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1 Introduction

A classical belief is that under rational expectations and rational behaviour of economic
agents any asset should be priced according to its market fundamental value. In line

with this view, a persistent and substantial divergence between an asset price and
its fundamental value is often regarded as market irrationality. However, recent work
elaborates why the dynamics of an asset price may well contain a self-fulfilling bubble

component and that the explosive asset-price behaviour caused by the bubble may be
consistent with rational behaviour among market participants.

Up to date, a multitude of theoretical studies have examined the emergence of (stock
market) bubbles and their structural properties under rational expectations (see, for
instance, Tirole, 1982; Allen et al., 1993; Allen and Gale, 2000; Abreu and Brunner-

meier, 2003). A closely related strand of literature is concerned with the econometric
detection of speculative bubbles. These papers can roughly be divided into two groups.

The first group of studies is based on so-called indirect bubble tests. Here, the authors

apply sophisticated cointegration and unit-root tests to a dividend-price relationship
and try to overcome the well-known econometric weaknesses of the standard tests. Fre-

quently cited articles belonging to this category include Diba and Grossman (1988),
Evans (1991) and several other contributions cited in McMillan (2007). The second

group of studies, which is the more relevant for our paper, implement direct tests for
speculative bubbles by explicitly formulating the existence of a bubble in the alter-
native hypothesis. Examples of such direct test procedures are West (1987) and Wu

(1997).
The key idea of West’s (1987) direct bubble test is to compare two alternative es-

timators (i.e. an indirect and a direct estimator) for one particular parameter. More
concretely, the indirect estimator is constructed from two different estimations, namely

(1) from the estimation of the observable no-bubble Euler equation, and (2) from the
estimation of a stationary autoregressive process which is assumed to govern dividends.

Both estimations can be combined to yield an indirect estimate of the linear relation-

ship between dividends and stock prices. Alternatively, the linear relationship between
dividends and stock prices can be estimated directly by performing a straightforward
linear regression of stock prices on dividends. Under the null hypothesis of ’no bubble’,

the direct and the indirect estimates of the linear relationship should be equal (within

the limits of statistical accuracy) while under the alternative of ’a rational bubble’ both
estimates should differ significantly from each other. Hence, the basic idea of West’s
(1987) test is to interpret a statistically significant difference between the direct and

the indirect estimates as an indication of a speculative bubble. This interpretation
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may be strengthened further by additionally applying specification tests to the Eu-
ler equation and the autoregressive representation of dividends in the hope of ruling

out all model misspecification and leaving bubbles as the only possible source of the
discrepancy between the two estimates.

Essentially, West’s procedure tests the standard present value model against an un-
specified alternative which is interpreted as having emerged from a speculative bubble.
However, the test does not generate a time series of the bubble component. By con-

trast, Wu (1997), who also considers the deviation of stock prices from the present value
model, uses the discrepancies to construct a bubble time series. As in West (1987) he

assumes that dividends follow an autoregressive process and treats the bubble as an
unobservable variable which he estimates using the Kalman filter. In so doing, Wu finds
that large portions of stock-price movements within the S&P 500 may be ascribed to

speculative bubbles.
Another class of econometric models, which have been used intensively for the de-

tection of bubble components, are so-called Markov-switching (or regime-switching)
models. These models are designed to capture discrete shifts in the generating pro-
cess of time series data and were introduced by Hamilton (1988, 1989). An important

application of Markov-switching models in the bubble literature is presented by Hall
et al. (1999) who treat each component of a simulated bubble process as a separate

Markov regime with constant transition probabilities between the regimes. Within
a Monte Carlo experiment they analyze the power of Augmented-Dickey-Fuller unit-
root tests with Markov-switching (Markov-switching ADF tests) and apply these test
procedures to detect bubble episodes. Although this methodology may be criticized

on econometric grounds (see for example Vigfusson and van Norden, 1998), Markov-

switching approaches constitute a useful tool for modeling bubbles that switch between
two or more states (see Driffill and Sola, 1998; Brooks and Katsaris, 2005).

In this paper, we treat the bubble as an unobservable variable as in Wu (1997) but

extend his framework by allowing the bubble to switch between alternative regimes.

Through this, we aim at separating the moderately growing from the explosive period
in the bubble process. Technically speaking, we implement regime-switching in our

unobserved-components framework by adopting an econometric technology that was

first mentioned by Harrison and Stevens (1976) and was given a more thorough formal
treatment by Gordon and Smith (1988). Kim and Nelson (1999) embed the methodol-
ogy in a more accessible framework by showing how to use state-space models that are
subject to regime-switching. Up to now, this econometric technique has mainly been

used for the detection of turning points in business-cycle research (see for example
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Chauvet, 1998; Chauvet and Piger, 2003; Chauvet and Hamilton, 2006). However, the
application to the bubble literature is still lacking and constitutes the innovation of

our paper.
In line with several previous studies from the bubble literature, we analyze both

artificially generated bubble data as well as real-world data sets. The inclusion of
artificial bubble processes has the advantage of knowing exactly when a bubble starts
to evolve over time. Thus, we obtain precise information on the statistical quality

of our bubble-detection method. By contrast, the identification of bubble periods in
real-world data sets turns out to be a more complicated matter. For this data type we

are reliant on what economic historians have classified ex-post as bubble periods. In
our empirical analysis below, we rely on the work of Kindleberger and Aliber (2005)

who classify bubble periods in real-world stock-market data.
Our study has two major findings. First, we show that Markov-switching in the

data-generating process of real-world stock-price bubbles appears to be a statistically
significant phenomenon. Second, we obtain the encouraging overall result that our
econometric framework is able to detect most bubble periods in our artificial data sets

and is even more successful in tracking down real-world stock-price bubbles as classified
by Kindleberger and Aliber (2005).

