workers who

would end up on low-performing trajectories onto higher profiles.

The paper is organized as follows. In section 2 we introduce the explosive model and compare

its statistical properties to the case of heterogeneous earnings profiles with transitory shocks and

to the unit root model with both transitory and permanent shocks. Section 3 is concerned with

the optimal savings and consumption behaviour of individuals facing either of the three models.

In section 4 we suggest a panel test against explosiveness. The empirical applications are reported

in section 5. We apply the panel test to GSOEP and PSID earnings data. Section 6 concludes.

2 Models of earnings dynamics

As we are interested in the evolution of individual earnings relative to the overall trend, we start

by adjusting earnings for a common trend. The usual way to eliminate common effects that

affect all individuals i in period t is to run a regression of log-earnings in t on a cubic polynomial

in experience hit and on dummy variables for the level of education (Guvenen 2009). Since the

regressions are run separately for each period, they also capture other time-specific variations in

the labor market such as increasing returns to education (Autor 2014).

Let yih,t denote person i’s residual of this regression. In the following, yih,t will simply be

referred to as “earnings”. Earnings are modeled as

yih,t = αi + βihit + zih,t + εih,t (1)

where αi and βi are individual specific random effects with zero expectations, variances σ2
α and

σ2
β and covariance σα,β . The random shock εih,t represents the short-term transitory earnings

shocks and is assumed to be homoscedastic and independent of αi and βi. Shocks that are longer

lasting are modeled by

zih,t = ρizih−1,t−1 + ηih,t (2)

where ηih,t is a (homoscedastic) random shock. The initial value is set to zi0,t = 0. In contrast to

the literature we do not impose any restrictions on the AR coefficient ρi (apart from regarding

negative values as implausible). In particular, we allow ρi to be larger than unity.
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In the literature on earnings dynamics, two special cases are commonly considered. First,

the random slope effects are set to constant zero (where σ2
β = 0) such that expected earnings

are initially the same for every individual. Earnings differences are entirely due to random and

persistent shocks affecting the individuals during their working life. In this setting, the process

zih,t is modelled as a unit root process, i.e. ρi = 1.

The second special case allows for heterogeneity in earnings profiles (σ2
β > 0) and restricts the

persistence parameter to ρi ≤ 1, typically strictly so. There is no consensus yet in the literature

as to which model describes real-world earnings processes better.

The explosive case ρi > 1 has not been considered in the literature on earnings dynamics

even though it exhibits a number of attractive properties. We proceed to show that the common

restriction ρi ≤ 1 is in fact unnecessary. To streamline notation, the indices t for time and i for

individuals will be dropped in the following.

The variances of the persistent component zh are

V ar(zh) = σ2
η + ρ2σ2

η + . . .+ ρ2(h−1)σ2
η + ρ2hV ar(z0). (3)

For V ar(z0) = 0 and ρ 6= 1, (3) can be simplified to

V ar(zh) = σ2
η ·

1− ρ2h

1− ρ2
. (4)

For ρ = 1 the variance (4) is to be interpreted as the limit for ρ → 1 which is simply hσ2
η. The

covariance between zh and zh+n for n ≥ 1 is

Cov(zh, zh+n) = ρnV ar(zh).

Hence, the variance-covariance structure of earnings is

V ar(yh) = σ2
α + h2σ2

β + 2hσα,β + σ2
η

1− ρ2h

1− ρ2
+ σ2

ε (5)

Cov(yh, yh+n) = σ2
α + h(h+ n)σ2

β + (2h+ n)σα,β + ρnσ2
η

1− ρ2h

1− ρ2
. (6)

In terms of growth rates the covariance between ∆yh and ∆yh+n for n ≤ 2 is

Cov(∆yh,∆yh+n) = σ2
β + σ2

η

[
ρn−1 ρ− 1

ρ+ 1
(1 + ρ2h−1)

]
. (7)

The results (5), (6) and (7) do not require any restriction on the persistence parameter ρ. If

|ρ| < 1 and h is sufficiently large, then the final factor in round brackets in (7) is close to 1, an

approximation that is often used in the heterogeneous model (MaCurdy 1982, Guvenen 2009).
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Of course, if the transitory component of earnings is modelled in a more sophisticated way or if

measurement error is added, then (5) and (6) have to be modified accordingly.

Figure 1 shows the variance of earnings for ρ = 0.8, 1, 1.03 as a function of experience h if

there is no heterogeneity, σ2
β = σ2

α = 0. The other parameters are σ2
η = 0.12 and σ2

ε = 0.252.

If there is only weak persistence (ρ = 0.8) the cross-sectional variance of earnings converges

quickly to a constant. In the case of a unit root the variance increases linearly in experience.

