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Abstract

Several formal methods have been proposed to check local identification in linearized DSGE

models using rank criteria. Recently there has been huge progress in the estimation of non-linear

DSGE models, yet formal identification criteria are missing. The contribution of the paper is

threefold: First, we extend the existent methods to higher-order approximations and establish

rank criteria for local identification given the pruned state-space representation. It is shown that

this may improve overall identification of a DSGE model via imposing additional restrictions on

the moments and spectrum. Second, we derive analytical derivatives of the reduced-form ma-

trices, unconditional moments and spectral density for the pruned state-space system. Third,

using a second-order approximation, we are able to identify previously non-identifiable parame-

ters: namely the parameters governing the investment adjustment costs in the Kim (2003) model

and all parameters in the An and Schorfheide (2007) model, including the coefficients of the

Taylor-rule.
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1 Introduction

Many different methods for solving and estimating DSGE models have been developed and used in

order to get a detailed analysis and thorough estimation of dynamic macroeconomic relationships.

Recently, the question of identification of DSGE models has proven to be of major importance,

especially since identification of a model precedes estimation and inference. Several formal methods

have been proposed to check local identification in linearized DSGE models via rank criteria (Iskrev

2010; Komunjer and Ng 2011; Qu and Tkachenko 2012) or Bayesian indicators (Koop, Pesaran,

and Smith 2013), for a review and methodological comparison of these techniques, see Mutschler

(2014). Whereas there is a growing literature on non-linear estimation of DSGE models (Andreasen

2011; Andreasen 2013; Fernández-Villaverde and Rubio-Ramı́rez 2007; Herbst and Schorfheide 2013;

Ivashchenko 2014; Kollman 2014), all identification methods focus on the linear approximation of

the DSGE model to the first order. In this paper we will relax this assumption and establish rank

criteria for non-linear DSGE models solved by higher-order approximation of the policy functions.

Intuitively, this may yield additional restrictions on the moments and spectrum of the model that

can be used to identify previously unidentified (sets of) parameters.

However, there is a caveat, since higher-order approximations sometimes yield explosive or non-

stationary processes. Therefore, we use the pruning scheme proposed by Kim et al. (2008), who show

that the pruned state-space is stationary and ergodic. Further Andreasen, Fernández-Villaverde, and

Rubio-Ramı́rez (2014) derive closed-form expressions for unconditional moments up to third-order

approximations. Exploiting these results, the contribution of this paper is threefold. First, we show

how to extend the existent identification criteria based on ranks for higher-order approximations.

Throughout the exposition we focus on a second-order approximation, since extending ideas and

propositions is – apart from notation – conceptually straightforward for higher-order approximations.

Second, we show how to analytically calculate the Jacobians of the mean, autocovariogram, and

the spectrum of the pruned state-space w.r.t. the deep parameters of the model. Third, to make

our exposition illustrative, all methods are applied on two models that are known to have lack of

identification in their (log-)linearized versions: the Kim (2003) and the An and Schorfheide (2007)

model. In particular, we show that the parameters governing the adjustment costs in Kim (2003) as

well as all parameters including the coefficients of the Taylor-rule in An and Schorfheide (2007) can

be identified using a second-order approximation and the pruned state-space.

The ideas and procedures derived are useful both from a theoretical and applied point of view.

Theoretically, this paper adds to the literature on local identification of non-linear DSGE models by

establishing rank criteria and analytic derivatives for higher-order approximations using the pruned

state-space representation. Based on these findings, we believe that the suggested approach is a useful

new tool before actually taking non-linear DSGE models to data. In particular, an applied researcher

can check whether unidentified parameters may be estimable using higher-order approximations

even before she actually uses tedious non-linear estimation methods. Our Matlab-code is model-

independent and can be found on the homepage of the author.
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2 DSGE framework

Let Et be the expectation operator conditional on information available at time t, then

0 = Etf (xt+1, yt+1, xt, yt|θ) ,

xt+1 = h(xt, ut+1, σ|θ),

yt = g(xt−1, ut, σ|θ)

is called the general DSGE model with deep parameters θ, states xt, controls yt, stochastic inno-

vations ut, and perturbation parameter σ, which can be cast into a non-linear first-order system of

expectational difference equations f . For the sake of notation, we assume that all control variables

are observable. Further, ut is iid with E(ut) = 0 and E(utu
′
t) =: Σ = σ2ηη′; thus, σ is set to

be dependent on the standard deviation of one of the shocks, while scaling all other variances and

cross-correlations through η accordingly. See appendix E on how to squeeze the example models into

this framework.1

The solution of such rational expectation models is characterized by so-called policy-functions, g

and h, that solve (at least approximately) the system of equations f . We follow Schmitt-Grohé and

Uribe (2004) and use perturbation techniques to solve the model around the non-stochastic steady-

state given by x̄ = h(x̄, 0, 0|θ), ȳ = g(x̄, 0, 0|θ) and f(x̄, ȳ, x̄, ȳ|θ) = 0. Moreover, we exploit ideas of

Gomme and Klein (2011) to approximate the policy functions using the Magnus and Neudecker (1999)

definition of the Hessian.2 Denote the Jacobian of f evaluated at the steady-state as Df(x̄, ȳ) :=(
∂f(x̄,ȳ)
∂x′t+1

∂f(x̄,ȳ)
∂y′t+1

∂f(x̄,ȳ)
∂x′t

∂f(x̄,ȳ)
∂y′t

)
:=
(
f1 f2 f3 f4

)
, then

Hf(x̄, ȳ) := Dvec([Df(x̄, ȳ)]′)

is defined as the Magnus-Neudecker Hessian of f evaluated at the non-stochastic steady-state. This

definition simplifies the computations as well as the analytical derivatives, since no tensor notation

is needed and basic matrix algebra can be used, see appendix A for further reference.3 Define

vt|t+1 := (x′t − x̄′, u′t+1)′ with nv = nx + nu, then the second-order Taylor approximation at the

non-stochastic steady-state is given by

x̂t+1 = hv · vt|t+1 +
1

2

[
Inx ⊗ v′t|t+1

]
· hvv · v′t|t+1 +

1

2
σ2hσσ, (1)

ŷt+1 = gv · vt|t+1 +
1

2

[
Iny ⊗ v′t|t+1

]
· gvv · v′t|t+1 +

1

2
σ2gσσ, (2)

where x̂t+1 = xt+1− x̄ denotes deviations from steady-state. Further gv and gσ are the gradients of g

with respect to vt|t+1 and σ respectively, gvv and gσσ the corresponding Magnus-Neudecker Hessians,

1This is basically a mixture of the Dynare framework (innovations enter non-linearly, no distinction of states and
controls) and the framework of Schmitt-Grohé and Uribe (2004) (innovations enter linearly, distinction of states and
controls). It can be shown that both frameworks are equivalent given an extended state vector, see the technical
appendix of Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2014, Ch. 8). In the same fashion, we are able
to add measurement equations and measurement errors by simply extending our model equations, state and control
variables accordingly. A selection matrix is then premultiplied to get the policy functions of observable variables.

2For a third-order approximation using Magnus-Neudecker Hessians see Binning (2013).
3For recent literature in favor of this definition see also Magnus (2010) and Pollock (2013).
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all evaluated at the non-stochastic steady-state. The same notation applies to ŷt, hv, hσ, hvv and

hσσ. Schmitt-Grohé and Uribe (2004) show that all linear terms as well as cross-terms in σ, i.e.

gσ, gvσ, gσv, hσ, hvσ, hσv, are equal to zero, since the approximation is around σ = 0. Notice also,

that in a linearization to the first-order (or log-linearization) all terms lead by 1/2 drop out.

