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Abstract

This paper introduces a Bayesian version for Dynamic Model Averaging for predict-

ing aggregate stock returns. Our suggested approach simultaneously accounts for many

sources of uncertainty. It is designed to handle (i) parameter instability, (ii) time-varying

volatility, (iii) model uncertainty and (iv) time-varying model weights. We use our method

to analyze predictability of S&P500 returns for the 1927 � 2012 period. The �exibility
of the econometric setup enables us to disentangle the multitude of e¤ects at work when

generating (point and density) forecasts. A key point of our analysis is to assess which

components of forecast models pay o¤ in terms of statistical accuracy and economic value.

We document that statistical and economic evaluation metrics can be in sharp contrast.

While stochastic volatility emerges to be important both in terms of density forecast ac-

curacy and economic gains, return prediction models that use economic covariates turned

out to be helpful to time the market only within very limited periods of time.
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1 Introduction

This paper introduces a Bayesian version of Dynamic Model Averaging for pre-

dicting aggregate stock returns, accounting for many sources of uncertainty. As

the data generating process of the equity premium is expected to be complex and

evolving over time, we introduce a highly �exible econometric technique. Pre-

cisely, our approach handles (i) parameter instability, (ii) time-varying volatility,

(iii) model uncertainty and (iv) time-varying model weights.

Out-of-sample predictability of equity premia is at the core of �nancial eco-

nomics and has been subject of numerous studies. However, empirical evidence of

predictability still is controversial. Particularly, it is open to debate whether point

forecasts generated by models with economic covariates are consistently superior

relative to simple benchmark models such as the prevailing historical mean. Some

authors, such as Bossaerts and Hillion (1999) and Welch and Goyal (2008), remain

sceptical regarding conditional predictability while other studies report results in

favour of conditional predictability. Examples include Ang and Bekaert (2002),

Campbell and Thompson (2008), Rapach, Strauss, and Zhou (2010), Ferreira and

Santa-Clara (2011), Dangl and Halling (2012) and Neely, Rapach, Tu, and Zhou

(2010).1

Many caveats have been identi�ed which complicate out-of-sample forecasts.

Instability in the relation between stock returns and predictor variables over time

is deemed as one of them; see, e.g., Pesaran and Timmermann (1995), Xia (2001),

Paye and Timmermann (2006), Welch and Goyal (2008) and Dangl and Halling

(2012).2 Further, predictive regressions for equity premia tend to be too volatile,

an issue which has been mitigated by shrinking forecasts toward the historical

mean by combining forecasting models; see, e.g., Rapach, Strauss, and Zhou (2010)

1A recent survey is provided by Rapach and Zhou (2012).
2Using a Bayesian framework and accounting for many dimensions of uncertainty, Pettenuzzo

and Timmermann (2011) show that structural breaks in the relation between stock returns and
predictor variables can crucially in�uence optimal portfolio allocation.

2



and Elliott, Gargano, and Timmermann (2013).3 Another issue is related to the

speci�cation uncertainty for models, that is, which combination of predictor vari-

ables most accurately summarizes the impact of predictors on equity premia. This

source of uncertainty has been commonly addressed in Bayesian Model Averaging

frameworks; see, e.g., Avramov (2002), Cremers (2002) and Dangl and Halling

(2012).

A further unsettled issue is the relationship between statistical and economic

metrics of forecast evaluation. Studies documenting predictability agree that even

small improvement in statistical accuracy relative to the historical mean can re-

sult in sizeable utility gains. Focussing on density rather than point forecasts,

Johannes, Korteweg, and Polson (2013) document empirical evidence that simul-

taneously accomodating for an ensemble of features (such as time-varying expected

returns, time-varying volatility and accounting for estimation error) is necessary

for out-of-sample portfolio bene�ts. They conclude that "there is no single "sil-

ver bullet" generating out-of-sample gains." This �nding suggests the need for a

�exible methodology to analyze equity premium predictability, at least in terms

of economic utility.

We specify a large set of time-varying parameter models which di¤er with

regard to included explanatory variables as well as to the specifed dynamics for

the evolution of coe¢ cients and volatility. All these choices represent dimensions

of model uncertainty, which we address in a Bayesian version of Dynamic Model

Averaging. The combination approach generates an aggregate predictive density

at each point in time. Despite the multitude of channels entertained in order

to enhance model �exibility, our framework retains transparency. That is, the

evolution of coe¢ cients for individual models can be tracked over time, as well as

individual model weights can be monitored over time. This feature is helpful in

3An alternative shrinkage device in order to limit estimation error of parameters is imposing
economic constraints on the coe¢ cients; see Campbell and Thompson (2008) and Pettenuzzo,
Timmermann, and Valkanov (2013) for a more involved approach.
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disentangling the numerous e¤ects at work for generating the overall forecast.

We provide two key contributions. Methodologically, our econometric setup

introduces a Bayesian version of Dynamic Model Averaging. We label our approach

Bayesian Dynamic Model Averaging (BDMA). Raftery, Kárný, and Ettler (2010)

developed a strategy to combine models which allows not only parameters but

also entire forecast models to change over time. The approach parsimoniously

models uncertainty about both coe¢ cients and models using discount factors.4

Dynamic Model Averaging (DMA) was adopted for forecasting in�ation by Koop

and Korobilis (2012) and extended to the multivariate case by Koop and Korobilis

(2013). Fixing discount factors to particular values assumes that certain values

are appropriate during all periods. This is not a realistic assumption and certain

values are more likely to be only "locally appropriate" (West and Harrison, 1997).

We rigorously treat the uncertainty about the involved dicount factors within

a data-adaptive Bayesian setting. This involves marginalizing out uncertainties

about coe¢ cients, the variance and model weights. The key advantage of BDMA

over DMA is that our setup allows parameters, volatility and models to change

(gradually or even abruptly) over time rather than imposing them to change. This

added �exibility generates many simpler model con�gurations as special cases of

the most �exible model con�guration.5 With BDMA allowing for weighting the

recent forecast performance of models more heavily than the forecast performance

in the more distant past, model weights may vary over time. In contrast to classical

Bayesian Model Averaging (BMA), (B)DMA does not invoke the assumption that

one of the models captures the true data generating process and considers all of the

speci�ed models as potentially misspci�ed. This desirable feature is also adopted

4Discounting/Forgetting approaches are well established in the state space literature; see West
and Harrison (1997).

5Among these simpler models are, e.g., equally weighted univariate constant regression models
(as proposed by Rapach, Strauss, and Zhou (2010)), classical Bayesian model averaging of time-
varying parameter models (as advanced by Dangl and Halling (2012)), linear regression models
with constant mean and constant variance (as used by Welch and Goyal (2008)) or the simple
historical mean.
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in other model combination schemes recently proposed; see Hoogerheide, Kleijn,

Ravazzolo, Van Dijk, and Verbeek (2010), Geweke and Amisano (2011) and Billio,

Casarin, Ravazzolo, and van Dijk (2013).

Based on the proposed econometric technique, we contribute to the literature

on equity premium forecasting by carefully dissecting the relative role of uncer-

tainty regarding regressors, evolution of coe¢ cients, observational variance and

the model weights in terms of economic and statistical forecasting gains. For each

con�guration, we evaluate density forecasts with respect to statistical accuracy and

economic value. In our real-time asset allocation exercise, an investor maximizes

expected utility using the density forecasts. Analyzing a large set of models (and,

hence, di¤erent modelling assumptions) enables us to identify general patterns

which emerge to be important for gaining superior forecasts.

We consider monthly US equity premia from 1927 : 01 to 2012 : 12 along with

a standard set of twelve explanatory variables and evaluate the forecasts in terms

of statistical and economic criteria. Our results adduce empirical evidence that

shrinking and combining forecasts can result in more precise point forecasts rela-

tive to the prevailing historical mean. We �nd that model speci�cations allowing

for stochastic volatility improve density forecast accuracy and increase economic

gains, as measured by certainty equivalent returns (CERs) and the Sharpe ratio.

Our methodology does not identify any of the included covariates to be particular

important for predicting equity premia over a considerably long period of time.

With respect to the degree of instability of coe¢ cients, stable and gradually evolv-

ing behavior is favored rather than abruptly changing coe¢ cients. We document

disagreement between statistical and economic metrics of forecast performance,

that is, point prediction accuracy and economic gains. With density forecasts

and economic criteria being more in agreement, exploiting the entire return dis-

tribution for asset allocation rather than focussing on point predictions pays o¤.

