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1 Introduction

During the financial crisis 2008/2009 and the Greek crisis 2009/2010 governments in many

countries imposed limitations on short selling activities to displace short sellers and prevent

further declines in stock prices. While governments, regulators, and the media blame short

sellers for reinforcing stock market downturns, academic research mostly finds distortions of

short selling restrictions on market efficiency, liquidity and pricing. Although there is no recent

survey available, Bris et al. (2007) provide many of the most important references on the topic.

More recent treatments on this issue (Beber et al., 2015; Boehmer et al., 2015), do not change

the conclusion of the destroying effects of short selling bans on market quality.

Surprisingly little is known about the impact of short selling restrictions on stock returns

volatility. As an exception, Bohl et al. (2012) investigate Taiwanese stock market data applying

asymmetric GARCH models adjusted by a dummy variable and a Markov switching GARCH

model. Their empirical evidence shows that short selling restrictions raise stock returns volatil-

ity. The increase in volatility can be explained by the limited ability of investors to find the

fundamental price. Consequently, short selling bans contribute to a destabilization of stock

prices during periods of market downturns and even exaggerate stock price declines. Hence,

from a regulatory point of view short selling bans are counterproductive.

Taiwan’s relatively long period of short selling bans enables Bohl et al. (2012) to uncover

the impact of short selling restrictions on stock returns volatility. However, the bulk of the

literature relies on cross-sectional regressions and event type studies given the short periods of

short selling bans regulatory institutions mostly impose. Germany provides another sensible

testing ground for a time series analysis of short selling bans’ impact on stock returns volatility

because short selling bans were established from September 2008 to January 2010 and then

reinstalled from May 2010 onwards on stocks of financial enterprises. For this period we apply

two variants of an asymmetric Markov switching GARCH model as developed in Reher and

Wilfling (2016).

Our econometric technique has several advantages over the dummy variable approaches
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and the standard Markov-switching models routinely used in the literature. Dummy variable

approaches try to capture structural breaks in the volatility process of stock returns by exoge-

nously setting the point in time when the structural break is assumed to have taken place. In

our empirical application a natural date for this break appears to be the start of the short sell-

ing ban under consideration. However, as Bohl et al. (2016) argue in a recent study, this simple

strategy of fixing the break point date can be challenged, since it imposes an abrupt one-step

and irreversible change in the volatility process and completely neglects investors’ forward-

looking expectations about the potential future imposition of the short selling ban, which

may affect volatility. Therefore, in order to capture any kind of gradual adjustment from one

volatility regime to another, Bohl et al. (2016) advocate the use of a Markov-switching GARCH

framework, which endogenously models switches between alternative volatility regimes without

imposing a priori a predetermined sequence of volatility regime change.

Compared to the conventional Markov-switching GARCH models used in the previous lit-

erature, the Reher and Wilfling (2016) framework employed in our empirical analysis below is

advantageous for two reasons. (1) This Markov-switching GARCH model is able to capture any

type of regime-specific asymmetric volatility effects, and (2), it enables us to estimate alterna-

tive GARCH equations of entirely different functional forms across the volatility regimes (for

example an EGARCH specification in the first volatility regime and a TGARCH specification

in the second).

The remainder of the paper is structured as follows. Section 2 considers the Markov-

switching GARCH framework. Section 3 provides the data and the empirical findings, while

Section 4 concludes.

2 A Markov-switching GARCH framework

In this section we specify our econometric model. Since we aim to investigate as to what extent

the restrictions of naked short sales may have a stabilizing impact on the stock market, we focus

on measuring stock returns volatility before, during, and after restriction periods. Movements
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of volatility through time are typically well-captured by some sort of GARCH model. However,

the fact that we expect short selling constraints to induce a change in the behavior of market

participants suggests the estimation of a Markov-switching GARCH model.

In our empirical analysis below we estimate two distinct Markov-switching GARCH specifi-

cations which are special cases of a very general two-regime Markov-switching GARCH frame-

work developed by Reher and Wilfling (2016). In our first specification one Markov-regime is

governed by an EGARCH process (see Nelson, 1991), whereas the second Markov-regime is

governed by a TGARCH equation (see Zakoian, 1994). While we refer to this specification

as a Markov-switching EGARCH-TGARCH model, our second model variant assumes distinct

TGARCH processes in both Markov-regimes, suggesting the term TGARCH-TGARCH for this

specification.