There are several methods and algorithms to calculate the matrices hv and gv, since these are the

coefficients of a first-order linearization or log-linearization of the model. We follow Klein (2000) to

obtain hv and gv using the generalized Schur decomposition.4 The other matrices can be calculated

by inserting the policy functions into the model equations and noting that the expression is known

at the non-stochastic steady-state. Therefore, all derivatives of f must be 0 when evaluated at the

non-stochastic steady-state. Differentiating f twice using the chain-rule of Magnus and Neudecker

(1999, p. 110), evaluating the Jacobian Df = (f1 f2 f3 f4) and Hessian H of f at the non-stochastic

steady-state, and setting it to zero yields (after some algebra):[
vec(gvv)

vec(hvv)

]
= −Q−1vec(R),

[
hss

gss

]
= −S−1U, (3)

with

Q =
[
h′v ⊗ f2 ⊗ h′v + Inv ⊗ f4 ⊗ Inv Inv ⊗ (f1 ⊗ Inv + f2gv ⊗ Inv )

]
,

R = (Inv+ny ⊗M ′)HM,

S =
[
f1 + f2gv f2 + f4

]
,

U = f2trm[(Iny ⊗ (η̃η̃′))gvv] + trm[(Inv+ny ⊗N ′)HN(η̃η̃′)],

M =


hv

gvhv

Inv

gv

 , N =

 Inv

gv

0(nv+ny)×(nv)

 , η̃ =

(
0nx×nu

η

)

and trm defines the matrix trace of an nm × n matrix [Y ′1 Y ′2 . . . Y ′m]′ as the m × 1 vector

[tr(Y1) tr(Y2) . . . tr(Ym)]′. See Gomme and Klein (2011) for the derivation. For our purpose it

is sufficient to note that there exist analytical closed-form solutions that we will differentiate with

respect to the deep parameters in section 4.

3 Pruned state-space system

The approximations (1) and (2) are a straightforward application of Taylor series expansions in the

state variables. However, simulation studies show that due to artificial fixed points, higher-order

approximations often generate explosive time-paths even though the linear approximation is stable.

Thus, the model may neither be stationary nor imply an ergodic probability distribution, both

assumptions are essential for identification and estimation purposes. Thus, Kim et al. (2008) propose

4See Anderson (2008) for a comparison of algorithms, which are basically all equivalent and differ only (slightly) in
computational burden. Further, all provide and check the Blanchard and Kahn (1980) conditions that are necessary
in order to have a stable saddle-path solution, i.e. a unique mapping between state and control variables.
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the pruning scheme, in which one leaves out terms in the solution that have higher-order effects

than the approximation order.5 For instance, given a second-order approximation, we decompose

the state vector into first-order (x̂f ) and second-order (x̂st ) effects (x̂t+1 = x̂ft+1 + x̂st+1), and set

up the law of motions for these variables preserving only effects up to second-order (see Andreasen,

Fernández-Villaverde, and Rubio-Ramı́rez (2014) for details):

x̂ft+1 = hxx̂
f
t + huut+1 (4)

x̂st+1 = hxx̂
s
t +

1

2
Hxx

(
x̂ft ⊗ x̂

f
t

)
+

1

2
Huu (ut+1 ⊗ ut+1)

+
1

2
Hxu

(
x̂ft ⊗ ut+1

)
+

1

2
Hux

(
ut+1 ⊗ x̂ft

)
+

1

2
hσσσ

2
(5)

ŷt+1 = gx(x̂ft + x̂st ) + guut+1 +
1

2
Gxx

(
x̂ft ⊗ x̂

f
t

)
+

1

2
Guu (ut+1 ⊗ ut+1)

+
1

2
Gxu

(
x̂ft ⊗ ut+1

)
+

1

2
Gux

(
ut+1 ⊗ x̂ft

)
+

1

2
gσσσ

2
(6)

with Hxx being an nx × n2
x matrix containing all second-order terms for the i-th state variable in

the i-th row, whereas Gxx is an ny ×n2
x matrix containing all second-order terms for the i-th control

variable in the i-th row. Hxu, Hux, Gxu and Gux are accordingly shaped for the cross-terms of states

and shocks, and Huu and Guu contain the second-order terms for the product of shocks.6 Thus,

terms containing x̂ft ⊗ x̂st and x̂st ⊗ x̂st are left out, since they reflect third-order and fourth-order

effects which are higher than the approximation order.

It is convenient to extend the state vector to zt := [(x̂ft )′, (x̂st )
′, (x̂ft ⊗x̂

f
t )′]′, then equations (4), (5)

and (6) can be rewritten as a linear system of equations called the pruned state-space representation:

zt+1 = c+Azt +Bξt+1 (7)

ŷt+1 = d+ Czt +Dξt+1 (8)

5This may seem an ad-hoc procedure, however, pruning can also be theoretically founded as a Taylor expansion
in the perturbation parameter (Johnston, King, and Lie 2014; Lombardo and Uhlig 2014) or on an infinite moving
average representation (Lan and Meyer-Gohde 2013). Importantly the coefficient matrices are the same.

6Note that we separated vt−1|t back into states xt−1 and stochastic innovations ut; the solution matrices are

separated accordingly, for instance hv =

[
hx hu
0 0

]
and gv =

[
gx gu

]
. We separate the second-order solution

matrices in their Magnus-Neudecker definition, keeping track of terms belonging to states and shocks using index
matrices. The proposed notation can then be obtained respectively using Matlab’s permute and reshape functions.
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where

ξt+1 :=


ut+1

ut+1 ⊗ ut+1 − vec(Σ)

ut+1 ⊗ xft
xft ⊗ ut+1

 ,
c :=

 0
1
2hσσσ

2 + 1
2Huuvec(Σ)

(hu ⊗ hu)vec(Σ)

 ,
d :=

[
1
2gσσσ

2 + 1
2Guuvec(Σ)

]
,

A :=

hx 0 0

0 hx
1
2Hxx

0 0 hx ⊗ hx

 , B :=

hu 0 0 0

0 1
2Huu

1
2Hux

1
2Hxu

0 hu ⊗ hu hu ⊗ hx hx ⊗ hu

 ,
C :=

[
gx gx

1
2Gxx

]
, D :=

[
gu

1
2Guu

1
2Gux

1
2Gxu

]
.

Thus, conceptually we work in a state-space system with a linear law of motion in zt that is very

similar to the canonical ABCD representation of a log-linearized DSGE model; hence, many concepts

simply carry over.7 For instance, it can be shown that if the first-order approximation is stable, i.e.

all Eigenvalues of hx have modulus less than one, then the pruned state-space is also stable, i.e. all

higher-order terms are unique and all Eigenvalues of A have modulus less than one. Further if εt has

finite fourth moments, then the pruned state-space system has finite second moments.8

Standard results from VAR(1) systems can be thus used regarding the computation of uncondi-

tional moments and spectrum. First, it is trivial to show that ξt is iid with E(ξt) = 0 and finite

covariance matrix Σξ := E(ξtξ
′
t), since it is a function of x̂ft , ut+1 and ut+1⊗ut+1.9 The mean of the

extended state vector is equal to

µz := E(zt) = (I2nx+n2
x
−A)−1c. (9)

Intuitively the mean of the pruned state-space consists of two effects: The first-order effect (E(x̂ft ) =

E(xft )− x̄ = 0) simply states certainty-equivalence, i.e. the mean of xt is equal to the steady-state in

a first-order approximation. Using a second-order approximation we adjust the mean for risk given a

constant 1
2hσσσ

2 and the variance of the states vec(Σx) := E(x̂ft ⊗x̂
f
t ) = (In2

x
−hx)−1(hu⊗hu)vec(Σ).

For the covariance matrix Σz := E[(zt − µz)(zt − µz)′], we have

Σz = AΣzA
′ +BΣξB

′. (10)

Using an algorithm for Lyapunov equations or vectorization we can solve (10)

vec(Σz) = (I(2nx+n2
x)2 −A⊗A)−1vec(BΣξB

′)

and are hence able to calculate the autocovariances for t ∈ N \ {0}:

Σz(t) := E[(zt − E(zt))(z0 − E(z0))′] = AtΣz. (11)

7This approach also works for higher-order approximations. That is, appending the state vector accordingly, we
are always able to establish a system linear in the extended state vector.