Most importantly, however, while utility gains are generally higher for more �ex-
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ible methods when evaluated over the entire evaluation period, this result is not

robust. The identi�ed gains are largely driven by exceptional and short periods

of time, particularly the time period around the Oil Shock (1973� 1975) and the
subprime crisis (2008=09).

The rest of the paper is organized as follows. Section 2 introduces the pre-

dictive regressions. Section 3 lays out the Bayesian Dynamic Model Averaging

approach. Section 4 reports the empirical results for our analysis of equity pre-

mium predictability. Section 5 concludes. Some additional analytical results are

shown in greater detail in the Appendix.

2 Time-varying Parameter Models

The model universe in our analysis consists of linear time-varying parameter (TVP)

models. Thus the building blocks of the multimodel forecast are of the same type.

The speci�ed TVP models di¤er with regard to included explanatory variables

and the values which control the evolution of (possibly) time-varying coe¢ cients

and (possibly) time-varying observational volatility. For ease of presentation, we

drop model indices and show the structure of a typical dynamic linear model for

t = 1; :::; T , consisting of an observation equation (1) and a system equation (2),

yt = F
0

t �t + vt; vt � N (0; Vt) (1)

�t = �t�1 + wt; wt � N (0; VtW �
t ) . (2)

The TVP model allows for a time-varying linear relationship between the uni-

variate (scalar) variable yt (in our case: the equity premium) and the vector of the

explanatory variables Ft, observed at time t�1. Ft = [1; Xt�1] is anm�1 vector of
predictors for equity premia, �t is anm�1 vector of coe¢ cients (states). We adopt
a strict out-of-sample approach. That is, for predicting yt, only information at or
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before time t�1 is used. To state precisely on which information set beliefs about
parameters are formed, let denote It = [yt; yt�1;:::; y1; Ft; Ft�1; :::; F1;Pr iorst=0].

This information set contains all realized values of the variable of interest, all real-

izations of the considered predictive variables as well as the priors for the system

coe¢ cients (�0) and the observational variance (V0). As the system equation (2)

indicates, the evolution of the system coe¢ cients is assumed to follow a random

walk, with coe¢ cients being exposed to random shocks wt.6

Adopting a (conditionally) normally distributed prior for the system coe¢ cients

and an inverse-gamma distributed prior for the observational variance results in

a fully conjugate Bayesian analysis, ensuring that prior and posterior distribution

come from the same family of distributions. The conjugate speci�cation at some

arbitrary time t can be expressed as

VtjIt � IG

�
nt
2
;
ntSt
2

�
; (3)

�tjIt � tnt [mt; StC
�
t ] ; (4)

�tjIt; Vt � N [mt; VtC
�
t ] : (5)

St is replaced by a point estimate for the observational variance Vt. nt denotes

the degrees of freedom for the (unconditionally on Vt) t-distributed coe¢ cients.

The point estimate for the coe¢ cient vector is mt with scale matrix Ct = StC
�
t .

The forecast of yt (i.e., the predictive density) is obtained by integrating out the

uncertainty in the states �t and the volatility Vt, rendering a predictive density from

the Student-t family. In A.1, we will describe in detail, how, at some arbitrary

time t, beliefs are formed for the variable of interest and how new observations lead

6All variances and covariances in the dynamic linear model are scaled by the unknown obser-
vational variance Vt (Wt = VtW

�
t ). For this aspect as wells as for the description of TVP models

in general, our adopted notation is based on West and Harrison (1997). For a discussion about
the random walk assumption in TVP models for coe¢ cients in the context of equity premia, see
Dangl and Halling (2012).
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to an update for the estimated system coe¢ cients, their associated scale matrix

and for the estimate of the observational variance.

We adopt a discount factor approach for modelling the unknown sequences for

Vt and Wt. For the latter, consider the transition from the posterior time-t � 1
estimate for the scale matrix of coe¢ cients (Ct�1) to the time-t prior for the scale

matrix of coe¢ cients (Rt),

Rt = Ct�1 +Wt. (6)

To accomodate the additional uncertainty involved in the estimate for the coe¢ -

cients proceeding from time t� 1 to time t, Ct�1 is in�ated by the system variance
Wt. Instead of estimating Wt, our adopted discount approach involves replacing

Wt by

Wt =
1� �
�
Ct�1; 0 < � � 1; (7)

and, hence,

Rt =
1

�
Ct�1. (8)

� is a discount factor providing that observations s periods in the past have

weight �s. This implies an age-weighted estimation with an e¤ective window size

of (1� �)�1; see Hannan, McDougall, and Poskitt (1989). For � = 1, the case

of constant parameters is recovered, � < 1 explicitly allows for variability in the

system coe¢ cients. Values of � near 1 are consistent with gradual parameter

evolution, whereas low values of � allow for abrupt parameter changes. In our

empirical application, we will consider a grid of values for � 2 f�1; :::; �dg to allow
for di¤erent degrees of parameter instability. Notice, however, that � is �xed

within each individual model. The data support for di¤erent degrees of parameter

instability is hence signalized at the level of the multimodel forecast, re�ecting the
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data support across models with di¤erent values of � at each point in time.

In a similar fashion as for Wt, we adopt a discount approach for the evolution

of the observational variance, Vt. Since the assumption of a constant observational

variance is unappealing in the context of �nancial applications, our econometric

technique allows for stochastic volatility. Imposing a decay factor �; 0 < � � 1, the
degree of adaptiveness to new data is controlled. Updating the (inverse-gamma)

posterior distribution of Vt involves updating the degrees of freedom

nt = �nt�1 + 1 (9)

and the point estimate

St = St�1 +
St�1
nt

�
e2t
Qt
� 1
�
, (10)

see (3). et denotes the prediction error of a model and Qt the scale associated

with the t-distributed forecast yt, see (30) in A.1. Note from (9) that, for � = 1,

nt ! 1 for increasing t. It is readily seen from (10) that this results in St = S;

and, hence, the case of constant variance is recovered for � = 1. For � < 1, nt

converges to the constant, limiting degrees of freedom, nt ! (1� �)�1, implying
a limit to the accuracy with which the variance at any time is estimated. (10)

shows, that if the prediction error et of a model coincides with its expectation Qt

(i.e., e2t = Qt), St = St�1. Prediction errors above the expected error lead to an

increase in the estimated observational variance and vice versa.

In the case of stochastic volatility (� < 1), the observational variance is updated

according to new data, discounting past information to re�ect changes in volatility,

with the updated posterior distribution being more heavily weighted on the new

observation than in the case of constant variance. The representation

St = (1� �)
t�1X
s=0

�s
�
e2t�sSt�s�1
Qt�s

�
(11)
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for the point estimate St has the form of an exponentially weighted moving

average of the standardised forecast errors. Thus, the estimate of the variance

continues to adapt to new data, while older data are further discounted as time

progresses. We consider a grid of values � 2 f�1; :::; �bg ; 0 < � � 1. b indicates

the discrete number of grid points considered. Just as �, � is �xed within each

individual model.

We denote a typical model in our universe by Mj; j = 1; :::; J . Each model

is de�ned by its set of considered regressors, the presumed variability in the co-

e¢ cients (governed by the discount factor �) and the dynamics of the volatility

(characterized by the decay factor �). With a set ofK explanatory variables (with-

out the intercept7), b grid points for � and d grid points for �, J =
�
2K � 1

�
� b � d

models are available at each point in time. Empirical evidence for particular model

con�gurations (i.e., for certain values of �; � and subsets of explanatory variables

from the K candidates) is uncovered at each point in time through their data

support (i.e., the attached model weight for particular model con�gurations). In

the next step we will address the issue of combining the individual models.

3 Bayesian Dynamic Model Averaging

The large set of models at disposal raises the issue of how to optimally combine

them. We propose a �exible weighting scheme which nests BMA and equal model

weighting as special cases. The approach draws on insights from DMA proposed

by Raftery, Kárný, and Ettler (2010). DMA allows for exponential discounting in

the weight dynamics according to the past forecast performance of the individual

models, thus allowing recent data to be emphasized.8 DMA involves specifying a

discount factor to control down-weighting of older data. We generalize Raftery�s

7All models in our universe include an intercept.
8Emphasizing recent data when combining models is also well known in the literature about

point forecasting; see, e.g., Stock and Watson (2004).
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implementation of DMA by addressing the uncertainty about the discount factor,

calculating it in a data-adaptive fashion.