To build up our econometric specifications we assume that the data generating process

(DGP) of the stock price return rt is affected by an unobserved latent random variable St

representing the regime the DGP is in at time t. As mentioned above, we assume only two

distinct regimes 1 and 2 at any point in time, that is we assume either St = 1 or St = 2

for all t = 1, 2, . . .. Since we focus on the volatility effects of short selling restrictions, we

model a constant, non-switching mean λ across both Markov-regimes and only let the volatility

processes switch between the regimes.

To this end we let the return dynamics depend on the regime indicator St = i, i = 1, 2 and

specify

rt+1 = λ+
√
hi,tϵt+1. (1)

In Eq. (1) {ϵt} is an i.i.d. process of standard normal variates, while hi,t represents the con-

ditional variance in regime i. Following Reher and Wilfling (2016), we define our variance

equation in its most general form as

hi,t =


[
ωi + αi

√
h
(i)
t−1

µi

f νi
i (δ

(i)
t ) + βi

√
h
(i)
t−1

µi
]2/µi

for µi > 0[
exp

{
ωi + αif

νi
i (δ

(i)
t ) + βi ln

(√
h
(i)
t−1

)}]2
for µi = 0

, (2)
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with

fi(δ
(i)
t ) = |δ(i)t | − ciδ

(i)
t . (3)

In the Eqs. (2) and (3) the quantities ωi, αi, βi, µi and νi are parameters which are typically

estimated from the data. The lagged variance term h
(i)
t−1 is an average value of the regime-

dependent lagged value hi,t−1, while δ
(i)
t is an average value of the regime-dependent estimates

of ϵt. Both quantities will be explained below. The parameters µi and νi are shape parameters

which may be predetermined in order to preselect alternative distinct and well-known GARCH

models.1 In our empirical analysis below, for example, we estimate two different Markov-

switching specifications. In our first specification, a Markov-switching EGARCH-TGARCH

model, we predetermine µ1 = 0 and ν1 = 1 in order to obtain an EGARCH equation in regime

1, while we set µ2 = 1 and ν2 = 1 to obtain a TGARCH equation in regime 2. Via this

predetermination Eq. (2) becomes

hi,t =


[
exp

{
ω1 + α1f1(δ

(1)
t ) + β1 ln

(√
h
(1)
t−1

)}]2
for St = 1[

ω2 + α2

√
h
(2)
t−1f2(δ

(2)
t ) + β2

√
h
(2)
t−1

]2
for St = 2

. (4)

In our second empirical specification, a Markov-switching TGARCH-TGARCH model, we pre-

determine µ1 = µ2 = 1 and ν1 = ν2 = 1 so that hi,t adapts accordingly.

The quantities h
(i)
t−1 and δ

(i)
t have been introduced in the above volatility equations in order

to circumvent the problem of path dependence which is typically inherent in Markov-switching

GARCH models. This collapsing procedure is originally due to Gray (1996) and was later

refined by Klaassen (2002). Reher and Wilfling (2016) present a detailed description of how

to calculate both quantities in the general Markov-switching GARCH setup stated above. For

the purpose of this paper, it is sufficient to mention that for expressing h
(i)
t−1 and δ

(i)
t we need

certain regime probabilities, denoted by p
(i)
1,t−1, which represent the probability that the DGP

was in Regime 1 at date t− 1 when the DGP currently (i.e. at date t) is in Regime i. Via these

1This general parameterization of the GARCH equation in a single-regime framework is due to Hentschel
(1995).
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probabilities, which can be computed from Eq. (A.13) in the Appendix to this paper, we have

h
(i)
t−1 = p

(i)
1,t−1h1,t−1 + (1− p

(i)
1,t−1)h2,t−1 (5)

and

δ
(i)
t = p

(i)
1,t−1

rt − λ√
h1,t−1

+ (1− p
(i)
1,t−1)

rt − λ√
h2,t−1

. (6)

Finally, we close our econometric model by specifying the probabilistic nature of the regime

indicator St. To keep the analysis tractable, we model St as a first-order Markov process with

constant transition probabilities π1 and π2:

Pr (St = 1|St−1 = 1) = π1,

Pr (St = 2|St−1 = 1) = 1− π1,

Pr (St = 1|St−1 = 2) = 1− π2,

Pr (St = 2|St−1 = 2) = π2.