If the persistence parameter is greater than 1, the variance is a convex function of experience.

The dotted line shows the cross-sectional variance for heterogeneity in earnings profiles while

the persistence parameter is set to 0. The heterogeneity parameters σ2
α, σ

2
β and σα,β have been

chosen such that the fit is close. Concerning covariances, it is of course also possible to find a

parametrization of the heterogeneous model that results in covariances (6) resembling those of

the explosive model.
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Figure 1: Variance of earnings as a function of experience

The graph indicates that explosive earnings profiles and heterogeneous earnings profiles are

alike, at least in some respects. Individuals who are moving along an earnings profile above

(below) the average tend to grow faster (slower). The main difference between the heterogeneous

and the explosive model is the role played by risk. In the explosive model it is a matter of good

luck to be shifted onto a fast growing profile at the start of your career. A stroke of bad luck

may still push you back below average, unless you are already on a comfortably high profile.

In the heterogeneous model, chance just once determines the growth rate β which then remains
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constant during your life-time.

The different role of risk in the heterogeneous and explosive model is also apparent in condi-

tional earnings distributions. Let the information set Ih include the variables α, β and zh. For

n ≥ 1 (and any ρ) the conditional distribution of earnings is normal with expectation

E(yh+n|Ih) = α+ β(h+ n) + E(zh+n|Ih)

= α+ β(h+ n) + ρnzh

and variance

V ar(yh+n|Ih) = V ar(α+ βh+ zh+n + εh+n|Ih)

= V ar(zh+n|Ih) + σ2
ε

= σ2
η ·

ρ2n − 1

ρ2 − 1
+ σ2

ε . (8)

The most important difference between the explosive and the heterogeneous model is evident in

(8). Under heterogeneity, where ρ < 1 and σ2
β > 0, the long-run risk converges to σ2

ε and, hence,

does not increase without bounds when the forecasting horizon is extended. In the explosive

regime, where ρ > 1 and σ2
β = 0, the risk is ever increasing in a convex fashion in the length of

the forecasting horizon n. Risk is also increasing in the unit root case (ρ = 1), but only linearly.

To illustrate the large effect of long-term risk, Figure 2 depicts the probability to fall under

the (arbitrary) poverty line −0.4 as a function of the initial value zh. The dotted-dashed line

indicates the poverty probability in the explosive regime without heterogeneity. If you start near

the poverty line there is a high risk to be poor in 5 years, whereas poverty is very unlikely for

individuals starting at the higher end. The dashed line shows that the poverty risk in the unit

root case is close to the explosive case. The solid line depicts the povery risk under heterogeneity

for an individual with a positive slope coefficient of β = 0.02 (and intercept α = 0) when the

persistence parameter is ρ = 0.8. Since the rise in earnings is deterministic, the long-run risk of

poverty is low and does not much depend on the initial position. Of course, the picture would

be different for an individual with a negative slope who would almost surely end up in poverty

after a sufficiently long time.

The different roles played by earnings risk have an impact on the optimal behaviour of

individuals. In the absence of insurance opportunities for idiosyncratic earnings risk, the larger

the risk the more individuals have to save in order to build up a wealth buffer that can protect

them against strokes of bad luck. In the next section we derive the optimal dynamic savings
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Figure 2: Poverty risk in 5 years conditional on zh. The plot shows the probability to fall below

the poverty line −0.4 given that current earnings is zh, the solid line is for the heterogeneous

regime with slope coefficient β = 0.02 and intercept α = 0, the dashed line for the unit root case,

and the dotted-dashed line for the explosive regime.

behaviour in a simplified setting and investigate the micro and macro economic impacts of

different model assumptions.

3 Optimal savings behaviour

Since future earnings are a stochastic process, the individuals face a stochastic dynamic optimisa-

tion problem. Their saving and consumption behaviour depends on the structure of the earnings

process. Without the capability to insure against idiosyncratic earnings shocks, individuals have

an incentive to save and build up a wealth buffer stock as a means of self-insurance. Theoreti-

cal foundations of buffer stock savings models are provided by Carroll (2011). Gourinchas and

Parker (2002) model the consumers’ optimization problem under a random walk assumption for

permanent earnings (with drift but no heterogeneity). They show that young individuals mainly

save out of the precautionary motive. The main motive switches at an age of around 40, and

older households mostly save for retirement and bequests. Guvenen and Smith (2014) enrich the

model by a more complex retirement structure, partial insurance and heterogeneous earnings

profiles with learning about the initially uncertain individual slope parameter.
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We derive and compare the optimal savings behaviour in both the model with heterogeneity

and short-term persistence (ρ < 1) and the explosive model (ρ > 1). The unit root case is

considered as the intermediate case (ρ = 1). In order to delineate the main effects we abstract

the earnings dynamics from other features that are relevant for the savings behaviour in the real

world.

