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Abstract

This paper formally establishes a new forecast combination approach, which is based

on VAR modeling of the forecast errors resulting from alternative forecast models. We

apply our approach to volatility forecasting by combining several structural time series
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1 Introduction

Since the seminal paper by Bates and Granger (1969), the combination of alternative

forecast models has become an important and active field of research, but with many

issues remaining unresolved. In particular, problems arising from substantial estima-

tion errors and the presence of structural breaks have encouraged many authors to

formulate a plethora of alternative forecast combination schemes (see Timmermann,

2006, for an in-depth survey).

In this paper, we propose a new and intuitive forecast combination approach, which

interrelates the forecast errors of alternative forecast models within a Vector AutoRe-

gressive (VAR) framework. In contrast to the existing forecast combination schemes,

our approach does not merge alternative multiple forecasts into a single newly com-

bined forecast. Instead, our methodology attempts to reduce the forecast errors of

each single forecast model involved, by exploiting the interrelationships between the

forecast errors of all forecast models under consideration.

In an empirical study, we apply our new approach to volatility forecasting, by explic-

itly interrelating the errors from realized and implied volatility forecasts, an important

issue in the valuation of financial and derivative contracts (Andersen et al., 2003; Atak

and Kapetanios, 2013). Using a multi-currency data set, we show that our forecast

combination scheme performs convincingly with respect to in-sample, and, most no-

tably, to out-of-sample forecast comparisons with alternative forecasting procedures.

Section 2 formally establishes our new forecasting procedure, while Section 3 shows

how to apply it to forecasting realized volatility, using implied volatility measurements.

Section 4 presents the empirical results and Section 5 concludes.

2 Vector Autoregressive Forecast Error Combina-

tion (VAFEC) approach

For t = 0,±1,±2, . . . we consider the univariate time-series variable yt and for h > 0,

we denote a forecast of yt+h, based on information available at date t, by ŷt+h|t. We

assume given M alternative forecast models and, associated with each model, the

corresponding forecasts ŷt+h|t,1, . . . , ŷt+h|t,M , which we collect in the (M × 1) vector
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ŷt+h|t = (ŷt+h|t,1, . . . , ŷt+h|t,M)′. The information set at date t, Ft, consists of (a) these

M forecasts, (b) the entire history of these M forecasts, and (c) the entire history of

our time-series variable, i.e. Ft = {. . . , ŷt−1+h|t−1, ŷt+h|t, . . . , yt−1, yt}. Furthermore,

we collect the forecast errors associated with our forecast models, et+h|t,i = yt+h−ŷt+h|t,i

for i = 1, . . . ,M , in the (M × 1) vector et+h|t = (et+h|t,1, . . . , et+h|t,M)′.

In order to contrast our new approach with the existing literature, we briefly review

the general parametric forecast combination approach (see, inter alia, Timmermann,

2006), which essentially consists of mapping the M forecasts collected in ŷt+h|t to the

single new forecast ŷ comb

t+h|t . Denoting the (M × 1) vector of combination weights by

ωt+h|t = (ωt+h|t,1, . . . , ωt+h|t,M)′, we may represent the forecast combination itself and

the corresponding forecast error via the real-valued vector function g : RM → R as

ŷ comb

t+h|t = g(ŷt+h|t;ωt+h|t) and ecomb

t+h|t = yt+h − ŷ comb

t+h|t . (1)

The optimal weights ω∗
t+h|t = (ω∗

t+h|t,1, . . . , ω
∗
t+h|t,M)′ of the forecast combination, sub-

ject to the mean-squared-error (MSE) loss function, are given by the solution to the

minimization problem

ω∗
t+h|t = arg min

ωt+h|t
E
{[

ecomb

t+h|t(ωt+h|t)
]2 |Ft

}
with E(·|·) denoting the conditional expectation operator. Analytically closed-form

formulae for the optimal weights ω∗
t+h|t, subject to the MSE loss function, are available

in the literature and typically also include an additional constant weight ωt+h|t,0 in the

above minimization problem, in order to account for potentially biased forecast errors

(Timmermann, 2006).