Let denote p (MijIt�1) the updated model weight for model i at time t � 1.
P (MijIt�1) indicates the prediction weight for model i at time t � 1 (or stated
di¤erently: the prior weight for time t). � is a discount factor, 0 � � � 1, and

shrinks the posterior model weights toward equal weights,

P (MijIt�1) =
p (MijIt�1)�
JX
j=1

p (MjjIt�1)�
. (12)

Updating model weights is accomplished by using Bayes�rule,

p (MijIt) =
p (ytjMi; It�1)P (MijIt�1)
JX
j=1

p (ytjMj; It�1)P (MjjIt�1)
. (13)

Obviously, for � = 0, all models are equally weighted,9 while for � = 1, there

is no discounting and, hence, BMA is recovered as a special case. The connec-

tion between predictive and marginal likelihoods (and, thus, between DMA and

classical BMA) is shown in A.2). BMA attaches equal weights to all data from

s = 1; :::; t and, as t gets larger, posterior model probabilities will typically change

only slightly as new data points are added. Allowing for � < 1 increases �exibility

as model weights may change more rapidly.

Using Raftery�s version of DMA with a discount factor �, the predictive weight

attached to model i is
9It is well-known in the forecasting literature that equal model weighting is a tough bench-

mark; see, e.g., Geweke and Amisano (2012).
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P (MijIt�1) / [P (MijIt�2) p (yt�2jMi;It�2)]
� (14)

=

t�1Y
s=1

p (ysjMi; It�s�1)
�s .

Thus, model i will be attached more weight if it has provided accurate forecasts

in terms of predictive likelihoods in the (recent) past compared to its peers. The

discount factor � controls the exponential discounting of likelihoods according to

their recency.

As, however, a certain value of � might only be locally appropriate, we let

� evolve over time and integrate out the associated uncertainty. Initializing

the process of model combinations involves specifying priors on model weights,

p (MijI0), 8i = 1; :::; J . To obtain predictive weights, we use an equation similar
to (12), but in contrast to (12), we sum over the discrete set of considered grid

points for �.

P (MijIt�1) =
aX
v=1

p (MijIt�1)�v
JX
j=1

p (MjjIt�1)�v
� p (�vjIt�1) . (15)

p (MijIt�1) refers to the time t�1 posterior model weights. We consider values
on the grid �v 2 f�1; �2; ::; �ag, where 0 � �v � 1 and a denotes the number of
grid points. The updating step for model weights is accomplished by

p (MijIt) =
aX
v=1

p (ytjMi; It�1)P (MijIt�1)
JX
j=1

p (ytjMj; It�1)P (MjjIt�1)
� p (�vjIt�1) . (16)

The predictive likelihood of model i;
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p (ytjMi; It�1) �
1p
Qt;i

t�nt�1;i

 
yt � byt;ip
Qt;i

!
, (17)

is used to a assess the forecast performance for model i and is obtained by

evaluating the predictive density at the actual value yt. byt;i, Qt;i and �nt�1;i denote
the point estimate, the scale and the degrees of freedom of the predictive density

for a particular model i, respectively. High values of the predictive likelihoods are

associated with good forecast performance.

The time�t posterior of a particular grid point for the discount factor � is
obtained as

p (�zjIt) =

JX
j=1

p (ytjMj; It�1)P (MjjIt�1; �z) p (�zjIt�1)

aX
v=1

JX
j=1

p (ytj�v; It�1)P (MjjIt�1; �v) p (�vjIt�1)
;8z = 1; ::; a, (18)

where
JX
j=1

p (ytjMj; It�1)P (MjjIt�1; av) is the predictive likelihood of the multi-

model involving all J considered models with weights governed by the particular

value av.

There are at least two motivating aspects for the use of likelihood discounting.

First, it is reasonable to think that more recent data will provide more relevant

information for predicting, since recent data are in many situations more likely to

occur in a similar (economic) environment. Second, the discounting approach with

its provided shrinkage to equal weights can prevent attaching the entire weight to

one particaular model, as it is (asymptotically) the case for standard BMA which

cumulates the unweighted likelihoods. In a stable environment, high values for �

are expected to be supported by the data, while in unstable periods low values for
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� are likely to be favored, re�ecting the need for changes in model weights. When

focussing on a particular variable (or combination of variables), that is, set aside

speci�cation uncertainty, the combination of (possibly) time-varying coe¢ cients

(� < 1) and (possibly) time-varying model weights (� < 1) amounts to a version

of averaging across estimation windows as analyzed by Pesaran and Pick (2011).

Point forecasts for the overall forecast model are obtained as

bytjIt�1 = JX
j=1

(Ft;jmt�1;j)P (MjjIt�1) . (19)

Note that BDMA represents a shrinkage device for (slope) coe¢ cients. Models

which do not include a subset of particular regressors implicitly set the associ-

ated coe¢ cients to zero, thereby shrinking those coe¢ cients in the overall forecast

model toward zero. In our setup, the model which considers all predictors to be

unnecessary, is nested. If the entire weight is attached to this particular model,

the overall forecast model collapses to the historical mean. Having layed out the

econometric setup, we next turn to our empirical analysis.

4 Empirical Analysis

4.1 Data

We use the proposed methodology to forecast (simple) excess returns of the S&P

500 index covering the period from 1927 : 01 to 2012 : 12 at the monthly horizon.10

We draw on a standard set of explanatory variables, previously employed in the

study by Welch and Goyal (2008).11 For the sake of brevity, we include only a list

10Our choice for this time period is driven by data availability. Choosing such a long period,
we want to mitigate concerns of sample selection bias for our empirical results.
11The dataset is provided by Amit Goyal: (http://www.hec.unil.ch/agoyal/). Of course,

further variables could be added. For example, Boudoukh, Michaely, Richardson, and Roberts
(2007) proposes alternative measures of payout yield rather than the classical dividend yield,
while Neely, Rapach, Tu, and Zhou (2010) employ technical indicators. If, then, the set of
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of the predictive variables here and refer to Welch and Goyal (2008) for a detailed

discussion of the dataset and the data sources.

� Log dividend yield (dy): di¤erence between the log of dividends on the S&P
500 index and the log of one-month-lagged prices.

� Earnings-to-price ratio (ep): di¤erence between the log of earnings and the
log of stock prices.

� Dividend-payout ratio (dpayr): di¤erence between the log of dividends and
the log of earnings.

� Stock variance (svar): sum of squared daily returns.

� Book-to-market ratio (bmr): book to market ratio value for the Dow Jones
Industrial Average.

� Net issuing activity (ntis): ratio of twelve-month moving sums of net issues
by NYSE listed stocks to the total market capitalization of the total market

capitalization of NYSE stocks.

� T-bill rate (tbl): interest rate on a three-month Treasury bill (secondary
market).

� Long-term yield (lty): long-term government bond yield.

� Long-term return (ltr): return on long-term government bonds.

� Default return spread (dfr): long-term corporate bond return minus the

long-term government bond return.

condsidered explanatory variables (say, k > 15) becomes very large, it is no longer possible to
evaluate all models. However, in this case, we could employ Markov Chain Monte Carlo Com-
position (Madigan, York, and Allard, 1995; Raftery, Madigan, and Hoeting, 1997) or stochastic
search algorithms (e.g. the stochastic shotgun search algorithm proposed by Hans, Dobra, and
West (2007)) to explore the model space and calculate model probabilities.
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� Default yield spread (dfy): di¤erence between BAA- and AAA-rated corpo-
rate bond yields.

� In�ation (inf ): Consumer Price Index (all urban consumers) from the Bureau
of Labor Statistics, lagged by one additional month.

Taking into account these listed predictor variables and an intercept, our set

of potential regressors comprises K = 12 variables. We set aside a period for

initializing the estimation and report results for the evaluation period from 1947 :

01 to 2012 : 12.

4.2 Prior Choices

4.2.1 TVP Models

To initialize the sequential prediction and updating of the TVP models, we have

to choose a (normally/inverse-gamma) prior distribution for the coe¢ cients and

the observational variance, that is V0jI0 � IG
�
n0
2
; n0S0

2

�
and �0jI0; V0 � N [m0; C0].

We use the empirical variance of the index returns from the "burn-in" period from

1927 : 01 to 1946 : 12 to determine S0 and choose n0 = 5 to to express our initial

uncertainty about the observational variance. Setting m(i)
0 = 0, C(i)0 = g � I(i)n for

all models j = 1; :::; J and g = 1012, we center the initial values for the system

coe¢ cients around zero, surrounded by a high degree of uncertainty. This di¤use

prior thus allows for data patterns to be quickly adapted at the beginning of the

estimation.