Let U(c) = c1−γ/(1− γ) denote the instantaneous utility function with coefficient of relative

risk aversion γ. The Bellman equation for an individual facing uncertain future earnings is

Vt(Wt, zt) = max
Ct

{U(Ct) + Et(Vt+1(Wt+1, zt+1))} (9)

where the state variable Wt is the individual’s wealth, and the state variable zt is the earn-

ings shock with dynamics given in (2). Consumption Ct is a control variable, and Et(·) is the

expectation conditional on information in period t. The transition equation for wealth is

Wt+1 = Wt + eyt − Ct. (10)

Earnings dynamics are modelled as

yt+1 = β(t+ 1) + zt+1

zt+1 = ρzt + ηt+1.

Note that there is no random effect intercept α. Neither are there measurement errors nor

shocks with short-term effects (the variance of εt in (1) is set to 0). Further, we assume that the

expectation of the future (log) earnings path is normalized to E(yt+n) = 0 for all n > 0.

Explosiveness is an unrealistic assumption in infinite horizon models. Hence, we assume that

the working life of the individual is finite and ends in period T . We model the impact of the

retirement period after the working life very crudely by assuming that the last period’s value

function is

VT (WT , YT ) = R · U((WT + YT )/R), (11)

i.e. the individuals distribute their final cash-at-hands equally over their remaining R years of

life without leaving any bequests and without any remaining debt. The length of the retirement

period is assumed to be deterministic and known.

Since we focus on the self-insurance motive of savings, we dropped both a subjective discount

factor (which would appear in front of the conditional expectation in the Bellman equation)

and an interest rate (which would appear in the budget constraint (10)). A discount factor,

representing impatience, would shift consumption towards the early periods in life. A positive
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Earnings dynamics model

Parameter Heterogeneity Unit root Explosive

ρ 0.80 1 1.02

σβ 0.02 0 0

ση 0.1 0.129 0.083

γ 2 2 2

T 40 40 40

R 15 15 15

Table 1: Parametrization of the three models of earnings dynamics

interest rate would give an incentive to postpone consumption in order to earn capital income

in addition to labour income. Both aspects distract from the main focus of our analysis and are

therefore ignored. Individuals with CRRA instantaneous utility and an earnings process that

might result with positive probability in earnings arbitrarily close to zero for the rest of their

working life, will decide not to get into debt (Zeldes 1989, Gourinchas and Parker 2002). Hence,

it is not necessary to explicitly model any liquidity constraints.

The optimal consumption behaviour cannot be derived in closed form but has to be computed

numerically.1 Table 1 shows the parametrizations of the three models (heterogeneity, unit root,

explosive). In order to isolate the effects of model assumptions on consumption behaviour the

parameters have to be chosen such that the earnings paths are comparable in terms of their

riskiness. The parameters are chosen such that the unconditional variance in the finite period of

working life, V ar(yT ), is the same in all models. Of course, the unconditional expected earnings

paths are constantly zero in all models. The conditional variances, given either β or some realized

earnings at the start of the working life, are different. So are the unconditional variances for

t < T .

The numerical solution of the dynamic optimization yields a policy function C∗
t (Wt, zt) re-

turning the optimal level of consumption in period t given current wealth Wt and earnings yt

(or, equivalently, zt). In the heterogeneous model, the value of β is assumed to be known to the

individual from the outset, see Guvenen (2007) for a heterogeneous model where individuals do

not know their β but learn about it by observing their own earnings path. The policy function

C∗
t (·, ·) and the earnings dynamics jointly determine the evolution of wealth and consumption

1See the appendix for details about the numerical solution.
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both for an individual and the total cohort (or population). The individual earnings, consump-

tion and wealth profiles are of course subject to random shocks (caused by ηt). For a large

cohort, average earnings, consumption and wealth are close to their expected paths since the

random shocks are independent from each other and thus average out.

Figure 3 depicts the average wealth paths for a cohort of size N = 5000 for the three models.

The solid line shows the evolution for the heterogeneous model, the dashed line for the unit root

model, and the dash-dotted line for the explosive model. Under all regimes, the wealth path is

strictly increasing over the entire working life and reaches its highest level when the retirement

period starts. The average level of wealth is highest in the unit root model, and lowest in the

explosive model.
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Figure 3: Average wealth paths for the heterogeneous model (solid line), the unit root model

(dashed), and the explosive model (dot-dashed)

The aggregate wealth paths do not reveal the substantial differences between individuals that

are due to different shock histories or, in the case of the heterogeneous model, to different slopes

in expected earnings. Figure 4 shows two typical individual earnings2 and consumption paths

for each model. The left panels show “unfortunate” individuals with negative slope coefficient

β or a series of negative shocks early in their working life. The panels on the right show the

corresponding profiles for “lucky” individuals.