The remainder of the paper is organized as follows. Section 2 briefly reviews the basic

present value model. Section 3 transforms the present value model into a state-space
representation. We demonstrate how the state-space model including the unobserved

asset-price bubble can be estimated by the Kalman filter. In Section 4 we incorporate
Markov-switching elements into the state-space model. Section 5 describes our artificial

bubble processes, our real-world data sets and presents the estimation results. Section
6 offers some concluding remarks.

2 Economic Model

In this section we briefly review the standard present-value model of stock prices on the
basis of the log-linear approximation as suggested by Campbell and Shiller (1988a,b).
For this, consider the following rational-expectations model of stock-price determina-

tion:

q = κ + ψEt(pt+1) + (1− ψ)dt − pt, (1)

where q is the required log gross return rate, Et(·) is the mathematical expectation
operator conditional on all information available at date t, pt ≡ ln(Pt) is the log real
stock price at date t, dt ≡ ln(Dt) is the log real dividend paid at date t and κ and ψ
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(0 < ψ < 1) are parameters of linearization.1

Equation (1) constitutes a linear difference equation for the log stock price which

can be routinely solved by forward iteration. Imposing the transversality condition

lim
i→∞

ψiEt(pt+i) = 0,

we obtain the unique no-bubble solution (denoted by pf
t ) to Eq. (1):

pf
t =

κ− q
1− ψ

+ (1− ψ)
∞

∑

i=0

ψiEt(dt+i). (2)

The no-bubble solution pf
t in Eq. (2) represents the well-known present-value relation

stating that the log stock price is equal to the present value of expected future log

dividends. However, it is important to note that from a mathematical point of view
the above transversality condition may not be satisfied. In that case, the no-bubble
solution pf

t represents only a particular solution to the difference equation (1), the
general solution of which has the form

pt = pf
t + Bt, (3)

with the process {Bt} satisfying the homogeneous difference equation

Et(Bt+i) =
Bt

ψi for i = 1, 2, . . . (4)

(see for example Cuthbertson and Nitzsche, 2004, pp. 397-401).
Obviously, the general solution in Eq. (3) consists of two components. First, the

no-bubble solution pf
t only depends on log dividends and is therefore often termed the

market-fundamental solution. Second, the mathematical entity Bt may be driven by
events extraneous to the market and is thus referred to as the rational speculative
bubble component.

In order to circumvent nonstationarity problems, it is convenient to express the
model in first-difference form which, by virtue of the Eqs. (2) and (3), is given by

∆pt = ∆pf
t + ∆Bt = (1− ψ)

∞
∑

i=0

ψi[Et(dt+i)− Et−1(dt+i−1)] + ∆Bt. (5)

Following Wu (1997), we also assume that log dividends may contain a unit root but
1In particular, ψ is the average log dividend-price ratio and κ is defined by κ ≡ − ln(ψ) − (1 −

ψ) ln(1/ψ − 1).



5

that the dividend process {dt} can be approximated by an autoregressive integrated

moving average process. In particular, we assume an ARIMA(h, 1, 0) process of the
form

∆dt = µ +
h

∑

j=1

φj∆dt−j + δt, (6)

with δt ∼ N(0, σ2
δ ) denoting a Gaussian white-noise error term and where the autore-

gressive order h can be estimated from the data.
In what follows, it is convenient to express the autoregressive process (6) in compan-

ion form. Defining the (h× 1) vectors

yt = (∆dt, ∆dt−1, . . . , ∆dt−h+1)′, u = (µ, 0, 0, . . . , 0)′, νt = (δt, 0, 0, . . . , 0)′

and the (h× h) matrix

A =













φ1 φ2 φ3 . . . φh−1 φh

1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0













,

we may write Eq. (6) in the form

yt = u + Ayt−1 + νt. (7)

Based on this representation, it follows from Campbell and Shiller (1987) that the
solution to our stock-price model (5) can be calculated from the formula

∆pt = ∆dt + m∆yt + ∆Bt, (8)

where m is an (h× 1) vector defined as

m = gA(I−A)−1[I− (1− ψ)(I− ψA)−1], (9)

while the (h× 1) vector g is given by g = (1, 0, 0, . . . , 0)′ and I symbolizes the (h× h)
identity matrix.

In line with Wu (1997), we also assume a linear bubble process {Bt}. Hence, Eq. (4)

implies
Bt = (1/ψ)Bt−1 + ηt, (10)

where the innovation process {ηt} is assumed to be i.i.d. N(0, σ2
η). Additonally, we
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assume that ηt is uncorrelated with the dividend innovation δt from Eq. (6).
When estimating the stock-price equation (8), we are confronted with the problem

that the bubble component {Bt} is unobservable. This fact suggests using a Kalman
filtering technique for the application of which we have to express our present-value

model in state-space form.

3 State-space representation and the Kalman filter

We now express our present-value model in state-space form so that the Kalman filter

can be used to estimate the unobservable asset-price bubble. The approach of this
section closely follows Wu (1995).

3.1 The state-space representation

Let βt be an (n × 1) vector of unobserved variables referred to as state variables and
let gt and zt be (m× 1) and (l× 1) vectors of observable variables referred to as input

and output variables, respectively. Then, the state-space model can be written as

βt = Fβt−1 + ξt, (11)

zt = Hβt + Dgt + ζt, (12)

where ξt and ζt are (n × 1) and (l × 1) vectors of disturbances and F, H and D are

constant real matrices of conformable dimensions. It is assumed that the disturbance
vectors ξt and ζt are serially uncorrelated, uncorrelated with each other and that

E(ξt) = 0, E(ζt) = 0,

E(ξtξ
′
t) = Ω, E(ζtζ

′
t) = R.