Specifying the range for the grid of values of � and �, we de�ne the range

which is covered when summing over the degree of variability in � and V . We
12Alternative values for g such as g = 1 or g = 100 do not a¤ect our results as the e¤ect

of the prior variance quickly disappears. Hence, the reported numbers in our application are
robust with respect to the prior speci�cation. If we, however, choose a very low value for g and
thus a very intense shrinkage for the coe¢ cients toward zero, we would prevent the models from
learning. In a multimodel setting with small models already nested in the setup, such tight priors
would be pointless.
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choose � 2 f0:95; 0:99; 1g and � 2 f0:80; 0:90; 1g.13 Choosing the upper bounds
is motivated by the purpose to recover the special case of constant parameters

and constant observational variance. � = 0:99 allows for gradual evolution of the

coe¢ cients, while � = 0:95 models abrupt changes in coe¢ cients. In the latter

case, the evolution would be highly unstable. In our view, setting the lower bound

to 0:95 presents a compromise between allowing for sharp changes in the evolution

of the coe¢ cients and limiting the possibility for extremely erraneous behaviour

of the coe¢ cients. � 2 f0:8; 0:9; 1g covers a broad range from high variation in

volatility (� = 0:8) to constant volatility (� = 1).

4.2.2 Bayesian Dynamic Model Averaging

We initially assign equal weights to each possible model con�guration, that is,

p (MjjI0) = 1
b�d�(2K�1) ;8j = 1; :::; J . Thus, initially, all models are equally likely.

On the level of model combination, we have to choose the range of �. We set

� 2 f0; 0:80; 0:90; 0:95; 0:99; 1g and, hence, cover the range from classical Bayesian
model averaging (� = 1) to equal weights (� = 0). We assign equal initial weights

for each considered grid point for �, i.e., p (�zjI0) = 1
a
;8z = 1; :::; a.14

4.3 Forecast Models

We present results for a multitude of forecast models, nested as special cases in our

preferred and most general implementation of the proposed method (BDMA). The

benchmark models arise by imposing (one or more) constraints on the regressors

(k) and the discount factors (�, �, �) governing the evolution of coe¢ cients, the

13Choosing beta-distributed priors for � and � could be regarded as a more natural choice.
However, in this case, we would have to give up conjugacy of our analysis, substantially increasing
the computational burden for estimating the models.
14As a robustness check, we initially favor equal weighting, that is � = 0. We assign

p (� = 0jI0) = 0:8 and distribute the remaining weight equally among the remaining values
for �. In our analysis, the impact of the prior rapidly decays with data support for � = 0 being
very similar to the standard case for initially equal weighted values for �. This pattern holds
true if we favor other values for � at the beginning.
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observational variance and the model weights. This analysis enables us to em-

pirically assess the relative importance of the di¤erent dimensions of uncertainty.

To this end, we focus on model con�gurations which have either been explicitly

proposed in previous studies or contribute to disentangling various e¤ects (e.g.,

model size, importance of particular predictors, constant vs time-varying coe¢ -

cients/variance, dynamics of combination weights). The set of models comprise

the following con�gurations (the mnemonics label the models in the tables) and is

summarized in Table 1:

� BDMA: Forecasts using Bayesian Dynamic Model Averaging without restric-
tions. � 2 f0:95; 0:99; 1g, � 2 f0:8; 0:9; 1g and � 2 f0; 0:8; 0:9; 0:95; 0:99; 1g.

� BDMS : Forecasts using Bayesian Dynamic Model Selection. This involves
assigning the entire model weight to the model with the currently highest

predictive weight at each point in time.

� CC-CV-BMA: Forecasting with the restrictions of constant coe¢ cients (CC ),
constant observational variance (CV ) and standard Bayesian Model Aver-

aging (BMA). Technically, this involves setting � = 1, � = 1, � = 1.

� CV : Forecasts with the restriction of constant observational variance (� = 1).

� CC : Forecasts with the restriction of constant coe¢ cients (� = 1).

� CV-BMA: Forecasts with constant observational variance and using standard
Bayesian Model Averaging, � = 1 and � = 1. This econometric setup is

employed in the study of Dangl and Halling (2012).

� CC-EW : Forecasts with constant coe¢ cients and equal model weights, � = 1

and � = 0.

� EW : Forecasts with equally weighted models, � = 0.
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� BMA: Forecasts using standard Bayesian Model Averaging (� = 1).

� Kitchen-Sink Models: Forecasts with all predictors included (k = K). Kitchen-
Sink-CC-CV further assume both constant coe¢ cients and constant vari-

ance.

� Large Models: Forecasts with at least 9 predictors (k � 9). Large Models

CC-CV further assume both constant coe¢ cients and constant variance.

� Medium Models: Forecasts restricted to models with 5 to 8 predictors (5 �
k � 8). Medium Models CC-CV further assume both constant coe¢ cients

and constant variance.

� Small Models: Forecasts with a maximum of 4 predictors (k � 4). Medium
Models CC-CV further assume both constant coe¢ cients and constant vari-

ance.

� Univariate Models: Forecasts with only one predictor (k = 1). The con�gu-
rations Univariate Models-CC-CV further assume both constant coe¢ cients

and constant variance, while the con�gurations Univariate Models-CC-CV-

EW in addition assign equal weights. This econometric setup is used in the

study of Rapach, Strauss, and Zhou (2010).

� Historical Mean-CC : Forecasts without additional regressors (k = 0 and � =
1). Point forecasts are in this case identical to the unconditional prevailing

mean. � is not restricted, allowing for time-varying volatility.15

15The historical mean is the most common benchmark for evaluating forecasting models for
the equity premium. We allow for stochastic volatility in this con�guration. Most studies also
incorporate time-varying volatility, however, in ad-hoc approaches such as rolling windows; see,
e.g., Campbell and Thompson (2008) and Neely, Rapach, Tu, and Zhou (2010).
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Table 1: Forecast Models.
The table summarizes the forecast models with their imposed restrictions on regressors, coe¢ -
cients, variance and the model weighting scheme. (�) indicates that no restrictions are imposed.

Model con�guration Regressors Coe¢ cients Variance Model weights
BDMA � � � �
BDMS � � � single model
CC-CV-BMA � � = 1 � = 1 � = 1
CV � � � = 1 �
CV-BMA � � � = 1 � = 1
CC � � = 1 � �
CC-EW � � = 1 � � = 0
EW � � � � = 0
BMA � � � � = 1
Kitchen-Sink k = 12 � � �
Kitchen-Sink-CC-CV k = 12 � = 1 � = 1 �
Large Models k � 9 � � �
Large Models CC-CV k � 9 � = 1 � = 1 �
Medium Models 5 � k � 8 � � �
Medium Models CC-CV 5 � k � 8 � = 1 � = 1 �
Small Models k � 4 � � �
Small Models CC-CV k � 4 � = 1 � = 1 �
Univariate Models k = 1 � � �
Univariate Models-CC-CV k = 1 � = 1 � = 1 �
Univariate Models-EW k = 1 � � � = 0
Univariate Models-CC-CV-EW k = 1 � = 1 � = 1 � = 0
Historical Mean-CC k = 0 � = 1 � �
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4.4 Model Characteristics

To assess which con�gurations are supported by the data, we present some model

characteristics for our preferred and most general aggregate forecast model, the

BDMA con�guration. Figure 1 presents point predictions along with credibility

intervals of the equity premium for the entire evaluation period. The shrinkage

provided by the combination of models keeps the point forecasts relatively stable.

The width of the credibility intervals substantially varies over time, a manifestation

of the data support for stochastic volatility, as documented in Figure 2. While the

data support for � = 1, corresponding to the constant volatility model, rapidly

converges to zero, � = 0:9 is favored by the data most of the time, accompanied

by occasional spikes for � = 0:80 (e.g., in the subprime crisis). Altogether, a high

degree of data adaptiveness for the variance is selected for the overall model.

With respect to the empirical evidence for time-varying coe¢ cients, Figure 3

documents that the data support for abruptly changing coe¢ cients (� = 0:95)

quickly converges to zero. Gradually evolving coe¢ cients (corresponding to � =

0:99) and constant coe¢ cients (� = 1) both receive data support, with � = 0:99

being favored until the mid-90s, when this pattern is reversed. During the subprime

crises, the importance of time-varying coe¢ cients increases again.