Our new forecasting approach rests on the assumption that the forecast error vector

et+h|t is governed by a covariance-stationary process. Following Lütkepohl (2005), we

can thus model the dynamics of the forecast errors as the VAR(p) process

et+h|t = ν +A1et+h−1|t−1 + . . .+Apet+h−p|t−p + ẽt+h|t, (2)

where ν = (ν1, . . . , νM)′ represents an (M × 1) vector of constants, A1, . . . ,Ap denote

(M×M) parameter matrices and ẽt+h|t represents an (M×1) independent white noise
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process. Denoting the ith row vector of the matrix Ak (for k = 1, . . . , p) by Ak,i, we

obtain the optimal weights (parameter estimates) from Eq. (2), under the MSE loss

function, as the solution to the M simultaneous minimization problems

(
ν∗,A∗

1, . . . ,A
∗
p

)
= arg min

ν,A1,...,Ap

E
{[

ẽt+h|t,i(νi,A1,i, . . . ,Ap,i)
]2 |Ft

}
for i = 1, . . .M.

(3)

Since Eq. (2) represents a standard VAR(p) model, the optimal weights computed

from the minimization problems in Eq. (3) coincide with the multivariate least squares

estimator, closed-form expressions of which are given, inter alia, in Lütkepohl (2006,

pp. 69-72). Owing to our VAR(p) modeling of the forecast errors, we refer to our

forecasting approach as the Vector Autoregressive Forecast Error Combination of order

p [in symbols: VAFEC(p)]. In view of Eq. (3), it is clear that the VAFEC approach

minimizes the forecast error variances of all M forecast models under consideration:

E
{[

ẽt+h|t,i(ν
∗
i ,A

∗
1,i, . . . ,A

∗
p,i)

]2 |Ft

}
≤ E

{
e2t+h|t,i|Ft

}
for i = 1, . . .M. (4)

Finally, we establish an explicit forecasting formula within our VAFEC framework.

Our forecasting formula arises from adding the lagged VAFEC errors obtained from

the minimization problem (3) to the initial M forecasts collected in the vector ŷt+h|t.

To present a closed-form expression, we denote the (M×M) identity matrix by IM and

the (M ×M) matrix consisting of zeros by 0M . Furthermore, we define the (Mp× 1)

vectors

Et+h|t ≡

 et+h|t
...

et+h−p+1|t−p+1

 , Ẽt+h|t ≡


ẽt+h|t
0
...
0

 , N ≡


ν
0
...
0

 ,

the (Mp×Mp) matrix

A ≡


A1 A2 . . . Ap−1 Ap

IM 0M . . . 0M 0M

0M IM . . . 0M 0M
...

. . .
...

...
0M 0M . . . IM 0M

 ,
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and rewrite the VAR(p) process from Eq. (2) in VAR(1) form:

Et+h|t = N+AEt+h−1|t−1 + Ẽt+h|t. (5)

By recursive substitution, we obtain the conditional expectation

E
{
Et+h|t|Ft

}
=

[
IMp +A+A2 + . . .+Ah−1

]
N+AhEt|t−h, (6)

which is the minimum MSE predictor of the forecast-error process as specified in

Eqs. (2) and (5). As in the vector Et+h|t, we collect the p initial (M × 1) forecast

vectors ŷt+h|t, . . . , ŷt+h−p+1|t−p+1 in the (Mp × 1) vector Ŷt+h|t, and, analogously, de-

note the corresponding (Mp× 1) vector of our new forecasts derived from the VAFEC

approach by
˜̂
Yt+h|t, that is

Ŷt+h|t ≡

 ŷt+h|t
...

ŷt+h−p+1|t−p+1

 and
˜̂
Yt+h|t ≡

 ˜̂yt+h|t
...˜̂yt+h−p+1|t−p+1

 .