The Eqs. (11) and (12) are called transition and measurement equation, respectively.

Basically, our economic model from Section 2 consists of the following three compo-

nents: the ARIMA(h,1,0) dividend process {∆dt} from Eq. (6), the stock-price process

{∆pt} from Eq. (8) and the bubble process {Bt} from Eq. (10). It is easy to check,

that our complete economic model can be written in state-space form as follows:

βt = (Bt, Bt−1)′, zt = (∆dt, ∆pt)′, gt = (1, ∆dt, ∆dt−1, ∆dt−2, . . . , ∆dt−h)′,

ξt = (ηt, 0)′, ζt = (δt, 0)′,
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F =
(

1/ψ 0
1 0

)

, H =
(

0 0
1 −1

)

, (13)

and

D =
(

µ 0 φ1 φ2 . . . φh−1 φh

0 (1 + m1) (m2 −m1) (m3 −m2) . . . (mh −mh−1) −mh

)

, (14)

where mi is the ith component of the (h× 1) vector m defined in (9). The covariance

matrices Ω and R are given by

Ω =
(

σ2
η 0
0 0

)

and R =
(

σ2
δ 0
0 0

)

. (15)

All in all, our state-space representation treats the asset-price bubble as an unobserv-
able state variable and specifies two transition and two measurement equations. Both
transition equations represent the bubble process (10) while the first measurement

equation represents the dividend process (6) and the second measurement equation the
price process (8).

3.2 The Kalman filtering technique

In this section, we outline the Kalman filter procedure with the ultimate aim of es-
timating stochastic asset-price bubbles. The Kalman filter is extensively discussed in
the control literature (see among others Hamilton, 1994a,b).

Our basic problem consists in estimating the unobserved state vector βt. Let βt|τ

denote the best linear mean-squared estimate of βt given the model and all observed
data up to time τ . βt|τ and its covariance matrix can then be obtained via the following
equations:

βt|t−1 = Fβt−1|t−1,

Pt|t−1 = FPt−1|t−1F′ + Ω,

ζt|t−1 = zt −Hβt|t−1 −Dgt,

Kt = Pt|t−1H′[HPt|t−1H′ + R]−1,

βt|t = βt|t−1 + Ktζt|t−1,

Pt|t = [I−KtH]Pt|t−1,

where Pt|t−1 = E[(βt−βt|t−1)(βt−βt|t−1)′] and Pt|t = E[(βt−βt|t)(βt−βt|t)′] are the
error covariance matrices for 1 ≤ t ≤ T . The above equations form the Kalman filter
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and are computed forward recursively. More efficient estimates of the state vector and
its error covariance matrix can be obtained by using all information up to time T via

the following full-sample smoother:

βt−1|T = βt−1|t−1 + Jt−1(βt|T − Fβt|t−1),

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T −Pt|t−1)J′t−1,

Jt−1 = Pt−1|t−1F′P−1
t|t−1, t = T − 1, T − 2, . . . , 1.

This smoother is run backward recursively.
The Kalman filter treats the model parameters as known. In practice, however,

the parameter matrices F, H, D, Ω and R are unknown and need to be estimated.
Collecting all unknown parameters in the vector α, we can estimate all parameters by
maximising the following log likelihood function (see Hamilton, 1994a, pp. 385-86):

L(α|z,g) = const− 1
2

T
∑

t=1

(

ln
[

det(HPt|t−1H′ + R)
]

+ζ ′t|t−1(HPt|t−1H′ + R)−1ζt|t−1

)

. (16)

In Eq. (16) the innovation ζt|t−1 and the error covariance matrix Pt|t−1 are both implicit

functions of the unknown parameter vector α and are evaluated using the Kalman
filter. Once the maximum-likelihood estimate of α has been obtained, the smoothed
estimates of the state vector and its error covariance matrix can be determined by the

Kalman filter and the full-sample smoother stated above.

4 State-space models with Markov-switching

We now introduce distinct regimes into the state-space model from the previous section.
The idea behind this is that alternative regimes might enable us to distinguish between
moderately growing and explosive periods in bubble processes (see Evans, 1991). In this

paper, we restrict attention to the modeling of two distinct regimes. The econometric
exposition of this section closely follows Kim and Nelson (1999, Chapter 5) who also

cover the more general case of M ≥ 2 distinct regimes.

4.1 Model specification

We begin with the state-space representation of a dynamic system consisting of the

transition and measurement equations (11) and (12). Additionally, we now allow the
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parameters in the matrices F,H,D,Ω and R to switch between two distinct regimes
and therefore write the state-space model as

βt = FStβt−1 + ξt, (17)

zt = HStβt + DStgt + ζt, (18)

(

ξt
ζt

)

∼ N
(

0,
(

ΩSt 0
0 RSt

))

. (19)

The subscripts St in the above equations are meant to indicate that the parameters
in the matrices are governed by an unobservable two-state random variable St (St =
1, 2) which determines the regime the parameters are in at date t. We specify the

probabilistic nature of the regime-indicator St by a first-order Markov-process with
time-invariant transition probabilities pij = Pr[St = j|St−1 = i] which we collect in the
transition-probability matrix

Π =
(

p11 1− p22

1− p11 p22

)

. (20)

In what follows, we use the compact notation Fi when St = i (and similarly for the

matrices HSt ,DSt ,ΩSt ,RSt).