(7)

Our Markov-switching GARCH model established in the Eqs. (1) to (7) can now be esti-

mated using maximum likelihood techniques. The log-likelihood function is constructed recur-

sively and we present its exact form in the Eqs. (A.14) of the Appendix.

3 Data and estimation results

3.1 Data

On 19 September 2008 the German Federal Financial Supervisory Authority (BaFin) announced

the prohibition of naked short sales of the shares for the following 11 enterprises: Aareal Bank,

Allianz, AMB Generali Holding, Commerzbank, Deutsche Bank, Deutsche Börse, Deutsche

Postbank, Hannover Rückversicherung, Hypo Real Estate Holding, MLP, and Münchener Rück-

versicherungsgesellschaft. Initially, the BaFin envisaged to sustain this short selling restriction

until 31 December 2008, but then prolonged it in three steps, namely (1) until 31 March 2009,

(2) until 31 May 2009, and finally (3) until 31 January 2010. Overall, this amounts to a period

of 343 trading days in succession during which the restriction was in force. From 1 February

2010 onwards the BaFin lifted the restriction, but reinstalled it on 18 May 2010 for the same
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group of enterprises except for the Hypo Real Estate Holding which had ceased being listed in

the meantime.

In this paper we aim at assessing the overall volatility effects of these short selling con-

straints, but refrain from analyzing the volatility effects on a single share. For this purpose we

construct an index from the stock returns of the above-mentioned enterprises, but exclude the

Hypo Real Estate Holding which was delisted during the sampling period. In what follows we

refer to these 10 enterprises as our sample group. As our index weights we use daily market

values which we observe between 2 January 2006 and 23 June 2010 (1136 observations).

In order to compare our volatility results with a control group we constructed a second index

consisting of all DAX enterprises that were not subject to short selling constraints (i.e. which

are not among the enterprises of the sample group). Additionally, we excluded Volkswagen from

the control group since take-over speculation during the sampling period caused abnormal stock

price behavior that might interfere with our research question.

Figure 1 about here

Figure 1 displays the daily index returns for both groups during the sampling period. In

each panel we mark the two periods without and with short selling restrictions by differently

colored lines with the dark line highlighting the periods subject to short selling restrictions.

Both trajectories clearly exhibit volatility clustering, a prominent feature well-documented in

the financial literature on asset returns dynamics. We now turn to analyzing the volatility

structures in both return series within our Markov-switching GARCH framework from Section

2.

Table 1 about here

3.2 Estimation results

Although the general Markov-switching GARCH framework established in Section 2 covers a

broad range of distinct regime-specific GARCH equations, we restrict attention in this paper
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to two alternative Markov-switching GARCH specifications, namely an EGARCH-TGARCH

and a TGARCH-TGARCH model.2 Table 1 displays the maximum likelihood (ML) estimates

of both Markov-switching GARCH models—as represented by the Eqs. (1) to (7)—for the

index returns of our sample and control groups. We numerically maximized the log-likelihood

functions from the Eqs. (A.1) to (A.14) by the use of the BFGS-algorithm as implemented in

the FMINCON module of the software package MATLAB. Our estimation results are robust

to different starting values. To circumvent numerical problems stemming from the absolute

value function appearing on the right-hand side of Eq. (3), we follow Hentschel (1995) and

replace the argument of the absolute value function by a hyperbolic approximation.3 Standard

errors were computed from the diagonal of the heteroskedasticity-consistent (White-robust)

covariance matrix.