Then, using the minimum MSE predictor of the forecast-error process from Eq. (6),

we express our new forecasts as

˜̂
Yt+h|t = Ŷt+h|t + E

{
Et+h|t|Ft

}
= Ŷt+h|t +

[
IMp +A+A2 + . . .+Ah−1

]
N+AhEt|t−h. (7)

In order to extract the relevantM new VAFEC forecasts ˜̂yt+h|t = (˜̂yt+h|t,1, . . . ,
˜̂yt+h|t,M)′

from
˜̂
Yt+h|t, we premultiply the (M ×Mp) matrix J =

[
IM 0M . . . 0M

]
to both

sides of Eq. (7):

˜̂yt+h|t = J
(
Ŷt+h|t +

[
IMp +A+A2 + . . .+Ah−1

]
N+AhEt|t−h

)
= ŷt+h|t + J

[
IMp +A+A2 + . . .+Ah−1

]
N+ JAhEt|t−h. (8)

Replacing the theoretical parameter vector ν and the matrix A in Eq. (8) with their

multivariate least squares estimates ν∗ andA∗, we obtain our explicit VAFEC forecasts.
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3 VAFEC volatility forecasting using implied volatil-

ity

In order to demonstrate how to apply our VAFEC approach formally to volatility fore-

casting using implied volatility, we consider the following purely illustrative example.

Let yt constitute the realized volatility of a financial return variable xt at date t, where

realized volatility is defined as the square-root of the sum of n (equidistantly observed)

squared intraday returns xt:i (i = 1, . . . , n):

yt =

√√√√ n∑
i=1

x2
t:i.

In what follows, we use realized volatility as a proxy for the true latent volatility σt,

and, from now on, frequently use the phrases ’realized volatility’ and ’true volatility’

interchangeably.

Let ŷt+1|t ≡ ŷt+1|t,1 denote the 1-step realized-volatility forecast from any arbitrary

structural time-series model (e.g. from a GARCH model) for date t + 1, using only

information up to date t. Next, consider the implied volatility of the financial return

defined as that value of return volatility, for which the theoretical return-option price

equals the observed market price of the option. Let IVt denote the implied volatility

measured at date t and regard implied volatility as our second realized-volatility fore-

cast model, that is IVt ≡ ŷt+1|t,2. In line with Eq. (2), the VAFEC(1) specification

under this setting is formally given by(
yt+1 − ŷt+1|t
yt+1 − IVt

)
=

(
ν1
ν2

)
+

(
a11 a12
a21 a22

)(
yt − ŷt|t−1

yt − IVt−1

)
+

(
ẽt+1|t,1
ẽt+1|t,2

)
,

where aij (i, j = 1, 2) denote the parameters of the VAR(1) coefficient matrix A ≡ A1.

However, since we may want to exploit all available information at date t + 1, it

appears straightforward to shift the values of implied volatility one period ahead, so

as to yield the slightly more informative specification(
yt+1 − ŷt+1|t
yt+1 − IVt+1

)
=

(
ν1
ν2

)
+

(
a11 a12
a21 a22

)(
yt − ŷt|t−1

yt − IVt

)
+

(
ẽt+1|t,1
ẽt+1|t,2

)
. (9)
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Our higher-order VAFEC specifications in Section 4 make systematic use of this time

shift in the implied volatility measurements.

In our subsequent empirical application, we separately combine three distinct struc-

tural time-series models with implied volatility via our VAFEC approach, in order

to forecast realized volatility. The first model is the standard GARCH(1, 1) process

(Bollerslev, 1986) that specifies the financial return xt as

xt = σt · ϵt, (10)

σ2
t = α0 + α1 · x2

t−1 + β1 · σ2
t−1, (11)

where ϵt constitutes an i.i.d. process of standard normal variables [ϵt ∼ NID(0, 1)] and

with parameters α0 > 0, α1, β1 ≥ 0. Assuming α1 + β1 < 1 (wide-sense stationarity),

we use the square-root of the 1-step-ahead conditional-variance forecasts σ̂2
t+1|t from

the estimated GARCH(1, 1) models as the 1-step-ahead forecasts of realized volatility

(that is we set ŷt+1|t,GARCH ≡ σ̂t+1|t).