The plots show that there is considerable variation in behaviour. Individuals with a negative

2For comparability, earnings are not shown in logarithms here.
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Figure 4: Individual earnings, consumption and wealth paths. The left panels show earnings

(solid lines) and consumption (dashed) for “unlucky” individuals, the right panels show “lucky”

individuals; the heterogeneous model is shown in the top row, the unit root model in the middle,

and the explosive model in the bottom row.

slope β (top left) know that their life-time earnings are low, they start saving immediately to keep

their level of consumption more or less constant. When they enter retirement, they have a wealth

stock that allows them to keep up their consumption over the retirement period. Individuals

with a positive slope (top right) behave as if they are liquidity constrained. Their consumption

is almost identical to earnings in the first half of their working life. Only then do they start to

12



save for retirement.

In the unit root case, the individuals face a large amount of earnings uncertainty. As a con-

sequence, individuals are not able to keep their consumption constant. They will react relatively

strongly to positive or negative shocks since each shock as a large impact on life-time earnings.

Both lucky and unlucky individuals (middle row, right and left) have an incentive to save early

in their working life to build up a wealth buffer.

In the explosive case, individuals behave similarly to the unit root case when they face

negative shocks. In contrast, a series of positive shocks will shift them onto a higher growth rate

path and hence decreases uncertainty, at least in the sense that future poverty becomes much

less likely. Therefore, as in the heterogeneous model, lucky individuals tend to behave almost as

if they are liquidity constrained.

Of course, the paths shown in figure 4 are just randomly drawn examples of lucky and unlucky

individuals. In order to compare how the distribution of consumption and wealth differs between

the three models we simulate a large number (N = 5000) of earnings paths over the entire

life cycle for each model (heterogeneous, unit root, and explosive) and compute the implied N

individual consumption and wealth paths.

In a stationary equilibrium, each cohort is populated by a fraction of 1/T of the total popu-

lation. Hence, pooling all (N × T ) simulated consumption values gives the time-invariant cross-

sectional distribution of consumption, and similarly for wealth. Figure 5 depicts the Lorenz

curves of consumption and wealth under each model. The consumption Lorenz curve of the het-

erogeneous model has least inequality, the unit root model implies the highest level of inequality.

The Lorenz curve of the explosive model is in between but much closer to the heterogeneous

model than to the unit root case.

As to wealth, there is no clear ordering since the Lorenz curves intersect. At the bottom

part of the wealth distribution, inequality is highest under the heterogeneous model and almost

identical under the other two models. For the richer part of the population, the heterogeneous

model implies the least inequality whereas, again, the unit root model implies the highest level

of inequality.

The results of this section suggest that the explosive model is not just a still riskier version

of the unit root model. On the contrary, a persistence parameter ρ > 1 implies micro and macro

effects that are similar to the heterogeneous model. We conclude that an empirical investigation

of earnings dynamics should take into account the possibility that ρ > 1. In the next section we

suggest to use panel unit root tests against explosiveness as a relatively robust tool to determine
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Figure 5: Cross-sectional Lorenz curves of consumption (left) and wealth (right)

the suitable earnings dynamics specification.

4 Panel tests for explosiveness

The application of unit root tests to panel data has attracted much attention in recent years. The

literature distinguishes two “generations” of panel unit root tests. First generation tests are based

on the assumption that individual time series are cross-sectionally independent. For instance,

Maddala and Wu (1999) applied a method of aggregating individual tests, which was originally

suggested by Fisher (1925). Doing so, they tested the joint null hypothesis that all individual

processes have a unit root against the alternative that at least one process is stationary. The

null hypothesis is rejected at level α if the test statistic, which combines the p-values of N ADF

tests, is larger than a given critical value. However, this aggregation method is restricted to test

statistics (and hence p-values) which are cross-sectionally independent. Further first generation

panel unit root tests were suggested by Levin, Lin and James Chu (2002) and Im, Pesaran and

Shin (2003).

For economic applications it is rather inappropriate to assume cross section units to be

independent as they are often contemporaneously correlated for a variety of reasons such as

common factors or spatial spillover effects. Numerous panel unit root tests have been developed

that allow for different forms of cross section dependence, such as Chang (2002), Phillips and
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Sul (2003), Bai and Ng (2004), Breitung and Das (2005) and Moon and Perron (2004).