4.2 The basic filter, model estimation, inference and smooth-
ing

By analogy with the Kalman filtering technique for the single-regime state-space model

described in Section 3.2, we assume in a first step that the parameters of the two-regime
Markov-switching state-space model (17) to (20) are all known. Let Ψt−1 denote the
vector of observations available as of date t− 1. In the derivation of the Kalman filter
for the single-regime state-space model, the main objective is to form a forecast of the

unobserved state vector βt based on Ψt−1 which we denote by

βt|t−1 = E[βt|Ψt−1].

Similarly, in the single-regime state-space model from the Sections 3.1 and 3.2 the
matrix Pt|t−1 represents the mean squared error of this forecast and may be written as

Pt|t−1 = E[(βt − βt|t−1)(βt − βt|t−1)
′|Ψt−1].
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By contrast, in our state-space model (17) to (20) with Markov-switching parameters
our objective is to form a forecast of βt which is based not just on Ψt−1, but which is
also conditional on the transition of the regime-indicator from state St−1 = i to state
St = j (for i, j = 1, 2):

β(i,j)
t|t−1 = E[βt|Ψt−1, St = j, St−1 = i].

The Kalman-filter algorithm from the Eqs. (21) to (26) below computes a battery of
22 = 4 such forecasts for each date t, namely one forecast for each possible Markov-
regime combination (i, j). Associated with these four forecasts for date t are the four
mean squared error matrices

P(i,j)
t|t−1 = E[(βt − βt|t−1)(βt − βt|t−1)

′|Ψt−1, St = j, St−1 = i].

Conditional on St−1 = i and St = j, the Kalman filter can be stated as follows:

β(i,j)
t|t−1 = Fjβi

t−1|t−1, (21)

P(i,j)
t|t−1 = FjPi

t−1|t−1F
′
j + Ωj, (22)

ζ(i,j)
t|t−1 = zt −Hjβ

(i,j)
t|t−1 −Djgt, (23)

f(i,j)t|t−1 = HjP
(i,j)
t|t−1H

′
j + Rj, (24)

β(i,j)
t|t = β(i,j)

t|t−1 + P(i,j)
t|t−1H

′
j[f

(i,j)
t|t−1]

−1ζ(i,j)
t|t−1, (25)

P(i,j)
t|t = (I−P(i,j)

t|t−1H
′
j[f

(i,j)
t|t−1]

−1Hj)P
(i,j)
t|t−1. (26)

Here, βi
t−1|t−1 is an inference on βt−1 based on information up to time t − 1 given

St−1 = i. β(i,j)
t|t−1 is an inference on βt based on information up to time t − 1 given

St = j and St−1 = i. ζ(i,j)
t|t−1 is the conditional forecast error of zt based on information

up to time t−1 given St−1 = i and St = j. And finally, f(i,j)t|t−1 is the conditional variance
of the forecast error ζ(i,j)

t|t−1.
An obvious drawback of the above Kalman-filter algorithm is that in our two-regime

specification each iteration produces a 2-fold increase in the number of cases that have

to be considered. So, by date t = 10, for example, 1024 distinct cases were to be

considered. Therefore, it appears to be necessary to introduce some approximations in

order to make the Kalman filter operable. The key idea to accomplish this is to collapse
terms in the right way at the right time by somehow reducing each of the quadruple
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posteriors β(i,j)
t|t and P(i,j)

t|t from the Eqs. (25) and (26) to the 2 twofold posteriors βj
t|t

and Pj
t|t.

A variety of explicit collapsing procedures have been scattered in the literature (see

among others Harrison and Stevens, 1976; Smith and Makov, 1980; Gordon and Smith,
1988). However, in our subsequent empirical implementation we use the approximation

approach provided by Kim and Nelson (1999). More precisely, at the end of each
iteration we collapse the quadruple posteriors β(i,j)

t|t and P(i,j)
t|t to

βj
t|t =

∑2
i=1 Pr[St−1 = i, St = j|Ψt]β

(i,j)
t|t

Pr[St = j|Ψt]
(27)

and

Pj
t|t =

∑2
i=1 Pr[St−1 = i, St = j|Ψt]{P (i,j)

t|t + (βj
t|t − β(i,j)

t|t )(βj
t|t − β(i,j)

t|t )′}
Pr[St = j|Ψt]

, (28)

respectively. Apart from that, we also use Kim and Nelson’s (1999) 3-step procedure

to make inferences on the probability terms which appear on the right-hand side of the

collapsing equations (27) and (28).2

In order to estimate the parameters of our state-space model, we implement the
procedure depicted in Figure 5.1 in Kim and Nelson (1999, p. 105). After obtaining

the appropriate starting values βj
t|t,P

j
t|t and Pr[S0 = j|Ψt], we run the Kalman filter

(21) to (26) while collapsing the posteriors β(i,j)
t|t and P(i,j)

t|t after the end of each iteration
to βj

t|t and Pj
t|t as given in the Eqs. (27) and (28). As a by-product of the filter, we

obtain the (approximate) log likelihood function from which we estimate the model

parameters by using a nonlinear maximization technique.3

After parameter estimation we can finally make inference about the regime-indicator

St and the unobserved state-vector βt by using full-sample information. A variety of

different smoothing approaches have been suggested and discussed in the literature (see
for example Kitagawa, 1987). In this study we use the 4-step algorithm given in Kim

and Nelson (1999, pp. 106-109) to compute the smoothed probabilities Pr[St = j|ΨT ]
and to derive the smoothed values of the state-vector βt|T for t = 1, 2, . . . , T .4

Finally, some remarks on the explicit parameters which we estimate in our subse-

quent empirical analysis are in order. In the most general setting, we could specify
all parameters appearing in the matrices F,H,D,Ω,R from the Eq. (13) to (15) as