In contrast to the GARCH(1, 1) process, the other two time-series models used

in Section 4 directly specify the dynamics of the realized volatility process yt. The

Heterogeneous-Auto-Regressive (HAR) model (Corsi, 2009) specifies realized volatility

as

yt = α0 + α1 · yt−1 + α2 · yw

t−1 + α3 · ym

t−1 + ϵt, (12)

where

yw

t−1 ≡
1

5

5∑
i=1

yt−i, ym

t−1 ≡
1

22

22∑
i=1

yt−i,

ϵt ∼ NID(0, σ2) and with parameters α0, . . . , α3. The (AutoRegressive, Fractionally

Integrated, MovingAverage) ARFIMA(1, d, 1) model (see Granger and Joyeux, 1980;

Hosking, 1981) uses the lag operator L and the unconditional expectation E(·) to write

the realized volatility process yt as

(1− ϕL)(1− L)d [yt − E(yt)] = (1 + θL)ϵt, (13)

where ϵt ∼ NID(0, σ2) and with parameters d, ϕ, θ restricted by 0 < d < 0.5 and

|ϕ|, |θ| < 1 (stationarity and invertibility conditions). Via the conditional expectations
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of the right-hand sides of the Eqs. (12) and (13), it is straightforward to establish

the optimal 1-step ahead forecasts ŷt+1|t,HAR and ŷt+1|t,ARFIMA subject to the MSE loss

function (see, inter alia, Corsi 2009; Doornik and Ooms, 2004).

4 Empirical application

4.1 Data

We analyze the following 8 currencies vis-à-vis the US dollar between January 1, 2004

and December 31, 2011: the euro (EUR), the British pound (GBP), the Japanese

yen (JPY), the Canadian (CAD) and the New Zealand dollar (NZD), the Swiss franc

(CHF), and the Norwegian (NOK) and the Swedish kroner (SEK). All exchange rates,

provided by the Dukascopy Bank SA, were recorded at a 5-minute frequency (288

observations per 24-hours trading day). For each exchange rate, we use daily at-the-

money implied volatilities with one week to maturity, as provided by Thompson Reuters

Datastream. All econometric procedures were implemented within the software package

R, using the sub-packages ’rugarch’ and ’MTS’.

4.2 In-sample analysis

We demonstrate that the forecast errors from the models embedded in our VAFEC

combination approach interrelate significantly with each other. We focus on the US-

dollar/euro exchange rate.1

Our first learning sample covers the period between January 1, 2004 and December

31, 2007, from which we initially estimated the parameters for the GARCH, HAR and

ARFIMA models. We implemented a rolling time window between January 1, 2008

and December 31, 2011, from which we (a) sequentially updated the parameter esti-

mates, and (b) computed the 1-step-ahead forecasts ŷt+1|t,GARCH, ŷt+1|t,HAR, ŷt+1|t,ARFIMA

and the forecast errors et+1|t,GARCH, et+1|t,HAR, et+1|t,ARFIMA. We then combined each sep-

arate forecast-error series with the (time-shifted) implied volatility (IV) measurement

errors and, in line with Eq. (2), fitted VAR(3) specifications to each of these three

1The in-sample results for the other 7 currencies are qualitatively similar and available upon re-
quest.

7



combinations, using the data between January 1, 2008 and December 31, 2011.2

Table 1 about here

Table 1 displays the VAR(3) estimation results for the three respective combinations

VAFEC(3)-GARCH-IV, VAFEC(3)-HAR-IV, VAFEC(3)-ARFIMA-IV. The relevant

coefficients governing the interrelationships between the forecast errors and the IV

measurement errors are A1,12,A1,21,A2,12,A2,21,A3,12,A3,21. Except for the threeA2,12

coefficients, all interrelating parameters are significant at least at the 5% level across

all combinations. This essentially supports our VAFEC approach.

4.3 Out-of-sample analysis

We computed our VAFEC(3) out-of-sample forecasts with a 2-step procedure. (1) We

generated the 1-step-ahead forecasts and forecast errors ŷt+1|t,GARCH, ŷt+1|t,HAR,

ŷt+1|t,ARFIMA, et+1|t,GARCH, et+1|t,HAR, et+1|t,ARFIMA, as in our in-sample analysis. (2) We

generated the 1-step-ahead VAFEC(3)-GARCH-IV, VAFEC(3)-HAR-IV, VAFEC(3)-

ARFIMA-IV forecasts by (a) estimating the VAR(3) coefficients over the period be-

tween January 1, 2008 and December 31, 2009, and (b) by sequentially updating the

VAR(3) coefficients during the period between January 1, 2010 and December 31,

2011. Using these updated estimation results from our rolling window, we generated

our ultimate out-of-sample VAFEC(3)-GARCH-IV, VAFEC(3)-HAR-IV, VAFEC(3)-

ARFIMA-IV forecasts according to Eq. (7).