With respect to model combinations, Figure 4 shows empirical evidence for the

favored degree of likelihood discounting over time. Though the o¤ered �exibility

for entire forecasting models being allowed to change over time (corresponding to

low values for �), � = 0:99 and � = 1 are attached the highest weights. Data

support for other values of � converges to zero. While � = 0:99 increasingly

gains support until the mid-90s, � = 1 dominates afterwards until the subprime

crisis. The pattern of the values for � = 1 and � = 0:99 are to a certain extent

developing in line with the � = 1 and � = 0:99. Between the mid-90s and the

subprime crisis, small models with stable coe¢ cients are favored, along with BMA

weighting. Inspecting Figure 1, this pattern might be traced back to a learning
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process during an increasingly stable environment.

Figure 5, presenting the inclusion probabilities for each regressor, shows that

none of the considered predictors emerges as particularly important over the entire

evaluation period. Generally, the inclusion probabilities for the predictors mildly

�uctuate around 0:5 until the mid-90s. Thereafter, most variable lose data support,

while the predictor net issuing activity (ntis) gains importance.

Altogether, the �gures for the data support of the model con�gurations indicate

that the support for certain con�gurations are able to change rapidly. Figures 2,

3 and 4 demonstrate that the support for the discount factors for �; � and � may

quickly adapt to new data. Also, inclusion probabilities for particular regressors

abruptly change in some cases (see Figure 5). Why, then, no predictor emerges

to be important for a considerably long period of time? Is it, because there are

no useful predictors for a longer time, or is it because the econometric setup is

unable to identify them? From the outset of our model con�guration (at least

the most �exible version), we know, that if the correct model is nested, it would

ultimatively be detected.16 Of course, this is an asymptotic result and we do

not know how long it would take to detect it.17 However, it is unrealistic that

any of the nested models is literally true. Hence, if we consider all individual

forecast models to be misspeci�ed, the task of the �exible model averaging process

is to detect locally appropriate models, that is locally suitable approximations

to the data generating process, and rapidly increase the weights corresponding
16BMA is nested in our approach. If the correct model is included among the considered model

universe, it is eventually attached the whole weight, since the marginal likelihood of the correct
model will increasingly dominate the marginal likelihood of all remaining models. If the correct
model was indeed among the speci�ed con�gurations, � would converge to 1; as it, for this case,
would be of no use to discount likelihoods and the weighting scheme would collapse to classical
BMA.
17Raftery, Kárný, and Ettler (2010) conduct a simulation study in order to assess whether

Dynamic Model Averaging is able to track both changing parameters and models for the case of
the right model being included in the considered model universe. They demonstrates that DMA
quickly adapts to (even abrupt) parameter changes and changes of the entire model. Since our
Bayesian version of DMA even increases model �exibility, our econometric technique is supposed
to have power to detect changes for parameter changes as well as for model changes.
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Figure 1: Predictive densities for the S&P 500 returns. The �gure presents the (5%; 95%)
credibility intervals for the predictive returns (grey shaded area). Point forecasts are indicated

by the solid white line, realized returns are displayed by the dotted red line.

to the appropriate con�gurations. Although our approach o¤ers a great amount

of �exibility for adapting to changes in the data generating process, we do not

identify any regressors to be important for a considerably long period of time. This

points to a scenario in which either no regressors are relevant over a considerably

long period of time, or the marginal impact of regressors changes in an erratic,

unpredictable fashion.

4.5 Forecast Evaluation

4.5.1 Statistical Evaluation

As a measure of density forecast accuracy, we assess our models in terms of predic-

tive log likelihoods (SumPL), involving the entire predictive distribution. We also

report the out-of-sample R2, denoted by R2OOS (Campbell and Thompson, 2008).

The R2OOS measures the proportional reduction in mean squared prediction error
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Figure 2: Data support for di¤erent values of � over time. The �gure shows the inclusion
probabilities for the considered grid points.
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Figure 3: Data support for di¤erent values of � over time. The �gure shows the inclusion
probabilities for the considered grid points.
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Figure 4: Data support for di¤erent values of � over time. The �gure shows the inclusion
probabilities for the considered grid points.
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Figure 5: Inclusion probabilities for the twelve predictors over time.
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(MSPE) for an arbitrary forecast model i relative to the historical average.18 When

assessing statistical signi�cance, we have to take into account that all entertained

model con�gurations nest the historical mean. We therefore employ the Clark

and West (2007) MSPE-adjusted statistic. This involves testing the null hypoth-

esis that the historical average MSPE is greater than the model�s forecast MSPE

against the one-sided (upper tail) alternative that the historical average MSPE

is greater than the model�s forecast MSPE (H0 : R2OOS � 0 vs H1 : R2OOS > 0).

Interestingly, for some R2OOS statistics in Table 2, we reject R
2
OOS � 0 in favor of

R2OOS > 0, even though R
2
OOS is negative. The best R

2
OOS is achieved for equally

weighted univariate models with constant coe¢ cients.19 This nested con�guration

is the econometric setup used by Rapach, Strauss, and Zhou (2010). It is striking

that this model con�gurations and the Univariate Models-EW con�guration do

better in terms of R2OOS during recessions than during expansions, while this is

not the case for the remaining models. Generally, we observe a clear pattern with

small models displaying better R2OOS than large models.

In terms of predictive likelihoods, the implication from Table 2 is a clear one:

models allowing for variation in volatility substantially ouperform constant volatil-

ity models in terms of density forecast accuracy. This result is in strong agreement

with Figure 2, documenting essentially no data support for � = 1. Other features,

such as time-varying coe¢ cients or the number of regressors in the models, seem to

play, if any, a minor role. In this respect, also the forecast weighting scheme does

not appear to be important. Equal weighted models do worse than models with

unrestricted weights due to the imposed inclusion of constant volatility models.

Figure 6 documents the evolution of cumulated di¤erences in the sum of predic-

tive log likelihoods between the BDMA and the Historical Mean-CC con�guration.

18R2OOS = 1 �
�

MSPEi
MSPEhist

�
. If R2OOS > 0, the forecast model i is more accurate than the

historical average in terms of the MSPE.
19The MSPE of this con�guration is less than the MSPE of any forecast with only one regressor

and even less than any of the MSPEs of any of the b � d �
�
2K � 1

�
= 3 � 3 �

�
212 � 1

�
= 36; 855

individual forecast models. Results are available upon request.
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Including regressors has not provided value in terms of increased density forecast

accuracy, evaluated over the entire period from 1947 : 01 to 2012 : 12. We employ

the analog graphical device (see Figure 7) to assess the evolution of the cumulated

squared errors between the BDMA and the Historical Mean-CC con�guration. It

is apparent that point forecast accuracy is higher for the BDMA con�guration

during the time of the Oil Shock (1973� 1975) and the subprime crisis (2008=09).
However, immediately after those periods forecast performance deteriorates again.

This points to the di¢ culty for models of returning to other "regimes" of the

economy. Altogether, the provided �exibility for the BDMA does not pay o¤ in

terms of point and density forecasting accuracy. It is interesting in this context

to recall the statement of Welch and Goyal (2008) about the in�uence of the Oil

Shock on results for point prediction accuracy: "If we exclude the Oil Shock, most

models [note: models with economic covariates] perform even worse - many were

statistically signi�cant in the past only because of the stellar model performance

during these contiguous unusual years. One can only imagine whether our pro-

fession would have been equally comfortable rationalizing away these years "as

unusual" if they had been the main negative and not the main positive in�uence."

4.5.2 Economic Evaluation

To evaluate the economic value of our proposed forecast method, we analyze them

within a real-time portfolio allocation. We consider an investor who allocates

wealth between the S&P 500 index and one-month T-Bills. At the end of each

month t� 1, the investor chooses the fraction �t to be held in the stock index for
the period (t� 1; t], based on the overall density forecast of stock index returns in
t�1. We limit �t in the interval [0; 1:5] and assume an investor with power utility.20

At the end of each period, the investor maximizes the power utility function

20Assuming power utility, accomodating for higher moments might be useful. Our aggregate
model is a mixture Student-t distribution and, hence, able to re�ect higher moments.
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Figure 6: Evolution of cumulated di¤erences in the sum of predictive log likelihoods between

the BDMA and the Historical Mean-CC con�guration. Positive (negative) values indicate better

(worse) cumulated performance up to the considered point in time for the BDMA con�guration

relative to the Historical Mean-CC con�guration.
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Figure 7: Evolution of cumulated di¤erences in the sum of squared errors between BDMA

and the Historical Mean-CC con�guration. Negative (positive) values indicate better (worse)

cumulated performance up to the considered point in time for the BDMA con�guration relative

to the Historical Mean-CC con�guration.
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Table 2: Statistical evaluation.
Sum(PL) indicates the sum of predictive log likelihoods. R2OOS measures the percentage reduc-
tion in mean squared prediction error (MSPE) based on the forecast of the respective model
relative to the historical average benchmark forecast. Statistical signi�cance is assessed by the
Clark and West (2007) test. �;��, ��� indicate signi�cance at the 10%, 5% and 1% level, respec-
tively, that the historical average MSPE is less or equal to the respective predictive model�s MSPE
against the alternative that the historical average MSPE is greater than the predictive model�s
MSPE. R2OOS statistics are computed for the entire 1947 : 01 � 2012 : 12 forecast evaluation
period and separately for NBER-dated expansions (exp.) and recessions (rec.).