8This is basically Proposition 1 in Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2014).
9Σξ can be partitioned into several submatrices which can be computed element-by-element.
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Since there is a linear relationship between yt and zt−1 in (8), we get closed-form expressions for the

unconditional moments of our controls. That is, for t ∈ N \ {0}

µy := E(yt) = ȳ + Cµz + d, (12)

Σy := E[(yt − µy)(yt − µy)′] = CΣzC
′ +DΣξD

′, (13)

Σy(t) := E[(yt − µy)(y0 − µy)′] = CΣz(t)C
′ = CAtΣzC

′. (14)

For the spectral density consider the vector-moving-average representation (VMA) of zt, that is

zt = µz +

∞∑
j=0

AjBξt−j .

Using equation (8) and lag-operator L, we thus get the VMA for our controls

yt − ȳ − Cµz − d =

∞∑
j=0

CAjBξt−j−1 +Dξt = Hξ(L
−1)ξt

with transfer function Hξ(z) = D +C
(
zI(2nx+n2

x)2 −A
)−1

B for z ∈ C.. Using the Fourier transfor-

mation for the lag-operator L the spectral density matrix Ωy is given by

Ωy(ω) =
1

2π
Hξ(e

−iω) · Σξ ·Hξ(e
−iω)∗, ω ∈ [−π;π], (15)

with ∗ denoting the conjugate transpose of a complex valued matrix.

Lastly, we are also able to derive the minimal state-space representation. This system is char-

acterized by the smallest possible dimension nx2 of the state vector that – given the evolution of

stochastic shocks – is able to capture all dynamics and has the familiar state-space solution. Denote

x̂2,t as the minimal state vector and z2,t := [(x̂f2,t)
′, (x̂s2,t)

′, (x̂f2,t ⊗ x̂
f
2,t)
′]′, then

z2,t+1 = c̃+ Ãz2,t + B̃ξ̃t+1, (16)

yt+1 − ȳ = d̃+ C̃z2,t + D̃ξ̃t+1. (17)

is the minimal representation of the pruned state-space. As DSGE models are based upon micro-

foundations x̂2,t is for small and medium-sized DSGE models not hard to determine.10

In summary, the pruned state-space representation is a stable system and has well-defined sta-

tistical properties, which we can exploit for our identification analysis. In particular, we see that an

approximation to higher orders yields additional restrictions on the first two moments and spectrum,

which may tighten identification. In section 5 it will be shown how to incorporate these additional

restrictions into formal identifiability criteria and tests, but first we discuss derivatives of these ob-

jects.

10For the derivation of this model representation and some practical issues regarding the minimal state vector see
Appendix D.
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4 Derivatives of solution matrices, moments and spectrum

To establish rank criteria we will need derivatives of all solution matrices, moments and spectrum

with respect to the deep parameters θ. Following ideas from Iskrev (2008) and Schmitt-Grohé and

Uribe (2012, Supplemental Material, Sec. A.3) we view f as well as the Jacobian of f as a function of

θ and of the steady-state vector xy(θ) := (x(θ)′, y(θ)′)′, which is also a function of θ. Thus, implicitly

we have f(xy(θ), θ) = 0. Differentiating yields

df :=
∂f(xy(θ), θ)

∂θ′
=

∂f

∂xy′
∂xy

∂θ′
+
∂f

∂θ′
= 0 ⇔ ∂xy

∂θ′
= −

[
∂f

∂xy′

]−1
∂f

∂θ′
.

This expression can easily be obtained analytically using e.g. MATLAB’s symbolic toolbox. The

derivative of the Jacobian Df(xy(θ), θ) with respect to θ is then given by

dDf :=
∂vec(Df(xy(θ), θ))

∂θ′
=
∂vec(Df)

∂xy′
∂xy

∂θ′
+
∂vec(Df)

∂θ′
.

Note that dDf can be partitioned into

dDf =


∂vec(∂f(xy)/∂x′t+1)

∂θ′

∂vec(∂f(xy)/∂y′t+1)

∂θ′

∂vec(∂f(xy)/∂x′t)
∂θ′

∂vec(∂f(xy)/∂y′t)
∂θ′

 =:


df1

df2

df3

df4

 .

This approach can be extended to calculate the analytical derivative of the Magnus-Neudecker-

Hessian with respect to θ, since H := Hf(xy(θ), θ):

dH :=
∂vec(Hf(xy(θ), θ))

∂θ′
=
∂vec(Hf)

∂xy′
∂xy

∂θ′
+
∂vec(Hf)

∂θ′
.

Our MATLAB code writes all analytical derivatives using symbolic expressions into script files for

further evaluation. For numerical derivatives we use the two-sided central difference method described

in appendix C. Note that we use the following notation: dX := ∂vec(X)
∂θ′ for the Jacobian of a matrix.

Derivatives of first-order solution matrices Let Kn,q be the commutation11 matrix of order

(n, q) and

F = −(h′vg
′
v ⊗ Inv+ny )df2 − (h′v ⊗ Inv+ny )df1 − (g′v ⊗ Inv+ny )df4 − df3,

11See Magnus and Neudecker (1999, p. 46) for the definition and Magnus and Neudecker (1999, p. 182) for an
application regarding derivatives.
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then the derivatives of the first-order solution matrices are given by:[
dgv

dhv

]
=
[
(h′v ⊗ f2) + (Inv ⊗ f4) (Inv ⊗ f2gv) + (Inv ⊗ f1)

]−1

· F,

dg′v = Kny,nvdgv,

dh′v = Knv,nvdhv,

dhtv = (Inv ⊗ (hv)
t−1)dhv + (h′v ⊗ Inv )dht−1

v , t ≥ 2.

See Schmitt-Grohé and Uribe (2012, Supplemental Material, Sec. A.3) for the derivation of these

results. Since we use indices to keep track of terms belonging to states and shocks in hv and gv, it is

straightforward to compute dhx, dhu, dgx and dgu by simply picking the corresponding rows of dhv

and dgv accordingly.

Derivatives of second-order solution matrices Differentiating (3) with respect to θ requires the

analytical derivatives of Q−1, R, S−1 and T . See appendix B for the derivation of these objects. Then

the analytical derivatives of the second-order solution matrices with respect to θ can be summarized

as

d

[
vec(gvv)

vec(hvv)

]
= −Q−1dR− (vec(R)′ ⊗ In2

v(nv+ny))dQ
−1,

d

[
hss

gss

]
= −(T ′ ⊗ Inv+ny )dS−1 − S−1dT.

The Jacobians of Hvv and Gvv are then simple permutations of the rows of dhvv and dgvv. Further

the separation into states and controls is tedious but straightforward using index matrices.

Derivatives of pruned state-space solution matrices Differentiating A, B, C, c and d with

respect to θ is a straightforward application of Algorithm 1 for partitioned matrices described in

appendix B. It requires the analytical derivatives of first- and second-order solution matrices (see

above) as well as of Σ, which is given analytically by the model. Having these Jacobians it is

straightforward to compute the derivatives of the minimal state-space solution matrices Ã, B̃, C̃, c̃

and d̃ by simply removing the entries corresponding to unnecessary states.

Derivatives of moments Differentiating the expressions for the means of zt (9) and yt (12) with

respect to θ requires the analytical derivatives of the pruned state-space solution matrices, whereas

differentiating the variance of zt (10), the variance of yt (13) and autocovariances of yt (14) is

straightforward using the vec-operator. The only tedious part is the derivation of dΣξ, see appendix
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B for more details. The analytical derivatives of the first two moments are then given by

dµz =
(
[(I2nx+n2

x
−A)′]−1 ⊗ (I2nx+n2

x
−A)−1

)
dA+ (I2nx+n2

x
−A)−1dc,

dµy = dȳ + Cdµz + (µ′z ⊗ Iny )dC + dd,

dΣz =
[
I(2nx+n2

x)2 − (A⊗A)
]−1 [

(AΣz ⊗ I2nx+n2
x
)dA+ (I2nx+n2

x
⊗AΣz)d(A′) + d(BΣξB

′)
]
,

dΣy = (CΣz ⊗ Iny )dC + (C ⊗ C)dΣz + (Iny ⊗ CΣz)d(C ′),

d(Σy(t)) = (Iny ⊗ CAtΣz)d(C ′) + (C ⊗ CAt)dΣz + (CΣz ⊗ C)d(At) + (CΣx(A′)t ⊗ Iny )dC.

where we used Theorem 1 of appendix B and d(X−1) = (−(X ′)−1 ⊗ X−1)dX, see Magnus and

Neudecker (1999, p. 184).