Table 2 about here

We assess the forecasting performance of our models and model combinations in

terms of the (sampling) MSEs. Table 2 displays the MSEs of the out-of-sample forecast

from the GARCH, HAR, ARFIMA models and the implied volatility measurements

(IV). While the HAR forecasts perform best for 7 out of 8 currencies, the GARCH

forecasts perform unambiguously worst for all currencies. The ARFIMA and the IV

2We used the standard criteria to select our lag length p = 3.
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forecasts take intermediate ranks, with the ARFIMA forecasts slightly outperforming

the IV measurements for 4 out of 7 currencies.

Table 3 about here

Table 3 displays the out-of-sample forecasting performance of the three combi-

nations VAFEC(3)-GARCH-IV, VAFEC(3)-HAR-IV, VAFEC(3)-ARFIMA-IV. All

MSEs in Table 3 are expressed relative to the MSEs of the forecasts from the cor-

responding (uncombined) time series models.3 The MSEs of the three VAFEC(3)-

combination forecasts are all less than 1. Thus, for all currencies, the forecasts from

each VAFEC(3) combination outperform the respective forecasts from the (uncom-

bined) GARCH, HAR, ARFIMA models. The direct comparison of the MSEs from

the VAFEC(3) combinations with the MSEs from column ’IV’ in Table 3 also reveals

the unambiguous superiority of the VAFEC(3)-combination forecasts over the implied

volatility forecasts.

Finally, we compare the out-of-sample forecasting performance of our VAFEC(3)

combinations with an alternative forecast combination method, namely with the (equally

weighted) averages between the (uncombined) time-series and the implied volatility

forecasts (denoted by 1
2
· (ŷt+1|t,GARCH + IVt), and so forth in Table 3). Our VAFEC(3)-

GARCH-IV and VAFEC(3)-ARFIMA-IV combination forecasts clearly outperform the

corresponding forecast averages for all currencies. Except for the British pound (GBP)

and the Norwegian kroner (NOK), our VAFEC(3)-HAR-IV combination forecasts also

outperform the HAR-IV forecast averages. Overall, our VAFEC(3) combination fore-

casts outperform the forecast average combinations in 22 out of the 24 cases considered

in this multi-currency analysis.

5 Concluding remarks

This paper formally establishes a new forecast combination approach that reduces the

forecast errors of any single involved forecast model. This is accomplished by VAR

3More precisely, in the upper (middle/lower) block, all MSEs were divided by the currency-specific
MSEs from the (uncombined) GARCH (HAR/ARFIMA) forecasts.
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modeling of the dynamic interrelationships between all model-specific forecast errors.

The theoretical properties of the VAR process ensure that the (theoretical) MSEs of

our improved forecast errors cannot exceed the MSEs of the original forecast error

processes [see Eq. (4)].

In a multi-currency analysis, we apply our new combination approach to forecasting

realized volatility, using implied volatility measurements and three alternative time-

series forecasting models. The in-sample and out-of-sample results of our new approach

unambiguously reflect (a) the empirical relevance of our new approach, and (b) its

forecasting superiority over the uncombined and an average-combination forecast.

In line with the results presented in Pong et al. (2004), our empirical study focuses

on the analysis of (short-term) 1-step-ahead forecasting performance. A systematic and

extensive investigation of multiple-step-ahead volatility forecasting performance should

be considered in future research. Overall, we believe that our new forecast combination

approach offers a promising complement to the existing forecasting literature.
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Tables

Table 1
VAR(3) parameter estimates from the VAFEC(3) combinations

for the US-dollar/euro exchange rate

ν1 A1,11 A1,12 A2,11 A2,12 A3,11 A3,12

ν2 A1,21 A1,22 A2,21 A2,22 A3,21 A3,22

VAFEC(3)-GARCH-IV combination:

GARCH −0.022∗∗∗ 1.473∗∗∗ 0.613∗∗∗ −0.236 −0.175 −0.194∗ −0.326∗∗∗

(0.006) (0.112) (0.105) (0.148) (0.139) (0.114) (0.107)