The parameter estimates and standard errors for both Markov-switching GARCH specifi-

cations reported in Table 1 can be used to assess the statistical significance of the respective

model parameters. To this end, we consider the conventional t-statistic the exact finite-sample

distribution of which is generally unknown under our estimation setup. However, we can make

asymptotic inference by noticing (1) that our ML estimators are asymptotically normally dis-

tributed, and (2) that our standard errors constitute (weakly) consistent estimates of the true

standard deviations of the ML estimators. Consequently, under the null hypothesis of a single

parameter being equal to 0, our t-statistics should converge in distribution towards a standard

normal variate implying critical values of 1.6449, 1.9600 and 2.5758 at the 10, 5, and 1% levels,

respectively, for the absolute value of the t-statistic (see Greene 2008, Appendix D). Following

this reasoning, we find that 35 out of 44 parameters are significant at the 1% level.

An important issue concerns the persistence of volatility shocks. In a conventional single-

regime TGARCH(1,1) equation the persistence of volatility shocks is typically measured by

the term α2(1 + c2) + β2 + 4αβϕ(0) (with ϕ(·) denoting the probability density function of

2In a preliminary analysis we estimated several other Markov-switching GARCH specifications. However,
we found that the EGARCH-TGARCH and the TGARCH-TGARCH specifications provide the best fit to our
data.

3Technical details on the estimation procedure are available upon request.
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the standard normal distribution), while in a single-regime EGARCH model the persistence

of volatility shocks is simply measured by the parameter β. Generally speaking, we can state

that the higher the value of these terms, the longer it takes until a volatility shock dies out.

In particular, when the terms are equal to 1 volatility shocks have a permanent effect and the

unconditional variances of the respective processes get infinitely large.

In view of these considerations within a single-regime framework, it appears natural to

measure the persistence of volatility shocks in our two-regime Markov-switching EGARCH-

TGARCH model by the corresponding regime-specific persistence conditions. Unfortunately,

matters turn out to be more complicated, since in general it is the interaction between the

regime-specific volatility parameters and the (constant) transition probabilities π1 and π2 of

the regime indicator St which determines the variance stability of a Markov-switching GARCH

model.4

However, since exact mathematical conditions covering the variance-stability even of the

structurally simplest Markov-switching GARCH models are not available in the literature, we

are restricted to analyzing the persistence of volatility shocks within each Markov-regime (ne-

glecting the potential impact of the interaction between the regime-specific GARCH parameters

and the transition probabilities on the variance stability of the entire Markov-switching model).

In Table 1 these volatility persistence measures are given in the rows ’Volatility persistence in

regime 1’ and ’Volatility persistence in regime 2’. Obviously, all these measures are smaller

than 1 indicating that shocks do not have a permanent impact on regime-specific unconditional

variances.

As a final diagnostic check of the validity of both Markov-switching GARCH specifications

we may test the squared (standardized) residuals for first- and higher-order serial correlation by

the Ljung-Box-Q-statistic. We performed Ljung-Box-tests for serial correlation of the squared

residuals out to various lags for both Markov-switching GARCH specifications and did not find

any statistical evidence of serial correlation5

4See for example, Wilfling (2009) and the literature cited there.
5Details of the autocorrelation tests are available upon request.
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Figure 2 about here

3.2.1 Volatility and regime-switching results for the EGARCH-TGARCH model

Figure 2 displays the conditional variances and regime-1 probabilities for the sample group (left

panels) and the control group (right) panels as estimated by our Markov-switching EGARCH-

TGARCH specification. We depict two distinct regime-1 probabilities for both groups, namely

the ex ante regime-1 probabilities p1,t = Pr{St = 1|ϕt} as estimated according to Eq. (A.8)

of the appendix (thin lines) and the so-called smoothed regime-1 probabilities Pr{St = 1|ϕT}

which we computed as described in Hamilton (1994).

Figure 2 provides evidence that the short selling restrictions rather have a destabilizing

than a stabilizing impact on return volatility. The conditional variances have a distinctive peak

in both the sample and the control group after the short selling restrictions have come into

operation. The peak in the sample group is even higher in absolute value than in the control

group, but the overall volatility level has already been higher in the sample group prior to the

prohibition of naked short sales. For the sample group we observe a second clear-cut peak in the

conditional variances in March/April 2009. This large volatility increase has no counterpart in

the control group. From this we might conjecture (1) that the first peak may have been caused

by the outbreak of the financial crisis and (2) that there is no evidence that the short selling

restrictions may have stabilized return volatility in our sample group. The second volatility

peak in March/April 2009 rather appears to indicate that the return variances of the sample

group have been destabilized.