2See Kim and Nelson (1999, pp. 100-103).
3See Kim and Nelson (1999, pp. 104-105) for details.
4All technical details concerning our estimation procedure and smoothing algorithm are available

upon request.
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regime-switching parameters and collect them in the (two-state) switching matrices
FSt ,HSt ,DSt ,ΩSt ,RSt . However, since it proves difficult to numerically maximize the
log likelihood function of such a fully-fledged and highly-parameterized state-space
model with Markov-switching, we reduce model complexity considerably by imposing
the following restrictions on the model parameters. First, we model the dividend pro-

cess {dt} as a pure random walk without drift, that is we set µ = 0 and h = 0 in Eq. (6)
thereby contracting the matrix D from Eq. (14) correspondingly. Second, we only al-
low the autoregressive coefficient 1/ψ in the bubble process (10) to switch between
the two regimes (in order to discriminate between moderately growing and explosive
periods in the bubble process) while modeling all other parameters as non-switching
between the Markov-regimes. Both restrictions imply that we ultimately estimate the

switching autoregressive bubble coefficients 1/ψ1 and 1/ψ2 in the matrices FSt , the

non-switching variances σ2
η and σ2

δ in the matrices Ω and R from Eq. (15) and both
transition probabilities p11 and p22 from the matrix Π in Eq. (20).

5 Empirical analysis

In this section, we apply our two-regime Markov-switching state-space model to a
plethora of bubble processes. Our analysis covers artificial as well as real-world data

sets. We specify our artificial bubble processes in the sense of Evans (1991). Our
real-world data consist of the well-known data set by Robert Shiller for the US plus
a variety of Datastream price and dividend data for various countries that are known
to have suffered from severe bubble episodes in the past (see Kindleberger and Aliber,
2005).

5.1 Artificial and real-world datasets

First, we address our artificial bubble processes. Evans (1991) describes an empirically
plausible class of bubbles which are rational, positive and periodically collapsing. These
bubbles have the form

Bt+1 =







(1 + r)Btut+1, if Bt ≤ α

[

δ + 1+r
π

(

Bt − δ
1+r

)

ξt+1
]

ut+1, if Bt > α
, (29)

where δ and α are real scalars such that 0 < δ < (1 + r)α. {ut} is a sequence of

non-negative exogenous i.i.d. random variables with Et(ut+1) = 1, while {ξt} is an

exogenous i.i.d. Bernoulli process independent of {ut} with Pr(ξt = 0) = 1 − π and
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Pr(ξt = 1) = π for 0 < π ≤ 1. This bubble process has two different rates of growth.
For Bt ≤ α the bubble grows at the mean rate 1 + r. For Bt > α it grows at the faster

mean rate (1+ r)/π, but collapses with probability 1−π per period. When the bubble

collapses, it falls back to the mean value δ and the process recommences.
More explicitly, we assume the variables {ut} to be i.i.d. lognormally distributed

and scaled to have unit mean, i.e. we assume ut = exp(yt − τ 2/2) with {yt} being

i.i.d. N(0, τ 2). Altering the parameters δ, α and π, we can modify (1) the frequency
with which the bubble erupts, (2) the average length of time before the bubble collapses,
and (3) the scaling of the bubble. For example, a high value of α generates bubbles
with a long initial period of relatively steady but slow growth.

In order to apply our Markov-switching state-space approach from Section 4, we have
to generate artificial dividend and stock-price data which we regard as fundamental

stock-price data and on which we then superimpose Evans-bubbles of the form (29).5

For this, we assume that the data-generating process for the dividends follows a pure
random walk,

Dt = Dt−1 + εt, (30)

where {εt} is a Gaussian white-noise process with mean zero and variance σ2
ε . Using

the dividend DGP (30), we can derive the fundamental stock-price from the linear
present-value relation (with constant expected returns) as

PDt = r−1Dt. (31)

Now, we generate a bubbly stock-price process by adding the Evans-bubble (29) to the
fundamental stock-price process PDt from Eq. (31):

Pt = PDt + Bt. (32)

[Insert Table 1 here]

In Table 1 we have specified three parameterizations for the bubbly stock-price pro-

cess according to the Eqs. (29) to (32). With each parameter specification, we have
generated three distinct sets of {Bt}-, {Dt}-, {PDt}- and {Pt}-trajectories. We denote

the three sets of trajectories generated by the first specification given in column 1 of
Table 1 by DGP 1a, DGP 1b, DGP 1c, and similarly the sets of trajectories for the
parameter specifications given in the columns 2 and 3. In all specifications the bub-

5For a discussion as to what extent dividends may be viewed as appropriate stock-price fundamen-
tals see, among others, Lamont (1998).
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ble and dividend parameters were chosen in line with the study of West (1988) who
estimated these parameters on the basis of S&P500 data ranging between 1871 and

1980.
Next, we address our real-world data sets. We analyze data for the US, Brazil,

Indonesia, Malaysia and Japan. Except for the US data set, which is provided by
Robert Shiller6, all other data were compiled from Datastream. All data are provided

on a monthly basis.
The respective time spans differ among the countries under consideration. The

largest time span is available for the US with monthly data ranging between January
1871 and June 2004 which amounts to a total number of 1602 observations. In our

empirical analysis, we use four variants of the US data, namely (1) the complete data
set, (2) a first subsample covering data between January 1871 and December 1912
(504 observations), (3) a second subsample covering data between January 1913 and
December 1954 (504 observations), and (4) a final subsample including data between
January 1955 and June 2004 (594 observations). The reason for this splitting up the

whole US sample is that it turns out to be easier to trace historical events when working
with the three subsamples.