Derivative of spectral density We will now show how to obtain the derivative of Ωy(ω; θ0) w.r.t.

θ in equation (15) analytically. To this end, we divide the interval [−π;π] into N subintervals to

obtain N + 1 frequency indices, ωs denotes the s−th frequency in the partition. The following steps

can be done in parallel: For each ωs(s = 1, . . . N + 1) we first compute the derivative of Hξ(e
−iωs)

and its conjugate transpose using the expression in appendix B. Then we have for each ωs

dΩy(ωs) =
1

2π

[
(H∗

′

ξ Σξ ⊗ Iny )dHξ + (H∗
′

ξ ⊗Hξ)d(Σξ) + (Iny ⊗HξΣξ)d(H∗ξ )
]
.

5 Identification criteria based on rank conditions

Suppose that data is generated by the model with parameter vector θ0. The criteria we will de-

rive stem basically all from Theorem 4 in Rothenberg (1971), which essentially states identifiability

conditions based on injectivity of functions. Formally, given an objective function f(θ) a sufficient

condition for θ0 being globally identified is given by

f(θ1) = f(θ0)⇒ θ1 = θ0

for any θ1 ∈ Θ. If this is only true for values θ in an open neighborhood of θ0, the identification

of θ0 is local. Since most estimation methods in the econometric DSGE literature – e.g. full-

information likelihood methods or limited-information methods like impulse-response matching or

GMM – exploit information from the first two moments or spectrum of data, we will focus on the

mean, autocovariances and spectrum of observable variables. Since population moments are functions

of data, the fundamental idea is to check, whether the mapping from θ to these population moments

is unique. Then basic mathematical results for systems of equations can be applied. This set of

criteria is the most basic and the closest to the ideas of the early work on identification in systems of

linear equations, since it is based upon the uniqueness of a solution (Koopmans and Reiersøl 1950;

Fisher 1966; Hannan 1976). Consequently, rank and order conditions are going to be derived, and it

is also possible to pinpoint the (sets of) parameters that are indistinguishable.

In the literature three formal methods based on ranks have been proposed to check identification

in linearized DSGE models via (i) observational equivalent first and second moments (Iskrev 2010),

9



(ii) observational equivalent spectral densities (Qu and Tkachenko 2012) and (iii) implications from

control theory for observational equivalent minimal systems (Komunjer and Ng 2011). The pruned

state-space is a linear system in the extended state vector zt and has well-defined statistical prop-

erties, a VMA as well as a minimal representation. Thus, we are able to extend all aforementioned

methods based on ranks for our non-linear DSGE model by simply using the pruned state-space rep-

resentation (PSS).12 All proofs follow the original theorems and propositions with only slight changes

and modifications in model representation and assumptions; they can be requested from the author.

Proposition 1 (Iskrev PSS) For t = 0, 1, . . . , T − 1 stack all theoretical first and second moments

given by equations (12), (13) and (14) into a vector

m(θ, T ) :=
(
µ′y vech(Σy)′ vec(Σy(1))′ . . . vec(Σy(T − 1))′

)′
.

Assume that m(θ, q) is a continuously differentiable functions of θ ∈ Θ. Let θ0 ∈ Θ be a regular

point, then θ is locally identifiable at a point θ0 from the mean and autocovariogram of yt if and only

if

M(q) :=
∂m(θ0, q)

∂θ′
(18)

has a full column rank equal to the number of parameters for q ≤ T .

Proof Follows Iskrev (2010, Theorem 2) and Rothenberg (1971, Theorem 6).

Remark In other words, we exploit Iskrev (2010)’s approach and insert the expressions for the

first and second moments of the pruned state-space into a vector. The test checks whether these

moments are uniquely determined by the deep parameters. This gives immediately rise to a necessary

condition: the number of identifiable parameters does not exceed the dimension of m(θ, T ). Iskrev

(2010) also proposes a necessary condition, that is checking injectivity of the mapping from the

deep parameters to the solution matrices. For this, stack all elements of the mean and the solution

matrices that depend on θ into a vector τ :

τ(θ) :=
(
ȳ′ c′ d′ vec(A)′ vec(C)′ vech(BΣξB

′)′ vech(DΣξD
′)′
)′

and consider the factorization M(q) = ∂m(θ,q)
∂τ(θ)′

∂τ(θ)
∂θ′ . An immediate corollary implies that a point θ0

is locally identifiable only if the rank of

J :=
∂τ(θ0)

∂θ′
(19)

at θ0 is equal to nθ. This condition is, however, only necessary, because τ may be unidentifiable.

Proposition 2 (Qu & Tkachenko PSS) Assume that the spectral density in equation (15) is con-

tinuous in ω and continuous and differentiable in θ ∈ Θ. Let θ0 ∈ Θ be a regular point, then θ is

12Note that we work with a second-order approximation for illustration purposes. Higher-order approximations are
straightforward extensions of the proposed concepts and ideas.
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locally identifiable at a point θ0 from the mean and spectrum of yt if and only if

Ḡ(θ0) =

∫ π

−π

(
∂vec(Ωy(ω; θ0)′)

∂θ′

)′(
∂vec(Ωy(ω; θ0))

∂θ′

)
dω +

∂µy(θ0)′

∂θ

∂µy(θ0)

∂θ′

is nonsingular, i.e. its rank is equal to the number of parameters.

Proof Follows Qu and Tkachenko (2012, Theorem 2).

Remark Similar to Iskrev (2010)’s approach, Qu and Tkachenko (2012) focus on the dynamic struc-

ture of the DSGE model; however, they work in the frequency domain.13 We exploit their ideas and

check whether the mean and spectrum of observables is uniquely determined by the deep parameters

at all frequencies using the pruned state-space representation. Note, that even when using analytical

derivatives we still have to divide the interval [−π;π] into sufficient subintervals N to numerically

approximate the integral.14 That is, we can compute Ḡ(θ0) using

Ḡ(θ0) ≈ 2π

N + 1

N+1∑
s=1

dΩy(ωs, θ0)′dΩy(ωs, θ0) + dµy(θ0)′dµy(θ0).

The dimension of Ḡ(θ0) is always nθ × nθ. Focusing on Ḡ(θ0) is similar to Rothenberg (1971), who

looks at the Hessian of the parametric density function in the Gaussian case. In fact, it can be shown

that for the Normal distribution both approaches are equivalent. Moreover, in the applications, we

exclude the mean restrictions (dµy(θ0)) to check whether the parameters are identifiable only through

the spectrum. We denote the corresponding matrix with G(θ0).