IV −0.026∗∗∗ −1.124∗∗∗ −0.257∗∗ 0.362∗∗ 0.313∗∗ 0.248∗∗ 0.379∗∗

(0.006) (0.119) (0.111) (0.153) (0.144) (0.123) (0.115)

VAFEC(3)-HAR-IV combination:

HAR −0.015∗∗∗ 1.087∗∗∗ 0.512∗∗∗ 0.023 0.034 −0.232∗∗∗ −0.298∗∗∗

(0.005) (0.105) (0.097) (0.116) (0.107) (0.068) (0.063)

IV −0.021∗∗∗ −1.142∗∗∗ −0.157 0.478∗∗∗ 0.303∗∗ 0.277∗∗∗ 0.365∗∗∗

(0.005) (0.113) (0.104) (0.150) (0.138) (0.100) (0.092)

VAFEC(3)-ARFIMA-IV combination:

ARFIMA −0.013∗∗ 1.440∗∗∗ 0.600∗∗∗ −0.231 −0.073 −0.340∗∗∗ −0.444∗∗∗

(0.006) (0.116) (0.107) (0.151) (0.139) (0.111) (0.103)

IV −0.018∗∗∗ −1.227∗∗∗ −0.255∗∗ 0.472∗∗∗ 0.287∗ 0.414∗∗∗ 0.530∗∗∗

(0.005) (0.124) (0.115) (0.167) (0.155) (0.129) (0.120)

Note: Standard errors are in parentheses. Ak,ij (for k = 1, . . . , 3 and i, j = 1, 2) denotes the parameters
of the VAR(3) coefficient matrix Ak from Eq. (2). ∗, ∗∗ and ∗∗∗ denote significance at 10, 5, and 1%
levels, respectively.



Table 2
MSEs of the out-of-sample forecasts from the (uncombined) time series models

GARCH HAR ARFIMA IV
EUR 0.025 0.016 0.020 0.020
GBP 0.026 0.015 0.015 0.013
JPY 0.068 0.052 0.053 0.054
CAD 0.036 0.021 0.024 0.022
CHF 0.061 0.035 0.039 0.038
NOK 0.056 0.029 0.034 0.037
NZD 0.074 0.042 0.042 0.050
SEK 0.050 0.027 0.032 0.033



Table 3
MSE comparisons between out-of-sample forecast errors

MSE comparisons relative to the (uncombined) GARCH model:

GARCH IV VAFEC(3)-GARCH-IV 1
2
· (ŷt+1|t,GARCH + IVt)

EUR 1.000 0.796 0.516 0.818
GBP 1.000 0.491 0.482 0.617
JPY 1.000 0.784 0.689 0.826
CAD 1.000 0.617 0.507 0.755
CHF 1.000 0.618 0.549 0.747
NOK 1.000 0.650 0.488 0.770
NZD 1.000 0.671 0.532 0.775
SEK 1.000 0.657 0.455 0.772

MSE comparisons relative to the (uncombined) HAR model:

HAR IV VAFEC(3)-HAR-IV 1
2
· (ŷt+1|t,HAR + IVt)

EUR 1.000 1.252 0.853 1.006
GBP 1.000 0.884 0.857 0.857
JPY 1.000 1.027 0.923 0.947
CAD 1.000 1.038 0.857 0.916
CHF 1.000 1.068 0.942 0.963
NOK 1.000 1.259 0.973 0.971
NZD 1.000 1.183 0.949 0.967
SEK 1.000 1.212 0.879 0.969

MSE comparisons relative to the (uncombined) ARFIMA model:

ARFIMA IV VAFEC(3)-ARFIMA-IV 1
2
· (ŷt+1|t,ARFIMA + IVt)

EUR 1.000 1.016 0.686 0.943
GBP 1.000 0.861 0.847 0.854
JPY 1.000 1.018 0.917 0.972
CAD 1.000 0.919 0.743 0.884
CHF 1.000 0.961 0.840 0.919
NOK 1.000 1.087 0.846 0.943
NZD 1.000 1.174 0.936 0.994
SEK 1.000 1.029 0.747 0.938
Note: All MSEs in the upper (middle/lower) block were divided by the currency-specific
MSEs from the (uncombined) GARCH (HAR/ARFIMA) forecasts.
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