The regime-1 probabilities in Figure 2 indicate two substantial changes in the return dynam-

ics for both the sample and the control group. The first striking regime-switch from Regime 2

to Regime 1 occurs in September 2006 for the sample group, when international market partici-

pants became aware of the first signals of the subprime crisis, and in January/February 2007 for

the control group. The second switch from Regime 2 to Regime 1 occurred in August 2008 for

the sample group and in January 2009 for the control group. Obviously, the regime switches in

the control group occur later than their counterparts for the sample group. A plausible expla-
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nation of this phenomenon is that the financial sector—represented by our sample group—was

immediately affected by the financial crisis whereas the nonfinancial enterprises in our control

group were affected with a delay. Apart from the switches from Regime 2 to Regime 1, the

regime-1 probabilities for the sample group exhibit a switch back from Regime 1 to Regime

2 at the beginning of the restriction period. This switch happened precisely on 18 December

2008 when the BaFin announced the first prolongation of the short selling restrictions.

There are two justifications as to why the aforementioned regime switches are likely to

have stemmed from other effects than the short selling restrictions. First, we observe analogous

regime-switches also for the control group, and second we observe an analogous regime switch for

the sample group during a period long before the short selling restrictions came into operation.

There is, however, a clear-cut empirical argument in favor of the hypothesis that the short

selling restrictions might have had a rather destabilizing than a stabilizing effect on the return

volatility of the sample group. We base our reasoning on the volatility persistence estimates in

both Markov-regimes as displayed in the lower part of Table 1. We interpret a high (low) value

of the regime-specific volatility persistence as an indicator of low (high) variance stability. For

the sample group the volatility persistence in Regime 1 is 0.9951 exceeding the corresponding

regime-1 volatility persistence of the control group which is 0.9824. In contrast to this, the

volatility persistence in Regime 2 for the sample group is 0.9063 and thus lower than the

regime-2 volatility persistence for the control group which is 0.9185. Consequently, for our

sample group the regime switch from Regime 2 to Regime 1 entails a higher increase in volatility

persistence than for our control group indicating a relatively stronger variance destabilization

in Regime 1 for the sample group as compared to the control group.

Figure 3 about here

3.2.2 Volatility and regime-switching results for the TGARCH-TGARCH model

Figure 3 displays the regime-1 probabilities and conditional variances of our Markov-Switching

TGARCH-TGARCH model. As within our EGARCH-TGARCH framework from Section 3.2.1,
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Figure 3 again does not provide any evidence that the short selling restrictions may have had

a stabilizing effect on return volatility. The conditional variances are qualitatively similar to

those of the EGARCH-TGARCH model with a clear-cut peak for both groups after the short

selling restrictions have come into operation. The volatility peak in the sample group is again

higher than in the control group and the relative increase in the conditional variances of the

sample group as compared to the variance increase of the control group is even larger than

within the EGARCH-TGARCH framework. Consequently, we are inclined to draw the same

conclusions as in Section 3.2.1.

For the sample group the regime-1 probabilities in Figure 3 indicate a switch from Regime

2 to Regime 1 during the period of the short selling restrictions. There is a switch back to

Regime 2 shortly before the short selling restrictions expire. This might indicate that market

participants anticipate that there will be no further prolongation of the restriction period. By

contrast, the regime probabilities of the control group do not exhibit such distinctive switches.

However, during the period of the short selling restrictions the control group is also in Regime

1 most of the time.