Chang (2002) proposes a test based on a nonlinear instrumental variable estimation of the

common augmented Dickey-Fuller regression. With nonlinear transformations of lagged levels

used as instruments, she shows that individual ADF statistics are asymptotically independent.

The test statistic is defined as a standardized sum of the individual IV t-ratios. However, her

test was shown (see Im and Pesaran (2004)) to be valid only if the number of cross section units

N is fixed as T →∞.

Phillips and Sul (2003), Moon and Perron (2004) and Bai and Ng (2004) approach the problem

in a similar fashion. They make use of a residual factor model which takes into account cross

section dependence. After asymptotically removing the common factors, standard panel tests can

be applied to the transformed series. The approaches based on factor models are particularly

attractive if the number of cross section units (N) is large compared to the number of time

periods (T ).

Breitung and Das (2005) propose a robust version of the OLS Dickey-Fuller t-statistic which

still performs well if the number of time periods is less than the number of cross-sectional units.

As an alternative, they suggest a GLS approach obtained from an OLS estimation of a trans-

formed model. The GLS approach, however, is only feasible if T > N . Pesaran (2007) introduces

the cross section augmented Dickey-Fuller (CADF) test. It augments the standard ADF test with

the cross-section averages of both lagged levels and first differences of the individual series. First

generation unit root tests can then be applied to the results of the individual CADF tests (e.g.

Maddala and Wu (1999)).

All panel unit root tests outlined above are tests against stationarity; none of them tests

against explosiveness. In the literature, tests against explosiveness are only applied for the

detection of financial bubbles, and they are restricted to univariate time series data. Among

them are Bhargava (1986) and Phillips et al. (2011). Combining the p-value approach of Simes

(1986) and the p-values of univariate right-tailed unit root tests, we obtain a procedure to test

for explosiveness in panel data sets.

Our approach follows suggestions by Hanck (2013) who proposes a panel unit root test based

on Simes (1986) classical intersection test. Hanck sets up the global null hypothesis H0 that all

individual null hypotheses Hi,0, i = 1, ..., N are true. The method is easy to implement since it

only requires the p-values of N time series unit root tests. The p-values are ordered ascendingly

and compared to an increasing sequence of critical values. The panel null hypothesis is rejected

if at least one p-value is smaller than the corresponding critical value. Hanck’s method accounts
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for the multiple testing nature since it controls the Familywise Error Rate (FWER), i.e. the

probability of falsely rejecting at least one individual null hypothesis, at level α.

As a basis for our test procedure, we first rewrite our earnings model (1) and (2) as a first-

order panel autoregression. Let µih,t = E(yih,t) = αi + βihit be individual i’s expected earnings

in t. Then, our earnings model implies that

yih,t − µih,t = ρi(yih−1,t−1 − µih−1,t−1) + uih,t i = 1, . . . , N ; t = 1, . . . , T (12)

where T denotes the number of time series observations on each of the N individuals, and uih,t

is a stochastic process capturing the error terms with

uih,t = ηih,t + εih,t − ρiεih−1,t−1,

and therefore uih,t has an MA component. Before we continue with the panel case, we consider

the univariate unit root test against explosiveness, i.e. the null hypothesis H0 : ρi ≤ 1 against

H1 : ρi > 1. We employ the standard univariate Augmented Dickey-Fuller (ADF) test for each

time series. To decide which version of the ADF test to use, equation (12) is transformed into

∆yih,t = αi(1− ρi) + βi(hit + ρi − ρihit) + (ρi − 1)yih−1,t−1 + uih,t. (13)

Since the first two terms are linear in t, we find that the ADF test should be based on a regression

including both a constant and a trend. Therefore, the ADF test for individual i is based on the

regression

∆yih,t = γi + βihit + φiyih−1,t−1 +

Ki∑
k=1

∆yih−k,t−k + vih,t. (14)

with φi = ρi−1 and an appropriate γi. The additional lagged differences are included to capture

autocorrelations in the error term uih,t such that vih,t is uncorrelated. Since time series with an

MA component can be approximated by AR processes with a large number of lags, the number

of additional lagged differences Ki must not be set too low. Gustavsson and Österholm (2014)

suggest to use the information criterion BIC to determine the number of lags. In the appendix,

we show the BIC may fail to choose the correct number of lags in relatively short time series.

We set Ki = 3 which is large enough to pick up the autocorrelation of the error term, but still

small enough to ensure a sufficiently large number of observations.

The regression (14) does not only include a constant γi but also a trend βihit. The trend is

necessary to allow for diverging earnings profiles under the null hypothesis in case of stationarity,
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i.e. if ρi < 1. In the absence of a trend, ρi < 1 would imply a stationary time series around a

constant level.