The respective sampling periods for Brazil, Indonesia, Malaysia and Japan are Au-

gust 1994 until October 2005 (135 observations), April 1990 until October 2005 (187
observations), February 1986 until October 2005 (237 observations) and January 1973
until October 2005 (394 observations).

[Insert Tables 2 to 5 here]

5.2 Estimation results

We begin with formal specification testing of the Markov-switching model against linear
alternatives. Hansen (1992, 1996) and Garcia (1998) propose a standardized likelihood

ratio (LR) test in order to provide (asymptotically) valid inference. Hansen’s (1992)
approach gives a bound on the asymptotic null-distribution of the standardized LR
test. However, this test procedure is computationally demanding and infeasible in our
state-space estimation framework. By contrast, in a predecessor version of Ang and
Bekaert (2002), the authors suggest that the true underlying null-distribution of the

conventional LR test can be approximated by a χ2(q) distribution, where the degree-

of-freedom parameter q equals the number of linearly independent restrictions under

the null hypothesis. Table 2 displays the LR test statistics for the artificial Evans-
6Cf. the website http://www.econ.yale.edu/shiller/.
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processes. The LR test statistics are so extreme that they exceed all critical values
used in practice, thus endorsing the Markov-switching specification for our artifical

data sets. Even more overwhelming evidence in favor of Markov-switching is found for
all our real-world data sets in Table 4.

Next, we analyze the point estimates of our state-space models with Markov-switch-
ing. We first consider the trajectories of the Evans-processes and then address our
real-world data sets. Table 3 reveals that the bubble parameters 1/ψ1 and 1/ψ2 are
significantly different from zero for the majority of the Evans-processes. Moreover, it

is obvious without formal statistical testing that the majority of the estimated bubble

coefficients are significantly different from each other across both regimes. The standard
deviations ση of the bubble innovation term are significantly different from zero at
the 5% level. By contrast, the results for the standard deviation σδ of the dividend

innovation term appear to be less clear-cut. For the DGPs 1a, 2b, 2c and 3a we cannot
reject the null hypothesis ’σδ = 0’. All estimates of the transition probabilities p11 and

p22, although not statistically significant at conventional significance levels, are within
the expected range.

Table 5 displays the estimation result for our real-world data sets. Here, the bubble

parameters 1/ψ1 and 1/ψ2 are significant at conventional levels for all our samples.

Also, most of the bubble-parameters appear to differ significantly from each other
across both regimes. The standard deviations ση of the bubble innovation are all

insignificant while, by contrast, all standard deviations σδ of the dividend processes
are significantly different from zero at conventional significance levels. Again, the

transition probabilities p11 and p22 are within the expected ranges.

[Insert Figures 1 to 3 here]

Figures 1 to 3 display the smoothed regime-1 probabilities along with the respective
fundamental and price processes for the nine artificial Evans data sets. The two upper

panels in Figure 1 refer to the Evans-process 1a for which our method is capable of
indentifying three out of four bubbles. Only the second bubble, which lies in the first

half of the sample, is not detected. For the Evans-process 1b three bubbles exist two
of which are correctly identified by our methodology. Here, the unidentified bubble is
located in the second half of the sample. Finally, for the Evans-process 1c all bubbles
are correctly detected. In contrast to the Evans-processes 1a and 1b, the four bubbles

in the Evans-process 1c are of rather equal size. From this, one may conjecture that

our methodology is more successful in identifying homogeneously sized bubbles than
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heterogeneously sized bubbles.
For the Evans-process 2a (Figure 2) we see that the first huge price bubble is followed

by two tiny bubbles right after the crash of the initial huge bubble (occuring at the
observations 30 and 33). Here, our methodolgy detects the huge bubble but misses

both tiny bubbles. As time elapses, two further moderate bubbles arise both of which
are identified. We conjecture that our procedure has difficulties in detecting bubbles
that emerge immediately after the collapse of a preceding bubble.

In the Evans-process 2b we have a huge price bubble at the end of the sample
which is preceded by two small and one moderately sized bubbles. All four bubbles

are detected. Finally, the Evans-process 2c produces five bubbles. In this case, our
method only identifies the largest bubble in the sample.

Figure 3 displays the Evans-processes 3a, 3b and 3c. Here, the main difference to the

former Evans-trajectories is that the sample length was doubled to 200 observations.
As a result, the number of bubbles is considerably higher. For the Evans-process

3a only two collapsing bubbles are detected, the first located at the beginning, the
second located at the end of the sample. Obviously, our technology fails in identifying
intermediate bubbles. A similar result obtains for the Evans-process 3b where two

collapsing bubbles at the end of the sample can be identified. The Evans-process 3c
produces more collapsing bubbles than the Evans-processes 3a and 3b, many of which

are identified by our technology (particularly in the first half of the sample).

[Insert Figures 4 to 6 here]

Finally, we analyze our real-world data sets. The Figures 4 to 6 display the smoothed

regime-1 probabilities along with the price indexes for the respective countries. Figure
4 contains the results for the entire US data set ranging from 1871 to 2004. Here, the
smoothed probabilities clearly reflect the start of the great depression in 1929 and the

turmoil in world-wide financial markets prior to the beginning of the second World
War. However, since the complete time span analyzed covers more than 130 years, we
have split up the whole sample into three subsamples covering the periods 1871–1912,
1913–1954 and 1954–2004, respectively.

For the first US subsample (middle panels in Figure 4) we observe eruptions in the
smoothed regime-1 probabilities in the years 1873, 1877, 1880, 1886, 1893, 1900, 1904

and 1907. Except for the year 1900, the eruptions appear to be short-lived and rather
indicate minor crashes than longer-lasting speculative bubbles or collapsing periods.