Finally, we consider again the volatility persistence in both Markov-regimes which we in-

terpret as a measure of variance stability. According to the lower part of Table 1 the regime-1

volatility persistence for the sample group is 0.9852 again (slightly) exceeding the corresponding

regime-1 volatility persistence of the control group which is 0.9831. In Regime 2 the volatility

persistence of the sample group is 0.8733 and hence is substantially lower than the volatility

persistence for the control group which is 0.9313. Consequently, the switch from Regime 2 to

Regime 1 during the period of short selling restrictions again constitutes a transition into a

highly destabilized volatility regime. This is particularly true for our sample group for which

we find an extreme increase in volatility persistence from 0.8733 to 0.9852.
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4 Conclusions

In this paper we analyze the impact of short selling restrictions on stock returns volatility for

the German stock market. To this end, we construct an index from those stocks on which

the German Federal Financial Supervisory Authority (BaFin) imposed short selling constraints

during the years 2008 until 2010. As a control group we consider an index constructed from all

DAX enterprises that were not subject to short selling constraints.

Estimating two distinct versions of a two-regime Markov switching asymmetric GARCH

model (an EGARCH-TGARCH and a TGARCH-TGARCH specification) for the stock returns

of both indices, we observe an overall increase in the conditional variances for the whole German

stock market after the collapse of Lehman Brothers. However, we find econometric evidence

that the financial crisis is accompanied by an increase in volatility persistence and that this

effect is particularly pronounced for those stocks that were subject to short selling constraints.

We interpret this finding as evidence of a destabilizing impact of short selling constraints on

stock returns volatility.

A natural line of future research could be an investigation on the impact of short selling

constraints on the trading volume. An analysis of this issue could possibly reveal two as-

pects. First, market participants are likely to circumvent the short selling restriction through

the evasion in derivatives and a switch to alternative market places in which no short selling

restrictions are in force. Second, short selling constraints might entail substantial changes in

liquidity. Apart from that a quantitative analysis as to what extent short selling constraints

on selected shares can erode investors’ confidence in the affected enterprises and thus induce

stock price declines appears to be indicated.

Appendix A. Maximum likelihood estimation

In this appendix we construct the log-likelihood function for the Markov-switching EGARCH-

TGARCH model established in Section 2. The log-likelihood function for the TGARCH-
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TGARCH model may be similarly derived by inserting the corresponding functional form in

the GARCH equation (A.10) below.

The conditional probability distribution of rt+1 is given by

rt+1|ϕt ∼
{

N(λ, h1,t) with probability p1,t
N(λ, h2,t) with probability (1− p1,t)

, (A.1)

where ϕt defines the information set as of date t and pi,t ≡ Pr{St = i|ϕt} denotes the so-called

ex-ante probability of being in regime i at date t. It is instructive to note that the information

set ϕt basically coincides with the return path r̃t = {rt, rt−1, . . .}, but does not contain the path

of the unobservable regime indicator St. The corresponding probability density function has

the form

f(rt+1|ϕt) =
2∑

i=1

f(rt+1, St = i|ϕt)

=
2∑

i=1

Pr(St = i|ϕt) · f(rt+1|St = i, ϕt)

=
2∑

i=1

pi,t · f(rt+1|St = i, ϕt). (A.2)

Since the regime indicator St follows a first-order Markov process the ex-ante probability

pi,t depends only on St−1. Using the Theorem of Total Probabilities, we obtain

pi,t =
2∑

j=1

Pr(St = i|St−1 = j, r̃t) Pr(St−1 = j|r̃t). (A.3)

The first probability Pr(St = i|St−1 = j, r̃t) on the right-hand side of (A.3) does not depend on

r̃t. Thus, we can insert the probabilities specified in Eq. (7) in Eq. (A.3) and obtain

p1,t = π1 · Pr(St−1 = 1|r̃t) + (1− π2) · Pr(St−1 = 2|r̃t)

= π1 · Pr(St−1 = 1|r̃t) + (1− π2) · (1− Pr(St−1 = 1|r̃t)), (A.4)
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and analogously

p2,t = π2 · (1− Pr(St−1 = 1|r̃t)) + (1− π1) · Pr(St−1 = 1|r̃t). (A.5)

The remaining probability Pr(St−1 = 1|r̃t) in the Eqs. (A.4) and (A.5) can be written as a

function of p1,t−1 = Pr(St−1 = 1|r̃t−1). To this end, we apply Bayes’ Formula yielding

Pr(St−1 = 1|r̃t) = Pr(St−1 = 1|rt, r̃t−1)