Model con�guration Sum(PL) R2OOS R2OOS(exp :) R2OOS (rec.)
BDMA 1402 �1:58 �0:02� �5:20
BDMS 1393 �3:30 �2:90 �4:23
CC-CV-BMA 1263 �5:98 �5:95 �6:03
CV 1274 �2:46 �0:82� �6:26
CV-BMA 1282 �3:07 �1:62� �6:42
CC 1402 �1:39 �0:70 �3:00
CC-EW 1365 �3:15 �2:02 �5:76
EW 1366 �2:54� �0:96� �6:22
BMA 1404 �0:67 �0:61 �0:81
Kitchen-Sink 1384 �10:11� �7:40� �16:40
Kitchen-Sink-CC-CV 1252 �16:58 �15:30 �19:54
Large Models 1394 �3:95 �1:42� �9:81
Large Models CC-CV 1261 �7:45 �5:86 �11:14
Medium Models 1400 �1:92 �0:12�� �6:11
Medium Models CC-CV 1266 �2:54 �1:56 �4:82
Small Models 1404 �1:07 �0:13� �3:25
Small Models CC-CV 1268 0:15� 0:28�� �0:14
Univariate Models 1405 �0:91 �0:51 �1:84
Univariate Models-CC-CV 1267 0:37�� 0:47�� 0:16
Univariate Models-EW 1378 0:40 �0:25 1:91
Univariate Models-CC-CV-EW 1267 0:64��� 0:54�� 0:88��

Historical Mean-CC 1406 0:00 0:00 0:00
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u (Wt) =
W 1�

t

1� 
 ; 
 > 1, (20)

where 
 is the coe¢ cient of relative risk aversion and Wt denotes the wealth

at time t, which is equal to

Wt = Wt�1
�
(1� �t) (1 + rf;t�1) + �t

�
1 + rf;t�1 + eyt � 2c ���t � �t�1���� . (21)

rf;t�1 the one-step ahead risk-free rate rate from t� 1 to t and eyt the one-step
ahead forecast of the equity premium made at time t � 1. c indicates a �xed

percentage of transaction costs on each traded dollar.21 Setting W0 = 1, the

investor�s optimization problem can be expressed as

max
�t2[0;1:5]

Et�1

"�
(1� �t) (1 + rf;t�1) + �t

�
1 + rf;t�1 + eyt � 2c ���t � �t�1����1�

1� 


#
. (22)

The expectation depends on the predictive density for the equity premium.

That is, the investor faces the problem

max
�t2[0;1:5]

Z
u (Wt) p (eytjIt�1) deyt. (23)

To approximate the integral in (23), we generate a large number N 22 of random

numbers from the (mixture Student-t) predictive density23 and employ a numerical

optimization method to �nd

21The multiplication by 2 is due to the fact that the investor rebalances investments in both
stocks and bonds. The considered strategies in our empirical analysis vary with respect to
turnover. To compare results in a fair setting, we include transaction costs.
22We set N = 100; 000.
23Using t-distributed predictive densities of returns, expected utility can be in�nite. We

therefore monitor if draws from the monthly return distribution are smaller than �100% or
greater than +100%. In these cases, we would restrict the forecasts to be within the range
[�100%;+100%]. However, in our simulations the bounds are never hit.
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375 . (24)

Table 3 reports two measures to assess the economic value of the forecast

models: the annualized certainty equivalent return (CER)24 for power utility with


 = 325 and the annualized Sharpe ratio (SR). Further, we also separately report

results for the CERs for NBER-dated expansions and recessions.

A key question is how the imposed restrictions on regressors, coe¢ cients,

volatility and model weights of various model con�gurations a¤ect economic value

in terms of CERs and Sharpe ratios. Table 3 documents that, in general, restric-

tions negatively a¤ect performance: model con�gurations with imposed constant

coe¢ cients and constant variance fare worse than competitor con�gurations allow-

ing for time-varying coe¢ cients and time-varying volatility. Particularly, if various

restrictions are imposed simultaneaously, the performance measures deteriorate.

This pattern is striking for the CC-CV-BMA model with an annualized CER of

exactly 500 basis points and an annualized Sharpe ratio of roughly 21%. In contrast

to point prediction accuracy in terms of R2OOS, shrinkage does generally not provide

value with respect to CERs and Sharpe ratios. Even the Kitchen-Sink model with

all 12 regressors imposed to be included fares comparatively well, given its R2OOS

of approximately �10%. This is due to the inlusion of stochastic volatility. Even
24For power utility, the annualized CER (in percent) is calculated as

CER =

8<:
"
(1� 
)E�1

B+EX
t=B+1

u (Wt)

# 1
1�


� 1

9=; � 1200.
B denotes the "burn-in" sample and E indicates the evaluation period. E�1

B+EX
t=B+1

u (Wt)

denotes the mean realized utility.
25We experimented with lower and higher risk aversion coe¢ cients. Our �ndings are quali-

tatively una¤ected. However, as expected, di¤erences in CERs and Sharpe ratios are smaller
(higher) for higher (lower) risk aversion coe¢ cients.
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Table 3: Economic evaluation.
This table reports portfolio performance measures for an investor with power utility and risk
aversion coe¢ cient 
 = 3. The investor allocates monthly between equities and risk-free bills
using one of the di¤erent forecasting models for the equity risk premium. � is the annualized
certainty equivalent return. � statistics are also reported separately for NBER-dated expansions
(exp.) and recessions (rec.). We report the annualized Sharpe ratio (SR) for each con�guration
as a further measure of economic value of the forecast models. All numbers are reported after
deducting proportional transaction costs of 50 basis points (c = 0:0005) per transaction. All
numbers are in percent.

Model con�guration �(overall) �(exp.) �(rec.) SR
BDMA 9:33 10:31 4:52 57:53
BDMS 6:53 8:24 �1:88 39:13
CC-CV-BMA 5:00 6:68 �3:23 21:06
CV 8:09 8:81 4:56 52:58
CV-BMA 8:14 9:02 3:83 52:02
CC 8:52 9:94 1:56 50:92
CC-EW 6:56 8:12 �1:05 36:43
EW 8:47 9:34 4:16 55:67
BMA 8:47 9:82 1:85 50:97
Kitchen-Sink 9:19 10:32 3:65 55:83
Kitchen-Sink-CC-CV 6:28 7:45 0:58 33:85
Large Models 9:65 10:36 6:16 60:05
Large Models CC-CV 6:79 7:99 0:89 39:11
Medium Models 9:59 10:45 5:45 60:00
Medium Models CC-CV 6:81 7:91 1:41 42:57
Small Models 9:13 9:99 4:89 57:00
Small Models CC-CV 7:00 7:74 3:36 53:54
Univariate Models 8:52 9:59 3:25 51:72
Univariate Models-CC-CV 6:76 8:03 0:51 44:08
Univariate Models-EW 7:89 8:55 4:66 51:13
Univariate Models-CC-CV-EW 6:91 7:97 1:71 47:58
Historical Mean-CC 8:02 10:28 �3:02 47:04
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Table 4: Economic evaluation for univariate forecasts.
This table displays the economic value in terms of CERs for each regressor. Four variants
are considered: no restrictions (�), constant coe¢ cients (CC ), constant volatility (CV ), both
constant coe¢ cients and constant volatility (CC-CV ).