Proposition 3 (Komunjer & Ng PSS) Consider the minimal DSGE model given in equations

(16) and (17). Assume that Λ : θ 7→ Λ(θ) is continuously differentiable on Θ with Λ(θ) :=(
vec(Ã)′, vec(B̃)′, vec(C̃)′, vec(D̃)′, vech(Σξ̃)

′
)′

. Further denote Ξnξ as the left-inverse of the n2
ξ +

nξ(nξ + 1)/2 duplication matrix Gnξ for vech(Σξ).
15 Let θ0 ∈ Θ be a regular point, then θ is locally

identifiable at a point θ0 from the mean, autocovariances and spectrum of yt if and only if

∆̄(θ0) :=

(
dµd(θ0) 0ny×nz22

0ny×nξ̃2

∆Λ(θ0) ∆T (θ0) ∆U (θ0)

)
:=



dµy 0ny×nz22
0ny×n2

ξ

dÃ Ã′ ⊗ Inz2 − Inz2 ⊗ Ã 0n2
z2
×n2

ξ

dB̃ B̃′ ⊗ Inz2 Inξ ⊗ B̃
dC̃ −Inz2 ⊗ C̃ 0nynz2×n2

ξ

dD̃ 0nynξ̃×n2
z2

Inξ ⊗ D̃
∂vech(Σξ̃)

∂θ′ 0(nξ̃(nξ̃+1)/2)×n2
z2

−2Ξnξ̃ [Σξ̃ ⊗ Inξ̃ ]


13If the spectral density matrix is continuous there is a one-to-one relationship to the autocovariogram Σd(j) =∫ π
−π e

ikωΩd(ω, θ)dω, j = 0,±1, . . . , this is known as the Wiener-Khinchin theorem.
14Regarding numerical derivatives we use the two-sided central difference method described in appendix C to

compute for each ωs the non-vectorized derivative
∂Ωy(ωs;θ0)

∂θj
and stack these into a big matrix. The typical el-

ement of Ḡ is then given by Ḡjk(θ) =
∫ π
−π tr

{
∂Ωy(ω;θ)

∂θj

∂Ωy(ω;θ)

∂θk

}
dω which can be approximated by Ḡjk(θ0) ≈

2π
N+1

∑N+1
s=1 tr

{
∂Ωy(ωs;θ0)

∂θj

∂Ωy(ωs;θ0)

∂θk

}
with j, k = 1, . . . , nθ.

15See Magnus and Neudecker (1999, p. 49) for the definition of the duplication matrix.
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has full column rank equal to nθ + n2
z2 + n2

ξ̃
.

Proof Follows Komunjer and Ng (2011, Proposition 3) and Hannan (1971, Theorem 1).

Remark Based upon results from control theory for minimal systems Komunjer and Ng (2011)

derive restrictions implied by equivalent spectral densities (or equivalent autocovariances) without

actually computing them as in Propositions 1 and 2.16 Intuitively, equivalent spectral densities

arise if either (i) for a given size of shocks, each transfer function is potentially obtained from a

multitude of quadruples of solution matrices, or (ii) there are many pairs of transfer functions and

size of shocks that jointly generate the same spectral density. In ∆̄(θ0) there are four blocks to

consider: (1) The rank of the first ny rows must equal nθ, if the mean is uniquely determined by

the deep parameters. (2) The rank of ∆Λ(θ0) must equal nθ, if the solution matrices are sensitive

to changes in parameters. (3) The rank of ∆T (θ0) must equal n2
z2 so that the identity matrix is

the only local similarity transformation. In other words, full rank of ∆T means there exist only

one quadruple generating the z-Transform for the spectral density. (4) The rank of ∆U (θ0) must

equal n2
ξ̃

so that the spectral factorization is locally uniquely determined. Put differently, full rank of

∆U indicates that there exist a unique pair of z-Transform and dynamic structure of the stochastic

innovations that generate the spectral density. Further, we also get a necessary order condition:

nθ + n2
z2 + n2

ξ̃
≤ ny + (nz2 + ny)(nz2 + nξ̃) + nξ̃(nξ̃ + 1)/2.

6 Implementation

All presented methods exploit the dynamic structure of the pruned solution of a non-linear DSGE

model to define mappings and establish conditions for local injectivity of the mappings. For all

procedures we are able to derive necessary as well as sufficient conditions for identification based on

ranks of Jacobians. For calculating the ranks we use the Singular-Value-Decomposition and count

the non-zero entries on the main diagonal. Obviously, this requires a specification of the tolerance

level, for which we use on the one hand a range from 1e-3 to 1e-19, and on the other hand a robust

tolerance level that depends on the size of the matrix (max(size(X)) × eps(norm(X))). Strictly

speaking, the criteria are a yes or no condition. However, if a parameter is identified for very large

tolerance levels, then it is most likely strongly identified. If it is identified only for very low levels,

then it is most likely weakly identified. In the case of rank deficiency we are able to pinpoint sets of

problematic parameters by analyzing the nullspace. This will be a vector of zeros, if a parameter does

not affect the objective at hand. Further the columns that are linearly dependent indicate that these

sets of parameters are indistinguishable. While this approach is computationally very fast, we find

that in some cases there were redundancies in the subsets, since larger subsets sometimes include

smaller ones. Thus, a more robust method is to consider the powerset and check the criteria for

all possible subsets of parameters. In our experience this Brute-Force approach yields more reliable

results and is computationally just slightly slower, because, if we find a subset of parameters that

are not identified, we can exclude that subset from higher-order subsets.

16Komunjer and Ng (2011) actually establish two conditions for identification depending on the relation between the
number of shocks and observables. Here we focus on singular and squared systems (nε ≤ ny) and assume fundamental
innovations. Moreover, in the commonly used squared case (nε = ny) both conditions coincide.
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There are also some further numerical issues at hand. In particular choosing the lag order T as

well as the number of subintervals N for the frequencies may change results, since strictly speaking

the criteria are only valid for T,N → ∞. In practice, however, this is not a question of heavily

sensitive results17, but rather one of speed: the higher T or N , the more time the calculations need.

Komunjer and Ng (2011)’s approach is hence the fastest, since we only have to evaluate the solution

matrices and their derivatives (which we also have to do for the other criteria). In this line of thought,

note that all methods depend heavily on the solution matrices and suffer from possible numerical

error of the approximation algorithm. However, since we use the same framework and algorithms

across methods, we are able to neglect this effect in our applications in section 7.

The different interpretations of Iskrev’s and Komunjer and Ng’s criteria can also be used as

diagnostics for model building. For instance both J as well as ∆Λ check the mapping from the

structural parameters to the pruned state-space parameters (note that J also includes the mean).

The evaluation might detect parameters that do not influence the reduced-form and may be thus

obsolete. A researcher is hence able to reparametrize the model prior to estimation. Moreover, given

a known shock a rank deficient ∆ΛT indicates that two structures (e.g. two different policies) might

cause the same impulse response of the model, so we have to be careful interpreting the importance

of shocks. In contrast given a rank deficient ∆ΛU we cannot be sure, whether it is the size of the

shock or a similar propagating mechanisms, that yields the same dynamic structure of the model.

Qu and Tkachenko (2012)’s test does not give such diagnostics, however, their approach can be used

directly for a quasi-maximum likelihood estimation in the frequency domain. Moreover, it is possible

to get insight into the size of the local neighborhood of the unidentified parameters via so-called

non-identification curves.

Lastly, all procedures check only local identification. Thus, one has to make sure that this

procedure is valid for a sufficient range of parameters. Therefore, in our applications, we check all

criteria given first a specific point (e.g. calibrated parameters or prior mean) and second given many

draws from a prespecified prior domain of θ that yield a determinate solution. In this way, we have

a quasi-global flavor of our rank criteria for the pruned state-space.

7 Applications

7.1 The Kim (2003) model

This model extends the neoclassical growth model to include investment adjustment costs twofold:

First intertemporal adjustment costs, which involve a non-linear substitution between capital and

investment, are introduced into the capital accumulation equation govern by a parameter φ. Second

multisectoral costs, which are captured by a non-linear transformation between consumption and

investment, enter the budget constraint given a parameter θ. See appendix E for the model equa-

tions. In the original paper Kim (2003) log-linearizes the model and shows analytically that there is

observational equivalence between these two specifications: “[W]hen a model already has a free pa-

17In most practical cases T in between 10 and 100 will be sufficient, since the higher the lag the less informative the
identification restrictions. Further we experienced with different values for N and find that the results hardly change.
Thus an N in the order of 10000 is sufficient as well.
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rameter for intertemporal adjustment costs, adding another parameter for multisectoral adjustment

costs does not enrich the model dynamics” (Kim 2003, p. 534). So given a first-order approximation

(θ, φ) are observational equivalent, since they enter as a ratio φ+θ
1+θ into the solution. However, con-

sidering an approximation to the second-order yields additional restrictions on the first two moments

and spectrum, as can be seen in Table 1.