=
f(rt|St−1 = 1, r̃t−1) Pr(St−1 = 1, r̃t−1)∑2
i=1 f(rt|St−1 = i, r̃t−1) Pr(St−1 = i, r̃t−1)

. (A.6)

Expanding the ratio on the right-hand side of Eq. (A.6), we obtain

Pr(St−1 = 1|r̃t) =
f(rt|St−1 = 1, r̃t−1) Pr(St−1 = 1|r̃t−1)∑2
i=1 f(rt|St−1 = i, r̃t−1) Pr(St−1 = i|r̃t−1)

=
f(rt|St−1 = 1, r̃t−1)p1,t−1∑2
i=1 f(rt|St−1 = i, r̃t−1)pi,t−1

=
g1,t−1 · p1,t−1∑2
i=1 gi,t−1 · pi,t−1

, (A.7)

where, for ease of notation, we have defined gi,t−1 ≡ f(rt|St−1 = i, r̃t−1) = f(rt|St−1 = i, ϕt−1).

Using Eq. (A.7), we are now able to calculate the ex-ante probability p1,t by inserting Eq. (A.7)

in Eq. (A.4):

p1,t = π1 ·
g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)
+ (1− π2) ·

[
1− g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)

]

= π1 ·
g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)
+ (1− π2) ·

g2,t−1(1− p1,t−1)

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)
. (A.8)

Next, we address the exact form of the conditional density f appearing in the Eqs. (A.2)

and (A.8). Since we assume conditional normality f is given as

f(rt+1|St = i, ϕt) =
1√
2πhi,t

exp

{
−(rt+1 − λ)2

2hi,t

}
. (A.9)
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The variance hi,t depends on the explicit functional form of the GARCH equation. In the case

of our EGARCH-TGARCH specification we set µ1 = 0, ν1 = 1, µ2 = 1 and ν2 = 1 in Eq. (2) of

the main text and obtain

hi,t =


[
exp

{
ω1 + α1f1(δ

(1)
t ) + β1 ln

(√
h
(1)
t−1

)}]2
for St = 1[

ω2 + α2

√
h
(2)
t−1f2(δ

(2)
t ) + β2

√
h
(2)
t−1

]2
for St = 2

(A.10)

with appropiately defined parameters ωi, αi, βi.

It is obvious from Eq. (A.10) that for the calculation of regime-specific variances hi,t we

need the aggregated variances and shock terms h
(i)
t−1 and δ

(i)
t the calculation of which we base

on the probabilities p
(i)
1,t−1 as described in the main text. Using Bayes’ Formula once more, we

obtain these probabilities as

p
(i)
1,t−1 = Pr(St−1 = 1|r̃t−1, St = i)

=
Pr(St = i|r̃t−1, St−1 = 1)Pr(St−1 = 1|r̃t−1)

Pr(St = i|r̃t−1)

=
Pr(St = i|r̃t−1, St−1 = 1) · p1,t−1

Pr(St = i|r̃t−1)
(A.11)

with p1,t−1 as given in Eq. (A.8). Using the Theorem of Total Probabilities, we write the

denominator in Eq. (A.11) as

Pr(St = i|r̃t−1) = Pr(St = i|r̃t−1, St−1 = 1) · p1,t−1

+ Pr(St = i|r̃t−1, St−1 = 2) · (1− p1,t−1). (A.12)

To calculate the probability on the left-hand of Eq. (A.11) we need the two probabilities Pr(St =

i|r̃t−1, St−1 = 1) and Pr(St = i|r̃t−1, St−1 = 2). These probabilities coincide with those defined

in Eq. (7) of the main text, since the Markov process is independent of the return process.
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Now, inserting the Eqs. (7) and (A.12) in Eq. (A.11), we obtain

p
(1)
1,t−1 =

π1 · p1,t−1

π1 · p1,t−1 + (1− π2) · p2,t−1
,

p
(1)
2,t−1 = 1− p

(1)
1,t−1,

p
(2)
1,t−1 =

(1− π1) · p1,t−1

(1− π1) · p1,t−1 + π2 · p2,t−1
,

p
(2)
2,t−1 = 1− p

(2)
1,t−1.