CER
Variable - CC CV CC-CV
dy 7:75 6:84 6:53 6:50
ep 7:39 7:83 6:96 7:31
dpayr 8:18 8:06 7:18 7:03
svar 7:88 7:46 6:70 6:42
bmr 6:72 6:47 6:25 5:47
ntis 8:51 7:53 7:53 6:94
tbl 8:78 8:80 6:81 6:59
lty 8:40 8:63 6:48 6:50
ltr 8:17 7:54 7:01 6:38
dfr 8:43 8:06 6:94 6:79
dfy 7:89 6:76 7:10 6:34
inf 7:99 8:26 6:81 6:79

if point forecasts are inaccurate, the high predictive volatility for next month�s

index return (including estimation errors for the coe¢ cients) leads to reductions

in the share of the risky asset. The con�gurations Large Models andMedium Mod-

els do even slightly better in terms of our economic evaluation criteria than the

unrestricted con�guration BDMA, while the Small Models and Univariate Mod-

els con�gurations perform worse than BDMA. The favourite model con�guration

in terms of R2OOS, Univariate Models-CC-CV-EW, underperforms the Historical

Mean-CC con�guration in terms of economic gains. Altogether, this shows that

there can be substantial disagreement between statistical and economic metrics of

utility.26 The agreement between density forecast accuracy (in terms of predictive

log likelihoods) and economic measures is stronger, while the economic evaluation

criteria CER and Sharpe ratio strongly agree. This �nding is completely in line

26It would also be of great interest to formally assess the statistical signi�cance of the CERs.
However, formal tests for this issue have not been fully developed. See McCracken and Valente
(2012) for initial results.
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with the results of Cenesizoglu and Timmermann (2012) who document a weak

relationship between point forecast accuracy and economic evaluation criteria, but

a stronger agreement between predictive density forecasts and economic value.

The CV-BMA con�guration corresponds to the econometric setup employed

by Dangl and Halling (2012). They document that allowing for time-varying co-

e¢ cients, along with model combinations using BMA, provides sizeable utility

gains as well as substantial and signi�cant improvement in Clark and West (2007)

MSPE-adjusted statistics. However, in contrast to their study, we do not employ

the cross-sectional beta premium (csp)27 as a regressor to predict equity premia.28

Our results for the CV-BMA con�guration are clearly inferior to those reported

by Dangl and Halling (2012), both in terms of utility gains as well as for MSPE-

adjusted statistics. However, if we include the csp variable into our set of regressors

and also adopt the (slightly) di¤erent study employed by Dangl and Halling (2012),

we are able to reproduce their results. Di¤erences in results are clearly due to the

csp variable and not to di¤erences in the study design. Being aware that one par-

ticular variable may crucially a¤ect results, we sequentially exclude each predictor

from the set of considered variables and calculate results for our preferred BDMA

con�guration. The e¤ects on our results are neglegible. Hence, our results are not

driven by a particular variable.

The BDMS approach only uses a single (potentially di¤erent) model to forecast

at each point in time, and, hence, allows for fast switching of models. However,

27The cross-sectional beta premium (csp) quanti�es the relative valuation of high- and low-beta
stocks according to Polk, Thompson, and Vuolteenaho (2006).
28Amit Goyal states: "The csp data in the original paper was incorrect. It was an auxiliary

series from the Polk+ paper [note: Polk, Thompson, and Vuolteenaho (2006)]. We could not
replicate their primary csp data and thus their results. This may well be our problem, not
their�s." The supplementary �le with updated results and corrections (including this statement)
is available at: http://www.hec.unil.ch/agoyal/docs/PaperTables2009.pdf. The variable
csp is included in the dataset provided by Amit Goyal and also used by Dangl and Halling (2012).
The dataset is available at: (http://www.hec.unil.ch/agoyal/).

34



47:01 57:01 67:01 77:01 87:01 97:01 07:01 12:12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8: Evolution of cumulated di¤erences in realized utility between BDMA and the His-
torical Mean-CC con�guration. Positive (negative) values indicate better (worse) cumulated

performance up to the considered point in time for the BDMA con�guration relative to the

Historical Mean-CC con�guration.

both in terms of economic and statistical performance, this con�guration does

not fare well. This is to be expected, given the broad empirical support for slow

changing model weights (see Figure 4).

Table 4 presents results for univariate regressions (for each considered regressor)

in terms of CERs. We show di¤erences between results when no further restrictions

are imposed, for constant coe¢ cient, constant variance and for both constant

coe¢ cients and constant variance. The latter con�guration is employed in the

study by Welch and Goyal (2008). A clear indication from Table 4 is that imposing

constant volatility is detrimental to utility gains. On the other hand, the e¤ects

of imposing constant coe¢ cients in univariate models is ambiguous.

When assessing economic value separately for expansions and recessions, it is

apparent that forecast models which overall fare better relative to the historical

mean forecast achieve improvements during recessions. This pattern is well-known

in the literature on equity premium prediction; see, e.g., Rapach, Strauss, and
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Zhou (2010), Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012).

Further, the observation of increased predictability during recessions is supported

by asset pricing theory (Campbell and Cochrane, 1999).29

Figure 8 shows the evolution of cumulated di¤erences in realized utility between

the BDMA and the Historical Mean-CC con�guration (for an investor with power

utility and 
 = 3). Though the cumulated di¤erence is positive for most of the

time, this graphical device sheds light on the way how the di¤erence between the

two models has evolved over time. The more �exible model fared better only

during two periods, namely, around the Oil Shock 1973 � 75 and the subprime
crisis 2008=09. This �nding is helpful in two respects: �rstly, since those periods

happened to be recessions, it clari�es why the model has done better than the

simpler model during recessions. Secondly, it reveals that the outperformance of

the BDMA model is driven by small subperiods, particularly the period around

the Oil Shock.

5 Conclusion

This article has introduced a Bayesian version of Dynamic Model Averaging. The

setup allows for rigororous modelling of uncertainties. We specify a large set

of individual models, di¤ering with respect to included regressors, stability of

coe¢ cients and volatility dynamics. Individual forecasts are monitored, tracking

model performance over time in terms of predictive likelihoods. Flexible model

combination schemes shift weights according to the (recent) forecast performance

of the models. The aggregate model sequentially generates predictive densities,

accounting for many sources of uncertainty.

We apply our methodology to forecast monthly US equity premia between 1927

and 2012 and evaluate the forecasts in terms of statistical and economic criteria.
29In the habit formation model, Campbell and Cochrane (1999) argue that risk aversion in-

creases during economic downturns, thereby generating equity premium predictability.
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Our results add empirical evidence that shrinking and combining forecasts can

result in more precise point forecasts relative to the prevailing historical mean.

We �nd that model speci�cations allowing for stochastic volatility improve den-

sity forecast accuracy and increase economic gains, as measured by CERs and the

Sharpe ratio. Our methodology does not identify any of the included covariates

to be particularly important for predicting equity premia over a considerably long

period of time. With respect to the degree of instability of coe¢ cients, stable

and gradually evolving behavior is favored rather than abruptly changing coef-

�cients. There is only a low degree of likelihood discounting, being consistent

with slow changing model weights. We document disagreement between statistical

and economic metrics of forecast performance, that is, point prediction accuracy

and economic gains. With density forecasts and economic criteria being more

in agreement, exploiting the entire return distribution for asset allocation rather

than focussing on point predictions appears to pay o¤. Most importantly, however,

while utility gains are generally higher for more �exible models when evaluated

over the entire evaluation period, this result is not robust. The identi�ed gains

are largely driven by exceptional and short periods of time, particularly the time

period around the Oil Shock (1973� 1975) and the subprime crisis (2008=09).

The implications of our results reconcile seemingly contradictory views in the

literature: Welch and Goyal (2008) take a sceptical view with respect to enhancing

point prediction accuracy for equity premia by means of economic covariates. Just

as we, they ascribe positive �ndings to the time period around the Oil Shock. At

the same time, they argue that the forecast models would not have been helpful

for asset allocation relative to the simple historical benchmark. Subsequent stud-

ies such as Rapach, Strauss, and Zhou (2010), Ferreira and Santa-Clara (2011),

Rapach, Strauss, and Zhou (2010) and Johannes, Korteweg, and Polson (2013)

adopted more elaborated econometric methods compared to the linear regression

models with constant coe¢ cients and constant variance employed in the analysis

by Welch and Goyal (2008). With these various techniques, empirical evidence in
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favour of predictability and economic utility gains (of a similar magnitude as in

our study for the BDMA con�guration) is adduced. However, these studies do not

investigate the impact of the Oil Shock.