[Table 1 about here.]

All criteria yield unanimously the result that (θ, φ) are distinguishable using a second-order approxi-

mation. This result is robust across tolerance levels as well as the choice of derivatives. A comparison

of the indicators for the solution matrices, J and ∆Λ, shows that the identification structure changes

mainly through additional restrictions on the mean.

The same result holds when we repeat the analysis for 100 random draws from the prior domain.

For illustration purposes, we add similar to Ratto and Iskrev (2011) a parameter dumpy into the

analysis, which does not enter the model. As is evident in Figure 1(a), all criteria indicate that dumpy

and (θ, φ) are not identifiable in a first-order approximation. Given a second-order approximation

and using the pruned state-space criteria the situation is different: now, in all cases it is only dumpy

that is not identifiable. We thus conclude that an approximation to the second order yields additional

restrictions on the mean to identify θ and φ separately. All tests indicate that θ and φ are no longer

observationally equivalent and the model can be identified using the non-linear DSGE model. This

result is – as far as we know – new to the literature.

[Figure 1 about here.]

7.2 The An and Schorfheide (2007) model

This model is a prototypical DSGE model often cited in the literature concerning lack of identification.

The authors already show that (in the version we use in appendix E) the set of parameters (ν, φ)

and the steady-state ratio 1/g = c/y do not enter the log-linearized solution. However, using a

second-order approximation and the particle filter they conclude that “the log-likelihood is slightly

sloped in 1/g = c/y dimension. Moreover, (. . . ) the quadratic likelihood (. . . ) suggests that ν and

φ are potentially separately identifiable” (An and Schorfheide 2007, p. 164). Further, Komunjer and

Ng (2011), Mutschler (2014), Ratto and Iskrev (2011) and Qu and Tkachenko (2012) show that the

coefficients entering the Taylor-rule (ψ1, ψ2, ρR, σR) are not separately identifiable in the log-linearized

model. However, An and Schorfheide argue that “the non-linear approach is able to extract more

information on the structural parameters from the data. For instance, it appears that the monetary

policy parameter such as ψ1 can be more precisely estimated with the quadratic approximation” (An

and Schorfheide 2007, p. 164). We will confirm these alluring results formally by checking our rank

criteria for the second-order pruned state-space. First we look at the prior mean.

[Table 2 about here.]

Table 2 shows that across criteria we are formally able to proof that indeed using a second-order ap-

proximation yields additional restrictions to identify all parameters of the model. Again a comparison

between J and ∆Λ sheds light into the structure of identification in the second-order approximation;
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namely, breaking with certainty-equivalence there is information through the mean that spills over

to identify previously non-identifiable parameters. The same result holds when we repeat the anal-

ysis for 100 random draws from the prior domain again including a parameter dumpy that does not

enter the model at all. As can be seen in Figure 2 for a first-order approximation the Taylor-rule

coefficients, (ν, φ) and c/y enter the problematic sets, whereas in the second-order approximation, in

all cases, we are able to identify all parameters (apart from dumpy).

[Figure 2 about here.]

In summary, we confirm An and Schorfheide (2007)’s approach to estimate the model using a second-

order approximation and non-linear estimation methods. Breaking with certainty-equivalence yields

additional information that can be used to identify all parameters of the model. The formal proof of

this feature of the non-linear model is – as far as we know – new to the literature.

8 Conclusion

We establish formal rank criteria for local identification of the deep parameters of a non-linear DSGE

model using the pruned state-space system. Our procedures can be implemented prior to actually

non-linear estimation methods. The rank criteria indicate whether it is possible to estimate sets of

parameters which are not identifiable in the log-linearized model. In this way we show identifiability of

the Kim (2003) and An and Schorfheide (2007) model, when solved by a second-order approximation.

The proposed rank conditions, however, do not point towards a specific estimation method. How

good are we actually able to estimate the Kim (2003) model, given a reasonable size, is left for

further research. Accordingly, An and Schorfheide (2007) show that using a particle filter only

weakly identifies the parameters of their model.

Even though our exposition is based on the second-order, an extension to higher-orders is straight-

forward, since the pruned state-space always results in a system which is linear in an extended state

vector. A further extension is to establish rank criteria for other non-linear DSGE model specifica-

tions as long as we are able to calculate moments or the spectrum of the data-generating-process.

For instance, Bianchi (2013) derives analytical moments for Markov-switching models, which we can

use in a similar fashion to establish rank criteria for Markov-switching DSGE models.
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A Magnus-Neudecker definition of Hessian

Define the steady state as xy := (x′, y′, x′, y′)′ := (x′, y′)′, then the Jacobian Df(z) and Hessian

Hf(z) of f evaluated at the steady-state are defined as:

f(xy) =


f1(xy)

...

fn(xy)



Df(xy) :=
(
∂f(xy)
∂x′t+1

∂f(xy)
∂y′t+1

∂f(xy)
∂x′t

∂f(xy)
∂y′t

)
=


Df1(xy)

...

Dfn(xy)

 =


∂f1(xy)
∂x′t+1

∂f1(xy)
∂y′t+1

∂f1(xy)
∂x′t

∂f1(xy)
∂y′t

...
...

...
...

∂fn(xy)
∂x′t+1

∂fn(xy)
∂y′t+1

∂fn(xy)
∂x′t

∂fn(xy)
∂y′t



Hf(xy) := Dvec((Df(xy))′) =


Hf1(xy)

...

Hfn(xy)

 =



∂2f1(xy)
∂xt+1∂xt+1

′
∂2f1(xy)

∂xt+1∂yt+1
′

∂2f1(xy)
∂xt+1∂xt′

∂2f1(xy)
∂xt+1∂yt′

∂2f1(xy)
∂yt+1∂xt+1

′
∂2f1(xy)

∂yt+1∂yt+1
′

∂2f1(xy
∂yt+1∂xt′

∂2f1(xy)
∂yt+1∂yt′

∂2f1(xy)
∂xt∂xt+1

′
∂2f1(xy)
∂xt∂yt+1

′
∂2f1(xy)
∂xt∂xt′

∂2f1(xy)
∂xt∂yt′

∂2f1(xy)
∂yt∂xt+1

′
∂2f1(xy)
∂yt∂yt+1

′
∂2f1(xy)
∂yt∂xt′

∂2f1(xy)
∂yt∂yt′

...
...

...
...

∂2fn(xy)
∂xt+1∂xt+1

′
∂2fn(xy)

∂xt+1∂yt+1
′

∂2fn(xy)
∂xt+1∂xt′

∂2fn(xy)
∂xt+1∂yt′

∂2fn(xy)
∂yt+1∂xt+1

′
∂2fn(xy)

∂yt+1∂yt+1
′

∂2fn(xy)
∂yt+1∂xt′

∂2fn(xy)
∂yt+1∂yt′

∂2fn(xy)
∂xt∂xt+1

′
∂2fn(xy)
∂xt∂yt+1

′
∂2fn(xy)
∂xt∂xt′

∂2fn(xy)
∂xt∂yt′

∂2fn(xy)
∂yt∂xt+1

′
∂2fn(xy)
∂yt∂yt+1

′
∂2fn(xy)
∂yt∂xt′

∂2fn(xy)
∂yt∂yt′



.

f is of dimension n× 1, the Jacobian Df(z) of dimension n× (2nx + 2ny) and the Hessian Hf(z) of

dimension n(2nx + 2ny)× (2nx + 2ny).