As in ADF tests against stationarity, the test statistic in the test against explosiveness is

the t-statistic belonging to the regression coefficient φi in (14). Its distribution under the null

hypothesis is non-standard but tabulated. Since we need precise individual p-values even if they

are extremely small, we derived the distribution of the test statistic under the null hypothesis

by Monte-Carlo simulations with 1 million replications.

The global null hypothesis states that all N time series are either unit root processes or

stationary,

H0 : ρ1 ≤ 1, ρ2 ≤ 1, . . . , ρN ≤ 1.

The global null hypothesis is the intersection over N individual hypotheses, H0 =
⋂
i=1,...,N Hi,0

with Hi,0 : ρi ≤ 1. The alternative hypothesis states that at least one process is explosive.

This test setting is based on Simes’ intersection test which is a less conservative modification

of Bonferroni’s procedure for testing multiple hypotheses. The latter lacks power if the test

statistics are correlated. The modified version overcomes this problem and controls the FWER

even if the test statistics are not independent. If they happen to be independent, the type I error

probability is equal to α.

Let p(1) ≤ . . . ≤ p(N) denote the ordered p-values of the tests belonging to the individual

hypotheses Hi,0. Simes’ test rejects the global H0 at level α if

p(j) ≤ j ·
α

N
for some j = 1, . . . , N,

i.e., one compares p-values, sorted from most to least significant, to gradually increasing points

j · α/N . The global null hypothesis is rejected if there exists at least one p-value which is

sufficiently small.

The main advantage of this p-value combination approach is that we only require p-values

from univariate test statistics, even if these are not independent. At the same time, as found

by e.g. Maddala and Wu (1999), p-value combination tests are typically competitive in terms

of power and size to computationally much more demanding procedures. We employ standard

right-tailed Augmented Dickey-Fuller (ADF) tests to each time series separately. The p-values

are computed as the probabilities of obtaining larger test statistics than those actually resulting

from the ADF tests under the null hypothesis. Like other p-value combination approaches that

are based on transformed sums of p-values, Simes’ procedure is consistent as T → ∞ for any

N < ∞ (e.g. Hanck (2013)). Many other panel unit root tests (e.g. Im et al. (2003), Pesaran
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(2007)) further require that the fraction of rejected individual null hypotheses must not converge

to zero in order to be consistent. However, this is not necessary for tests which are based on the

combination of p-values like Simes’ test, since the global null is already rejected if one p-value is

sufficiently small.

5 Empirical applications

For our empirical analysis we use earnings data from the cross-national equivalent files of the

German SOEP (GSOEP) and the U.S. Panel Study of Income Dynamics (PSID). More precisely,

we employ the annual 1984-2012 waves of the GSOEP and the 1970-1997 waves of the PSID,

which hence comprise a maximum of 29 and 28 years of observations. For both data sets, we

restrict our analysis to individuals aged between 20 and 64 who worked at least 520 hours per

year. The maximum amount of hours worked is restricted to 5110, resulting in an average

number of hours worked of 1852 (that is approximately 35 hours per week). Moreover, we only

consider individuals having an hourly wage rate of larger than 3 Euros/h. Finally, we only take

into account individuals with at least 15 observations which, however, need not be consecutive.

Following these restrictions, we obtain a data set of size N = 4270 for the GSOEP and of size

N = 4472 in case of the PSID. Table 2 gives a brief descriptive overview over both data sets.

GSOEP PSID

number of observations 4270 4472

ø years with earnings obs. 20.0 19.8

ø age in first wave 29.3 24.9

ø age in last wave 53.8 50.4

Table 2: Data description

To eliminate possible time effects including inflation and a potential rise in the skill premium,

we run a cubic regression of log income on experience and a dummy variable for the level of

education (“less than high school”, “completed high school”, or “more than high school”). This

is the usual way to eliminate common effects affecting all individuals equally (Guvenen 2009).

The regressions are carried out separately for each wave in each of the data sets. Doing so,

experience is approximated in the usual way by age minus school years minus 6. The residuals

resulting from this regression constitute the earnings yih,t which are modelled in equation (1). To

test if explosiveness is evident in earnings, we make use of the panel unit root test suggested in
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the previous section. We start with the GSOEP data set. The first two columns in table 3 outline

the ascendingly ordered p-values of the univariate right-tailed unit root tests (left column) and

compares them to Simes’ cutoff-values (right column).3 The results show that the global null

hypothesis, that all time series are unit root or stationary processes, is rejected at the 5% level.