(A.13)

Finally, we use the recursive structures developed so far to construct the log-likelihood

function of our Markov-switching model defined in the Eqs. (1) to (7). The general form of the

likelihood function is

L(Θ) = f(rt, . . . , r1;Θ)

with the vectorΘ containing all model parameters. Writing this joint distribution of the returns

as a product of conditional densities, we obtain

L(Θ) =
T∏
t=1

f(rt|r̃t−1;Θ)

for which we define the starting term as f(r1|r̃0;Θ) ≡ f(r1;Θ). Taking the logarithm of L(Θ)

and inserting (the lagged form of) Eq. (A.1), we obtain the log-likelihood function as

ℓ(Θ) ≡ log[L(Θ)] =
T∑
t=1

log [f(rt|r̃t−1;Θ)]

=
T∑
t=1

log

[
2∑

j=1

f(rt|St−1 = j, r̃t−1;Θ) · pj,t−1

]
. (A.14)
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Figures and Tables



 

Figure 1: Daily index returns for the sample and the control group 

 

   



 

 

 

Figure 2: Conditional variances and regime-1 probabilities for the sample and the control 
group estimated by the Markov-switching EGARCH-TGARCH specification 

 

   



 

 

 

Figure 3: Conditional variances and regime-1 probabilities for the sample and the control 
group estimated by the Markov-switching TGARCH-TGARCH specification 

 



Table 1
Estimates of EGARCH-TGARCH and the TGARCH-TGARCH model for the sample group and the

control group

Sample group Control group Sample group Control group
EGARCH- EGARCH- TGARCH- TGARCH-
TGARCH TGARCH TGARCH TGARCH

µ1 0.0000 0.0000 1.0000 1.0000

µ2 1.0000 1.0000 1.0000 1.0000

ν1 1.0000 1.0000 1.0000 1.0000

ν2 1.0000 1.0000 1.0000 1.0000

λ −0.0000 0.0002 0.0000 0.0004
(0.0015) (0.0067) (0.0001) (0.0015)

ω1 0.0158∗∗∗ −0.0336 0.0004∗∗∗ 0.0001
(0.0012) (0.0234) (0.0000) (0.0002)

ω2 0.0007 0.0006 0.0010∗∗∗ 0.0006
(0.0010) (0.0010) (0.0000) (0.0004)

α1 −0.0409∗∗∗ −0.0528∗∗∗ 0.0672∗∗∗ 0.0118∗∗∗

(0.0014) (0.0171) (0.0002) (0.0006)
α2 0.0991∗∗∗ 0.1418∗∗∗ 0.0935∗∗∗ 0.1443∗∗∗

(0.0050) (0.0420) (0.0003) (0.0041)
β1 0.9951∗∗∗ 0.9824∗∗∗ 0.9358∗∗∗ 0.9820∗∗∗

(0.0000) (0.0000) (0.0023) (0.0134)
β2 0.8661∗∗∗ 0.8309∗∗∗ 0.8535∗∗∗ 0.8350∗∗∗

(0.0559) (0.0214) (0.0040) (0.0491)
π1 0.9941∗∗∗ 0.9956∗∗∗ 0.9958∗∗∗ 0.9845∗∗∗

(0.0001) (0.0238) (0.0000) (0.0001)
π2 0.9946∗∗∗ 0.9963∗∗∗ 0.9982∗∗∗ 0.9851∗∗∗

(0.0001) (0.0299) (0.0000) (0.0053)
c1 −1.7014∗∗∗ −0.6443∗∗∗ 1.0000∗∗∗ 1.0000∗∗∗

(0.0009) (0.0444) (0.0027) (0.0721)
c2 0.9778∗∗∗ 0.9975∗∗∗ 1.0000∗∗∗ 1.0000∗∗∗

(0.1598) (0.3074) (0.0035) (0.0202)

Volatility persistence 0.9951 0.9824 0.9852 0.9831
in regime 1
Volatility persistence 0.9063 0.9185 0.8733 0.9313
in regime 2
Notes: Estimates for parameters from the Eqs. (1) to (10). Standard errors are in parentheses. ∗,∗∗ and
∗∗∗ denote statistical significance at 10, 5 and 1% levels, respectively.
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