B Deriving analytical derivatives

In order to calculate the derivatives of the solution matrices, we will use repeatedly the commutation

matrix Km,n which transforms the m×n matrix A such that Km,nvec(A) = vec(A′), and the following

useful results from matrix differential calculus:

Theorem 1 (Derivative of products) Let A be a (m×n) matrix, B a (n×o) matrix, C a (o×p)
matrix and D a (p× q) matrix, then the derivative of vec(ABCD) with respect to θ is given by

d(ABCD) = (D′C ′B′ ⊗ Im)dA+ (D′C ′ ⊗A)dB + (D′ ⊗AB)dC + (Iq ⊗ABC)dD
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Proof: Magnus and Neudecker (1999, p. 175). Note that dX := ∂vec(X)
∂θ′ .

Theorem 2 (Derivative of Kronecker products) Let X be a (n× q) matrix, Y a (p× r) matrix

and Kr,n the commutation matrix of order (r, n), then the derivative of vec(X ⊗ Y ) with respect to

θ is given by

d(X ⊗ Y ) = (Iq ⊗Kr,n ⊗ Ip) [(Inq ⊗ vec(Y ))dX + (vec(X)⊗ Ipr)dY ]

Proof: Magnus and Neudecker (1999, p. 185). Note that dX := ∂vec(X)
∂θ′ .

Moreover, we will make use of the following algorithm:

Algorithm 1 (Derivative of partitioned matrix) Let X be a (m×n) matrix, that is partitioned

such that X =
[
X1 X2

]
, with X1 being (m× n1) and X2 being (m× n2), n = n1 + n2.

1. Derive dX1 and dX2; dX1 is of dimension (mn1 × nθ) and dX2 of dimension (mn2 × nθ).

2. For i = 1, . . . , nθ

(a) Denote the i-th column of dX1 and dX2 as dXi
1 and dXi

2 respectively. dXi
1 is of dimension

(mn1 × 1) and dXi
2 of dimension (mn2 × 1).

(b) Reshape dXi
1 into a (m × n1) matrix [dXi

1](m×n1) and dXi
2 into a (m × n2) matrix

[dXi
2](m×n2).

(c) Store vec(
[
[dXi

1](m×n1) [dXi
2](m×n2)

]
) into the i-th column of a matrix dX.

3. dX is the derivative of X with respect to θ and is of dimension (mn× nθ).

Note that dX := ∂vec(X)
∂θ′ .

Now we are able to derive the expressions for Q−1, A, B−1 and C:

Derivative of Q−1 Notice that Q is partitioned into Q = [Q1 Q2],

Q1 = h′x ⊗ f2 ⊗ h′x + Inx ⊗ f4 ⊗ Inx ,

Q2 = Inx ⊗ (f1 + f2gx)⊗ Inx .

Deriving d(f2gx) using Theorem 1 and mechanically applying Theorem 2 repeatedly, we obtain the

derivatives dQ1 and dQ2. Now we can use Algorithm 1 to compute dQ. However, we are interested in

dQ−1, thus in step 2(b) we also compute the derivative of the inverse using −Q−1
[
[dQi1] [dQi2]

]
Q−1

(Magnus and Neudecker 1999, p. 184) and store it in step 2(c) in the i-th column of d(Q−1).

Derivative of R Regarding the derivative of R we first have to derive dM . This can be done

in the same fashion, since M is partitioned into M = (hx, gxhx, Inx , gx)′. dhx and dgx are known,

whereas d(gxhx) can be derived using Theorem 1. Applying Algorithm 1 we get dM , whereas for the

transpose we have the following relationship dM ′ = K2(nx+ny),nxdM . Now we are able to compute

the derivative of R using Theorems 1 and 2.
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Derivative of S−1 Since S is similarly partitioned as Q, i.e. S = [S1 S2], the derivative d(S−1)

can be calculated analogously to d(Q−1).

Derivative of T T is the sum of two matrices, for which we will derive the derivatives separately.

Consider the first part, f2 · trm[(Iny ⊗ (ηη′))gxx]. Since the derivatives of (ηη′) and gxx are known,

it is straightforward to compute d((Iny ⊗ (ηη′))gxx) applying Theorems 1 and 2. The only slightly

difficult part is the matrix trace function. However, Algorithm 1 can be used to overcome this

difficulty. In fact, we only have one partition, for which we know the derivative. Now taking the trm

of the reshaped matrix in step 2(b) and storing this in step 2(c), we get d(trm[(Iny ⊗ (ηη′))gxx]).

Theorem 1 then yields the derivative of f2 · trm[(Iny ⊗ (ηη′))gxx]. The same steps can be used to

derive the derivative of the second part, trm[(Inx+ny ⊗ N ′)HN(ηη′)]. However, we first have to

derive an expression for dN and dN ′. Since N is partitioned, we can use Algorithm 1 to compute

dN and dN ′ = K2(nx+ny),nxdN .

Derivative of BΣξB
′

Derivative of Hξ(e
−iωs) Hξ is given by C(I(2nx+n2

x)2 − Ae−iωs)−1. Closed form expressions for

dC and dA are given in chapter 4 using Algorithm 1 for partitioned matrices. Thus, we only need

the derivative of the inverted expression which is given by

d
(
(I −Ae−iωs)−1

)
=
(
−(I −Ae−iωs)

′−1 ⊗ (I −Ae−iωs)−1
)

(−dA · e−iωs)

where we used d(X−1) = (−(X ′)−1⊗X−1)dX, see Magnus and Neudecker (1999, p. 184). Thus, com-

puting dHξ is a straightforward application of Theorem 1. The derivative of the conjugate transpose

is given by dH∗ξ (e−iωs) = Kny,nξconj(dHξ(e
−iωs)), where conj returns the complex conjugate.

C Deriving numerical derivatives

In order to derive the Jacobian of a function or matrix F (θ) at a point θ0 with respect to θ, we use

a two-sided finite difference method (also known as central differences). That is:

For each j = 1, . . . , nθ

1. Select a step size hj .

2. Solve the DSGE model twice using θ = θ0 + ejhj and θ = θ0 − ejhj with ej a unit vector with

the jth element equal to 1.

3. Compute

dF j :=
∂vec(F (θ0))

∂θj
≈ vec

(
F (θ0 + ejhj)− F (θ0 − ejhj)

2hj

)

4. Store dF j as the j-th column of dF .
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D Deriving the minimal state

Given the linear solution (1) and (2) of the first order approximation, we will first derive the canonical

ABCD-representation of the DSGE model, i.e.

...

with zt = ()′ collecting all model variables and . The solution then becomes

...

Obviously, the driving force of the model is the vector of exogenous states, which we call the mini-

mal state vector. Together with the evolution of the stochastic innovations it determines the evolution

of the endogenous states, the control and the observable variables. The minimal representation is

thus given by

...

Formal conditions for minimality require that for every θ ∈ Θ:

(i) Controllability: For any initial state, it is always possible to design an input sequence that puts

the system in the desired final state, i.e. the matrix
[
B̃ ÃB̃ . . . Ãnx2

−1B̃
]

has full row

rank,

(ii) Observability: Given the evolution of the input it is always possible to reconstruct the initial

state by observing the evolution of the output, i.e. the matrix
[
C̃′ Ã′C̃′ . . . Ãnx2

−1′C′
]′

has full column rank.

Some practical issues: For small and medium-sized DSGE models the distinction between en-

dogenous and exogenous states is given through theory, some variables are clearly endogenous (like

output) and some are clearly exogenous (like technology). First, we check the rank conditions for

minimality and observability given the full state vector. If the conditions fail, we remove state vari-

ables from the top until the conditions pass. Note that we remove the entries from all first-order

and second-order solution matrices as well as from the derivatives corresponding to redundant state

variables.

For big DSGE models the distinction of endogenous and exogenous states is often not as clear. A

failsafe approach deriving the minimal state vector is to consider all possible subsets of combinations

of the state vector and check the rank conditions for minimality and controllability in each case. For

a different (computational) approach handling the minimal state in big DSGE models see Kim et al.