Our approach directly nests some of the econometric settings of those studies

(Welch and Goyal, 2008; Rapach, Strauss, and Zhou, 2010; Dangl and Halling,

2012) and is similar to the setup employed by Johannes, Korteweg, and Pol-

son (2013). By construction, our approach avoids "cherry-picking". Against this

background, we reinforce the statement advanced by Welch and Goyal (2008):

"Although it is possible to search for, to occasionally stumble upon, and then

to defend some seemingly statistically signi�cant models, we interpret our results

to suggest that a healthy skepticism is appropriate when it comes to predicting

the equity premium, [...]. The models do not seem robust." Further, our results

point to the superiority of stochastic volatility models in terms of density forecast

accuracy and economic gains. Therefore we strenghten the conclusion drawn by

Cenesizoglu and Timmermann (2012) that "[...] the debate on return predictabil-

ity has focused too narrowly on statistical measures of forecast precision such as

root mean squared forecast errors [...]."
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A Appendix

A.1 Structure of Dynamic Linear Models

Building on the speci�cation of the dynamic linear model in equations (1) and (2),

we describe the sequential updating of the the beliefs about system coe¢ cients, the

scale matrix of the coe¢ cients and the observational variance. Suppose, at some

arbitrary time t� 1, we have already observed yt�1. Hence, we are able to form a

posterior belief about the values of the unobservable coe¢ cients �t�1jIt�1 and of
the observational variance Vt�1jIt�1: These posteriors are normally/inverse-gamma
distributed

Vt�1jIt�1 � IG

�
nt�1
2
;
nt�1St�1

2

�
, (25)

�t�1jIt�1; Vt�1 � N
�
mt�1; Vt�1C

�
t�1
�
. (26)

After integrating out the uncertainty in the observational variance, the poste-

riors of the coe¢ cients are t-distributed as

�t�1jIt�1 � tnt�1
�
mt�1; St�1C

�
t�1
�
. (27)

The prior distribution of the time-varying regression coe¢ cients, �tjIt�1 acco-
modates for the system coe¢ cients being exposed to shocks, increasing the system

variance by Wt,

�tjIt�1 � tnt�1
�
mt�1; St�1C

�
t�1 + St�1W

�
t

�
. (28)

(6), (7) and (8) in the main text show the discount approach for specifyingWt.

44



The prior for the observational variance is

VtjIt�1 � IG
�
�
nt�1
2
; �
nt�1St�1

2

�
. (29)

Notice the di¤erence between the posterior for the observational variance in (25)

and the prior for the observational variance in (29). The modelling approach for the

evolution of the observational variance assumes that the observational variance is

subject to some random disturbance over the time interval (t� 1; t]. The discount
factor � 2 f�1; :::; �bg, � 2 (0; 1] models a decay of information between the time
points and retains the marginal inverse gamma form of the prior and posterior

distribution, ensuring conjugacy. Based on the time t� 1 posterior (25), deriving
VtjIt�1 involves a random-walk like stochastic beta/inverse-gamma evolution for
the sequence of observational variances, resulting in the time-t prior distribution

(29). It has the same location as (25), that is, E (VtjIt�1) = E (Vt�1jIt�1) = St�1
but increased dispersion through the discounting of the degrees of freedom (see (9)

in the main text).30

The predictive density of yt is obtained by integrating the conditional density

of yt over the range of �t and Vt. Let # (y;�; �2) denote the density of a normal

distribution evaluated at y and IG (V ; a; b) the density of an IG (a; b) distributed

30The variance discounting approach induces robustness and protection against potential biases
in estimation of the state vector and can also protect against aspects of model misspeci�cation;
see Prado and West (2010), page 132.
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variable evaluated at V . We obtain the predictive density as

p (ytjIt�1) =

1Z
0

�Z
#
�eyt;F 0

t �t; Vt

�
#
�
�t;m

0

t�1; Vt
�
C�t�1 +W

�
t

��
d�t

�

� IG
�eVt; �nt�1

2
; �
St�1nt�1

2

�
dVt

=

1Z
0

#
�eyt;F 0

tmt�1; Vt

h
1 + F

0

t

�
C�t�1 +W

�
t

�
Ft

i�
� IG

�eVt; �nt�1
2
; �
St�1nt�1

2

�
dVt.

The predictive density

p (ytjIt�1) = t�nt�1

0BBBBBBBBBBB@
eyt;F 0

tmt�1;St�1 �

2641 + F 0

t

0B@C�t�1 +W �
t| {z }

:=R�t

1CAFt
375

| {z }
:=Q�t| {z }
:=Qt

1CCCCCCCCCCCA
(30)

is Student-t distributed with location F
0
tmt�1, scale Qt and �nt�1 degrees of

freedom, evaluated at eyt. Rt denotes the prior variance of the coe¢ cient vector
�t. St�1 represents the estimate for the observational variance. With all inputs for

the predictive density determined, the prediction step is �nished and we continue

to outline the update step.

After the yt has materialized, the priors about the system coe¢ cients and the

observational variance are updated based on the prediction error

et = yt � byt: (31)
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Combining the time�t prior (29) for the observational variance31

p (VtjIt�1) / V
��nt�1

2
t exp

�
��nt�1St�1

2Vt

�
(32)

for Vt > 0 with the (conditionally) normal likelihood

ytjIt�1; Vt � N
�
F

0
tmt�1;Vt

Qt
St�1

�
,

p (ytjVt; It�1) / V
1
2
t exp

�
�e2tSt�1
2VtQt

�
, (33)

we obtain the inverse-gamma distributed posterior for the observational vari-

ance

p (VtjIt) / V
��nt
2

t exp

�
�ntSt
2Vt

�
, (34)

with the updated point estimate St and the updated degrees of freedom nt (see

(9) and (10) in the main text).

The m� 1 adaptive coe¢ cient vector

At =
RtFt
Qt

(35)

relates the precision of the estimated coe¢ cients to the variance, and hence,

the information content of the current observation. At determines the degree to

which the updated values for estimates of the coe¢ cients react to new observations.

Updating for point estimates of the system coe¢ cients and the associated estimate

of the scale matrix is completed by

31The variance discounting approach underlies a multiplicative model for generating VtjIt�1
from Vt�1jIt�1. Suppose 
t to be a beta distributed random variable, independent of Vt�1, with
density p (
tjIt�1) � Beta

�
� nt�12 ; (1� �) nt�12

�
; and E (
tjIt�1) = � for 0 < 
t < 1. Given

Vt�1, set Vt = 
tVt�1=�. The resulting distribution of Vt is the time-t prior (29). The evolution
Vt = 
tVt�1=� formally models stochastic variation in the observational variance sequence. The
variance discounting arises from a stochastic evolution in which the Vt sequence changes as a
result of independent random "shocks" 
t=�. The variance discounting approach is documented
in detail in West and Harrison (1997), page 360 et seq., and Prado and West (2010), page 132
et seq.
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mt = mt�1 + Atet; (36)

Ct =
St
St�1

�
Rt � AtA

0

tQt

�
. (37)

A.2 Connection between Marginal and Predictive Likeli-

hoods

To show the connection between DMA and classical (static) BMA, we exploit

the link between marginal and predictive likelihoods (Dawid, 1984; Geweke and

Whiteman, 2006; Raftery, Kárný, and Ettler, 2010). The marginal likelihood in

period t for model i is expressed by the product of past predictive likelihoods for

s = 1; :::; t.

p
�
ytjMj

�
=

tY
s=1

p (ysjMi; Is�1) , (38)

where yt = fy1;:::;ytg. .

In the BMA framework, posterior model probabilities are expressed using Bayes

factors for pairwise comparisons (of individual models or model combinations).

The Bayes factor for model j against model k is de�ned by the ratio of marginal

likelihoods, Bjk =
p(ytjMj)
p(ytjMk)

. It follows from (38) that the ratio of Bayes factors can

be expressed as

Bjk =
tY
s=1

Bjk;s =

tY
s=1

p (ysjIs�1;Mj)

tY
s=1

p (ysjIs�1;Mk)

, (39)

where Bjk;s is the sample-speci�c Bayes factor for sample s.
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The posterior model probabilities are then (in the case of equal prior probabil-

ities)

p (MjjIt)
p (MkjIt)

=

tY
s=1

(Bjk;s)�
t�s
.

For � < 1, the posterior model probabilities are equal to the exponentially

age-weighted product of sample-speci�c Bayes factors. For � = 1, we obtain the

usual Bayes factors for arbitrary models and predictive likelihoods correspond to

marginal likelihoods (at least, if we consider the whole data set from s = 1).

49