The same is true for the PSID data, where 29 p-values are below Simes’ cutoff-values. Figure

6 illustrates this result: The first 49 p-values for the GSOEP, and the first 29 p-values for the

PSID, are below Simes’ cutoff line, which is represented by the dashed line.

If we turn around the null and alternative hypotheses, the null hypothesis that all individuals

have non-stationary (i.e. unit root or explosive) processes is also rejected at the 5% significance

level. Simes’ cutoff yields 85 rejections (i.e. significantly stationary processes) for the PSID and

123 rejections for the GSOEP.

Apparently, while explosiveness is evident in a statistically significant manner in both data

sets, it does not play a quantitatively important role. We conclude that explosiveness cannot be

ruled out for a limited number of individuals. Hence, heterogeneity should not only be taken into

account with respect to the earnings profiles but also with respect to the persistence properties.

This finding is in line with other studies that stress the importance of heterogeneity.

6 Conclusion

In many countries earnings inequality has risen sharply in the last decades. Workers at the

bottom of the distribution lost, while the top earnings increased ever more. The idea that

the rich get richer and the poor get poorer, is formalized by a model with explosive earnings

dynamics. Individuals with earnings above a certain threshold experience higher growth rates

than individuals below that line. Explosive behaviour is ruled out by the two standard models

of earnings dynamics, the unit root model and the model with heterogeneous profiles.

We show that, in some respects, the explosive model may be observationally equivalent to the

heterogeneous model. In particular, the two models can have very similar variance-covariance

structures of earnings. If the true model is explosive the variances and covariances might therefore

look as if they belong to a model with profile heterogeneity, and vice versa. Taking into account

consumption or savings data does not necessarily solve the identification problem. We derive

the optimal consumption behaviour for the explosive model and compare it to the standard

3Some of the time series contain too many consecutive NAs such that we can not carry out unit root tests for

them. Excluding these time series reduces the number of individuals to N = 4061.
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GSOEP PSID

p-values Simes’ cutoff p-values Simes’ cutoff

p(1) 0.000000 0.000012 0.000000 0.000012

p(2) 0.000000 0.000025 0.000000 0.000024

p(3) 0.000000 0.000037 0.000003 0.000035

p(4) 0.000000 0.000049 0.000013 0.000047
...

...
...

...
...

p(12) 0.000004 0.000148 0.000071 0.000141

p(13) 0.000006 0.000160 0.000077 0.000153

p(14) 0.000014 0.000172 0.000087 0.000165
...

...
...

...
...

p(28) 0.000188 0.000345 0.000293 0.000329

p(29) 0.000194 0.000357 0.000321 0.000341

p(30) 0.000201 0.000369 0.000389 0.000353

p(31) 0.000226 0.000382 0.000449 0.000365
...

...
...

...
...

p(48) 0.000590 0.000591 0.001081 0.000565

p(49) 0.000597 0.000603 0.001081 0.000576

p(50) 0.000723 0.000616 0.001084 0.000588

p(51) 0.000724 0.000628 0.001087 0.000600

p(52) 0.000794 0.000640 0.001099 0.000612

Nnew 4061 4251

Table 3: First sorted p-values and Simes’ cutoff values
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Figure 6: First sorted p-values compared to Simes’ cutoff line, upper panel: GSOEP, lower panel:

PSID
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models. It turns out that individuals facing explosive earnings dynamics behave in a similar

way as individuals facing heterogeneous profiles. Moreover, the cross-sectional distribution of

consumption and wealth under the explosive model is closer to the heterogeneous case than to

the unit root case. Hence, identification based on a structural model is difficult.

A straightforward method to distinguish between explosive and non-explosive (i.e. stationary

or unit root) dynamics is a panel unit root test against explosiveness. We suggest a procedure

based on Simes’ (1986) intersection test. The global null hypothesis states that all individuals

have either stationary earnings processes or unit root processes. The test procedure is illustrated

for U.S. and German earnings panel data ranging over almost 30 years. We find that the null

hypothesis can be rejected at usual significance levels, but the number of significantly explosive

earnings profiles is small.

Our findings support other studies that stress the importance of heterogeneity for models

of earnings dynamics. Heterogeneity should not only be implemented in terms of the expected

earnings profile, but, perhaps even more important, also in regard to the persistence properties

such that both mean-reverting, unit root, and explosive processes are present.
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A Numerical solution of dynamic optimization

There are two state variables: the wealth level Wt and the permanent shock zt. All parameters

(β, γ, ρ, ση) are assumed to be known to the individual. Hence, it is also possible to define

earnings Yt or log-earnings yt rather than zt as the second state variable. Below we use Yt as the

second state variable to keep the notation simple. The stochastic dynamic optimization problem

(9) with constraint (10) is solved by backward recursion. In the last period T the value function

is given by (11) which is completely specified for given R and γ.