(2008).
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E Example Models

The Kim (2003) model

First we define an auxiliary parameter and variable:

s =
βδα

1− β + δβ
, λt =

(1− s)θ

(1 + θ)c1+θ
t

.

Then the model is given by the following five equations f :

λt(1 + θ)
(
it
s

)θ ( it
δkt

)φ
= βEtλt+1

[
α(1 + θ)a1+θ

t k
α(1+θ)−1
t + (1− δ)(1 + θ)

(
Etit+1

δkt

)φ (
Etit+1

s

)θ]
,[

(1− s)
(

ct
1−s

)1+θ

+ s
(
it
s

)1+θ
] 1

1+θ

= at−1k
α
t−1,

kt =
[
δ
(
it
δ

)1−φ
+ (1− δ) (kt−1)

1−φ
] 1

1−φ

log(at) = ρalog(at−1) + ua,t,

0 = Etua,t+1.

There are two exogenous states kt and at, and no endogenous states. The controls are ct and it

and are both observable. There is one shock on technology ua,t which is appended to the state

vector. Further we set the perturbation parameter equal to the standard deviation of the shock on

technology. Thus, given our definition and ordering of variables we have

εt := ua,t, xt := (kt−1, at−1, ua,t)
′, yt := (ct, it)

′, σ = σA, η =
(

0 1
)′

The steady-state of this model is given by

a = 1, k =

(
δ

sa

) 1
α−1

, i = δk, c = (1− s)

[
(αkα)

1+θ − s
(
i
s

)1+θ

1− s

] 1
1+θ

, ua = 0.

We will consider identification of the parameter vector θ at the local point θ0:

θ = (α, β, δ, θ, φ, ρa σa)′,

θ0 = (0.6, 0.99, 0.0125, 1, 2, 0.7, 1)′.

The priors are given in Table ??.

The An and Schorfheide (2007) model

First we define auxiliary parameters:

β =
1

1 + r(A)

400

, π∗ = 1 +
π(A)

400
, φ =

τ(1− ν)

νκπ∗2
, g∗ =

1

(c/y)∗
.
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Then the model f consists of thirteen equations:

0 =
1− ν
νφπ∗2

(eτct − 1)− (eπt − 1)

[(
1− 1

2ν

)
eπt +

1

2ν

]
+ β

(
eEtπt+1 − 1

)
e−τEtct+1+τct+Etdyt+1+Etπt+1 ,

0 = 1− e−τEtct+1+τct+Rt−ρzzt−Etπt+1 , 0 = ect−yt − e−gt +
φπ∗2g∗

2
(eπt − 1)

2
,

0 = Rt − ρRRt−1 − (1− ρR)ψ1πt − (1− ρR)ψ2 (yt − gt)− uR,t,

0 = dyt − yt + yt−1, 0 = gt − ρggt−1 − ug,t, 0 = zt − ρzzt−1 − uz,t,

0 = Y GRt − γ(Q) − 100(dyt + zt), 0 = INFLt − π(A) − 400πt,

0 = INTt − π(A) − r(A) − 4γ(Q) − 400Rt,

0 = EtuR,t+1, 0 = Etug,t+1, 0 = Etuz,t+1.

There are three exogenous states Rt, gt and zt, and one endogenous state variable yt. The controls

are ct, dyt and πt, and the observables are Y GRt, INFLt and INTt. There are three shocks: a

monetary uR,t, a fiscal ug,t and a technological shock uz,t. Further, there are no measurement errors

in the model. Thus, given our definition and ordering of variables we have

εt = (uR,t, ug,t, uz,t)
′, xt = (yt−1, Rt−1, gt−1, zt−1, εt)

′,

yt = (ct, dyt, πt, Y GRt, INFLt, INTt)
′,

D =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .
Further we set the perturbation parameter equal to the standard deviation of the shock on technology,

then we have

σ = σz, ηu =

σR/σz 0 0

0 σg/σz 0

0 0 1

 , ηv = [ ], ηx =

[
04×3

ηu

]
, ηd = 03×3.

The steady-state of this model is given by

y = R = g = z = ε = c = dy = π = 0,

Y GR = γ(Q), INFL = π(A), INT = π(A) + r(A) + 4γ(Q).

We will consider identification of the parameter vector θ at the local point θ0:

θ = (τ, κ, ψ1, ψ2, ρR, ρg, ρz, r(A), π(A), γ(Q), σR, σg, σz, ν, (c/y)∗)′

θ0 = (2, 0.33, 1.5, 0.125, 0.75, 0.95, 0.9, 1, 3.2, 0.55, 0.002, 0.006, 0.003, 0.1, 0.85)′.

Note: We could also add measurement errors in the measurement equations and extend the state

vector for this additional stochastic shocks. The identification and results of this paper do not change.
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Table 1: Identification analysis of the Kim (2003) model, 2nd-order approximation

Iskrev Komunjer/Ng Qu/Tkachenko

Tol J M ∆Λ ∆ G G

1e-03 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 3 (3,3,3) 3 (3,3,3)

1e-05 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 6 (6,6,6) 6 (6,6,6)

1e-07 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-09 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-11 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-13 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-15 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-17 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

1e-19 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

Robust 7 (7,7,7) 7 (7,7,7) 6 (6,6,6) 107 (107,107,107) 7 (7,7,7) 7 (7,7,7)

Require 7 7 7 107 7 7

Ranks of identification tests for prior mean with analytical derivatives for different tolerance levels tol, subintervalls
N = 10000, lags in autocovariogram T = 100. In parenthesis are the corresponding ranks computed with numerical
derivatives given differentiation steps 1e-3, 1e-7 and 1e-11, respectively.

Table 2: Identification analysis of the An and Schorfheide (2007) model, 2nd-order approximation

Iskrev Komunjer/Ng Qu/Tkachenko

Tol J M ∆Λ ∆ G G

1e-03 15 (15,15,15) 10 ( 9, 9, 9) 14 (14,14,15) 1140 (1140,1140,1140) 5 ( 5, 5, 5) 7 ( 7, 7, 7)

1e-05 15 (15,15,15) 15 (15,15,15) 14 (14,14,15) 1140 (1140,1140,1140) 8 ( 8, 8, 8) 10 (10,10,10)

1e-07 15 (15,15,15) 15 (15,15,15) 14 (14,14,15) 1140 (1140,1140,1140) 11 (11,11,11) 13 (13,13,13)

1e-09 15 (15,15,15) 15 (15,15,15) 14 (14,14,15) 1140 (1140,1140,1140) 13 (13,13,13) 14 (14,14,14)

1e-11 15 (15,15,15) 15 (15,15,15) 14 (14,14,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

1e-13 15 (15,15,15) 15 (15,15,15) 14 (14,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

1e-15 15 (15,15,15) 15 (15,15,15) 15 (15,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

1e-17 15 (15,15,15) 15 (15,15,15) 15 (15,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

1e-19 15 (15,15,15) 15 (15,15,15) 15 (15,15,15) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

robust 15 (15,15,15) 15 (15,15,15) 14 (14,14,14) 1140 (1140,1140,1140) 13 (13,13,13) 15 (15,15,15)

Require 15 15 15 1140 15 15

Ranks of identification tests with analytical derivatives for different tolerance levels tol, lags in autocovariogram T = 100,
subintervalls N = 10000. Bold indicates full rank. In parenthesis are the corresponding ranks computed with numerical
derivatives given differentiation steps 1e-3, 1e-7 and 1e-11, respectively.
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Figure 1: Sets responsible for non-identification in the Kim (2003) model
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(a) First-order approximation
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(b) Second-order approximation

Identification tests for 100 draws from the prior domain using analytical derivatives with robust
tolerance level, lags in autocovariogram T = 100, subintervalls N = 10000.

Figure 2: Sets responsible for non-identification in the An & Schorfheide (2003) model
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(a) First-order approximation
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(b) Second-order approximation

Identification tests for 100 draws from the prior domain using analytical derivatives with robust
tolerance level, lags in autocovariogram T = 100, subintervalls N = 10000.
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