For the second US subsample (lower panels in Figure 4) the number of eruptions in the
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smoothed probabilities is considerably smaller than in the first subsample. However,
our technology correctly indicates the peak of the 1929-bubble and the turmoil in

American financial markets prior to World War II.
In the third US subsample (upper panels in Figure 5) we observe strong eruptions

in the smoothed probabilities in the years 1963, 1973, 1977, 1987 until 1990 as well
as at the end of the 2002. The eruptions in 1973, 1987 and 2002 respectively reflect
the first oil crisis, the black monday and the collapse of the internet bubble. There

is another less pronounced peak in the smoothed probabilities in 1979 (not shaded in
Figure 5) reflecting the second oil crisis. The other more pronounced eruptions (like

those in 1963) might reflect minor crises that so far have not been described in the
bubble literature.

The middle panels in Figure 5 display the results for Brazil between 1994 and

2005. The smoothed probabilities exhibit eruptions during 1998 as well as at the
end/beginning of 1999/2000. The eruptions in 1998 can be explained by the reper-

cussion of the East Asian crisis, while the peak in 1999/2000 reflects the Brazilian
currency crisis.

In the smoothed regime-1 probabilities for Indonesia (lower panels of Figure 5) we

find three periods characterized by strong eruptions. The first lasts from the end of
1990 until mid-1992, the second from 1998 until the beginning of 2000, while the third

ranges from the end of 2001 until 2004. While we cannot explain the first wave of
eruptions from historical facts, we respectively attribute the second and the third wave
to the East Asian crisis and the collapse dot-com bubble with their long-lasting impacts
on many financial markets world-wide.

The last countries to be discussed are Malaysia and Japan (see Figure 6). For

Malaysia, we observe three periods with strong eruptions, namely (1) from the end of
1986 until the beginning of 1988, (2) from the beginning of 1994 until the end of 1994,
and (3) from the end of 1997 until the end of 2000. Here again, the third wave reflects

the East Asian crisis. The smoothed probabilities for Japan unambiguously indicate

the implosion of the famous Japanese bubble around the beginning of the year 1990. It
is interesting to note, however, that Kindleberger and Aliber (2005) report three other

bubbles in Japan between 1985 and 2000 which our technology does not detect.

6 Concluding remarks

In this paper we propose a new methodology for detecting speculative bubbles in stock-
price data. The technology constitutes a state-space approach that is enriched by
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Markov-switching elements. Up to now, this procedure has mainly been used in the field
of business-cycle research. Our innovation is to adapt this technology to Campbell and

Shiller’s (1988a, b) present-value stock-price model. In the state-space representation
of this model, the unobservable state vector constitutes the bubble component and

by allowing the bubble process to switch between two regimes according to a first-
order Markov chain, we are able to statistically discriminate moderately growing from
explosive periods in the bubble process.

In order to check the validity of our econometric procedure, we apply it to a number
artificial bubble processes which we generate according to the algorithm suggested by

Evans (1991). Furthermore, we analyze real-world data using the well-known stock
and dividend data set by Robert Shiller as well as stock-price data for various other
countries which are known to have experienced severe bubble periods.

The results of our investigation are twofold. First, we find statistically significant
regime-switching structures in the stock-price bubble processes of our real-world data

sets. Consequently, regime-switching should be taken into account in any theoretical
bubble-model and, in particular, should be included in econometric specifications. Sec-
ond, our Markov-switching approach is able to detect many bubbles in our artificial

Evans-processes as well as in our real-world data sets. For the countries considered, our
(smoothed) regime-probability technique identifies most speculative periods as classi-

fied by Kindleberger and Aliber (1995).
A potential line of future research might start from our empirical observation that

Markov-switching specifications may adequately capture the dynamics of stock-price
bubbles. This knowledge should be integrated into conventional methods designed to

detect real-time stock-price bubbles. Furthermore, it would be interesting to apply

our procedure to other artificial bubble processes, for example to those suggested by
Charemza and Deadman (1995).
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Figure 1: Smoothed regime-1 probabilities and price processes for the Evans-processes
1a, 1b, 1c
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Figure 2: Smoothed regime-1 probabilities and price processes for the Evans-processes
2a, 2b, 2c
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Figure 3: Smoothed regime-1 probabilities and price processes for the Evans-processes
3a, 3b, 3c
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Figure 4: Smoothed regime-1 probabilities and stock prices for the USA (1871-2004,
1871-1912, 1913-1954)
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Figure 5: Smoothed regime-1 probabilities and stock prices for the USA (1955-2004),
Brazil (1994-2005), Indonesia (1990-2005)
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Figure 6: Smoothed regime-1 probabilities and stock prices for Malaysia (1986-2005),
Japan (1973-2005)
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Table 1
Parameter specifications for the bubbly stock-price processes from Eqs. (29) to (32)

DGP DGP DGP
1a, 1b, 1c 2a, 2b, 2c 3a, 3b, 3c

Number of observations 100 100 200
α 1.0000 1.0000 1.0000
τ2 0.0025 0.0025 0.0025
r 0.0500 0.0500 0.0500
δ 0.5000 0.5000 0.5000
D0 1.3000 1.3000 1.3000
B0 0.5000 0.5000 0.5000
σ2

ε 0.1574 0.1574 0.1574
π 0.8500 0.5000 0.5000
Scaling of the bubble 20.0000 20.0000 20.0000



Table 2
Tests for Markov-switching property

Log Likelihood Log Likelihood Likelihood Ratio
Markov-switching Linear Test
Model Model Statistic