As noted by Zeldes (1989) and others, it is possible to merge the state variables Wt and

Yt into their ratio Wt/Yt and thus reduce the number of states from 2 to 1 which makes the

numerical computations substantially easier. Unfortunately, this method hinges on the unit root

property, it does not work once explosiveness is taken into account.

The value function is numerically represented by a bivariate grid over Wt with nW = 42

equidistant points ranging over the interval [0.001, 15], and Yt with nY /2 = 20 equidistant points

over the interval [0.0001, 0.5] followed by another 20 equidistant points over [1, 40],

ṼT (W̃i, Ỹj), i = 1, . . . , nW , j = 1, . . . , nY

where W̃i and Ỹj are the grid points.

For periods t = T − 1, T − 2, . . . , 1 the value function and the optimal consumption level are

found by a golden section search over consumption Ct. For a given value of Ct the maximand

U(Ct) +EtVt+1(Wt+1, Yt+1) is calculated as follows. Since the future level of wealth Wt+1 solely

depends on the nonstochastic variables Wt, Ct and Yt the conditional expectation is only relevant

for future earnings. We compute the conditional expectation of next periods value function, given

W̃i, Ỹj and Ct, by Gaussian Hermite quadrature (with 26 points, so that even very extreme

movements of almost 9 standard deviations are taken into account). Let η̃1, . . . , η̃26 denote the

grid points and ω1, . . . , ω26 their weights. For i = 1, . . . , nW , j = 1, . . . , nY and k = 1, . . . , 26,

next periods earnings levels are

Ỹt+1,i,j,k = exp(ρ log(Ỹj) + η̃k + (1− ρ)tβ + β)

and next periods wealth levels are

W̃t+1,i,j = W̃i + Ỹj − Ct.

Since next periods earnings and wealth levels are, in general, not located on the grid points we

need to interpolate and extrapolate. As the number of periods is rather large (T = 40), even
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small approximation errors in late periods will accumulate and the value function approximation

for early periods can become very poor. We transform the value function by

Vt+1(W̃ , Ỹ ) = (−Vt+1(W̃ , Ỹ ))−ρ

in order to reduce the amount of nonlinearity and approximate the transformed value function

by bilinear interpolation and extrapolation. After transforming back we obtain

Ṽt+1,i,j,k = Vt+1(W̃t+1,i,j , Ỹt+1,i,j,k)

and the conditional expectation is computed as
∑26
k=1 ωkṼt+1,i,j,k for all i and j. It is now

straightforward to optimise U(Ct) + EtVt+1(Wt+1, Yt+1) over Ct for all i and j. The maximum

is the value of the value function Vt(W̃i, Ỹj). The optimal consumption level C∗
t (W̃i, Ỹj) is also

recorded.

B Lag order determination for the ADF test

The panel test against explosiveness is based on N univariate ADF tests. The number of lags Ki

to be included in regression (14) can be determined by the Bayesian (or Schwarz) information

criterion (Gustavsson and Österholm 2014). However, if there are measurement errors, the BIC

does not, in general, choose a sufficiently large lag order as can be demonstrated by means of a

simple Monte-Carlo simulation.

Figure 7 (solid line) shows the distribution function of the ADF test statistic (with constant

and trend) under a unit root when there is no measurement error. The time series is generated

as yt = zt + t with

zt = zt−1 + ηt, t = 1, . . . , 50

where ηt ∼ N(0, 1) is white noise and z0 = 0. The number of lags to be included is chosen by the

BIC (of course, the correct number is 0). The number of Monte-Carlo replications is R = 10000.

The dashed line in figure 7 depicts the distribution function of the ADF test statistics if white

noise measurement error is added to the time series,

yt = zt + t+ εt

where εt ∼ N(0, 1). Measurement error leads to an MA component in the first differences of yt.

The number of lags has again been selected by the BIC. Apparently, the distribution is shifted

to the left and does not equal the null distribution (solid line). We conclude that the BIC does
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Figure 7: Distribution function of the ADF test statistic; solid line: distribution under a unit

root without measurement error and lag order determined by BIC; dashed line: distribution

with measurement error and lag order determined by BIC; dotted-dashed line: distribution with

measurement error and lag order set to 3.

not succeed in selecting the correct lag order. The same result holds for the Akaike information

criterion AIC (not shown).

If we set the number of lags to Ki = 3 the resulting distribution of the test statistic is shown by

the dotted-dashed line in figure 7. Apparently, it virtually equals the true null distribution (solid

line). In our empirical application we therefore set the lag order to Ki = 3 for all individuals.
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