DGP 1a 292.8283 52.5920 480.4726
DGP 1b 295.2181 51.0532 488.3298
DGP 1c 369.2432 26.8172 684.8520
DGP 2a 370.7072 214.2220 312.9704
DGP 2b 311.9050 184.0089 255.7922
DGP 2c 357.5659 226.8750 261.3818
DGP 3a 618.9616 163.9522 910.0188
DGP 3b 552.5225 112.7132 879.6186
DGP 3c 368.1439 94.1706 547.9466



Table 3
State-space model with Markov-switching

1/ψ1 1/ψ2 ση σδ p11 p22 Log Likelihood
DGP 1a 0.1486 −0.0095 3.9869 0.3334 0.4281 0.9594 292.8283

(0.0401) (0.0012) (0.3466) (1.3215) (0.9780) (0.6107)
DGP 1b −0.0806 14.5476 3.0705 2.7358 0.2398 0.9878 295.2181

(0.0148) (10.3904) (0.4906) (0.4692) (1.7256) (0.9705)
DGP 1c 1.6819 −0.1022 1.1125 0.7014 0.9508 0.4507 369.2432

(0.6151) (0.0085) (0.0812) (0.1005) (2.7624) (0.2699)
DGP 2a 1.2373 0.3450 3.7902 5.3929 0.9502 0.9899 370.7072

(0.4535) (0.1660) (1.8847) (0.5271) (0.5034) (3.3904)
DGP 2b 0.1503 −3.2366 4.2380 2.2610 0.6460 0.9889 311.9050

(0.0153) (1.5296) (0.7146) (1.2470) (1.1828) (0.9853)
DGP 2c −0.1319 −3.4928 8.5586 2.1576 0.8337 0.9997 357.5659

(0.0248) (7.1950) (0.8380) (1.9674) (6.2651) (5.4029)
DGP 3a 0.0110 −0.1725 5.1182 0.5852 0.9947 0.5356 618.9616

(0.0014) (0.0177) (0.2879) (0.6587) (1.0534) (0.8133)
DGP 3b 9.7536 −0.1729 2.8405 1.7893 0.9918 0.3621 552.5225

(5.4382) (0.0117) (0.4314) (0.4108) (1.0427) (1.4256)
DGP 3c −0.0713 −0.3994 0.9445 0.6846 0.9693 0.5626 368.1439

(0.0065) (0.0251) (0.2356) (0.1968) (0.5040) (0.8354)
Note: 1/ψ1 and 1/ψ2 are the autoregressive parameters in the Markov-switching state-space model
representing the two-regime counterpart of the single-regime bubble process (10). ση and σδ are the
standard deviations of the bubble and dividend processes (10) and (6). p11 = Pr{St = 1|St−1 = 1}
and p22 = Pr{St = 2|St−1 = 2} are the transition probabilities of the two-regime model. Standard
errors are in parentheses.



Table 4
Tests for Markov-switching property (real-world data sets)

Log Likelihood Log Likelihood Likelihood Ratio
Markov-switching Linear Test
Model Model Statistic

USA 1871-2004 −2105.1168 −8998.9775 13787.7214
USA 1871-1912 −795.1942 −2919.4789 4248.5694
USA 1913-1954 −524.8847 −2547.8290 4045.8886
USA 1955-2004 −939.6068 −3823.2714 5767.3292
Brazil 60.6232 −233.2862 587.8188
Indonesia 83.5528 −273.0753 713.2562
Malaysia 82.5899 −525.8668 1216.9134
Japan −64.2102 −1336.3819 2544.3434



Table 5
State space model with Markov-switching (real-world data sets)

1/ψ1 1/ψ2 ση σδ p11 p22 Log Likelihood
USA 0.4644 0.2740 0.0002 0.0452 0.9690 0.9539 −2105.1168
1871-2004 (0.0206) (0.0103) (0.0299) (0.0020) (0.2923) (0.2149)
USA 0.4565 −0.2489 0.0001 0.0315 0.9424 0.9641 −795.1942
1871-1912 (0.0194) (0.0068) (0.1841) (0.0032) (0.2835) (0.2626)
USA 0.2776 −0.4913 0.0002 0.0567 0.9733 0.9737 −524.8847
1913-1954 (0.0133) (0.0204) (0.0996) (0.0033) (0.3951) (0.4105)
USA 0.2711 0.1556 0.0002 0.0366 0.8518 0.9844 −939.6068
1955-2004 (0.0172) (0.0122) (0.0608) (0.0033) (0.4210) (0.5460)
Brazil 1.5059 0.6481 0.1489 0.1216 0.4156 0.9711 60.6232

(0.1638) (0.1050) (0.0843) (0.0331) (1.1663) (0.9223)
Indonesia 2.4959 0.9636 0.0000 0.1839 0.9842 0.9409 83.5528

(0.4362) (0.1146) (0.0775) (0.0141) (0.7606) (0.8551)
Malaysia 2.1041 0.8257 0.0006 0.1497 0.9747 0.9083 82.5899

(0.3046) (0.0719) (1.2465) (0.0126) (0.5244) (0.4517)
Japan 2.5482 0.9742 0.0000 0.0994 0.9944 0.7964 −64.2102

(0.6712) (0.0680) (0.1467) (0.0080) (1.1556) (0.7383)
Note: 1/ψ1 and 1/ψ2 are the autoregressive parameters in the Markov-switching state-space model
representing the two-regime counterpart of the single-regime bubble process (10). ση and σδ are the
standard deviations of the bubble and dividend processes (10) and (6). p11 = Pr{St = 1|St−1 = 1}
and p22 = Pr{St = 2|St−1 = 2} are the transition probabilities of the two-regime model. Standard
errors are in parentheses.
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