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Abstract

This paper analyzes conditional stock-price volatility within in present-value framework
including (rational) periodically collapsing bubbles as introduced by Evans (1991). To

this end, we derive an analytically closed-form volatility formula of the stock price.
The formula establishes a direct link between the bubble component and stock-price
volatility. Using a Bayesian Monte-Carlo estimation technique (the particle filter), we

demonstrate how to fit the parametric volatility equation to stock-market data.
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1 Introduction

Several authors argue that the frequently observed excessive volatility in stock prices

may be attributed to the presence of speculative bubbles. Blanchard and Watson

(1982) and Flood and Hodrick (1986), inter alia, demonstrate in a theoretical frame-

work that bubble components potentially generate excessive volatility. Besides the

many articles discussing theoretical aspects of speculative bubbles and econometric

techniques for their detection, there is a second strand of literature linking financial

crises and/or bubbly periods to stock-price volatility. Two important pieces of research

are Brunnermeier and Oehmke (2013) and the so-called Minsky model (as described in

Kindleberger and Aliber, 2005, pp. 24-37) according to which financial crises and/or

bubbly periods are characterized by different phases of stock-price volatility. During

the early stages of a bubbly period stock-price volatility appears to be low whereas

towards the end of the bubble and its burst stock-price volatility is typically high.

In this paper we consider the existence of periodically collapsing bubbles as pro-

posed by Evans (1991) in the well-known present-value model and theoretically analyze

conditional stock-price volatility within this framework. Using a sequential Bayesian

Monte-Carlo technique, we fit our theoretical model equations to an artificial dataset

to gain further insights into stock-price volatility dynamics during bubbly periods. Our

analysis has two major findings. First, we show that our rational bubble specification

entails excess stock-price volatility. Second, we find that the dynamic structure of this

volatility dynamics accords with the phases of low and high volatility as proposed by

Brunnermeier and Oehmke (2013) and the Minsky model.

2 Present-value model and the Evans bubble

In the linear present-value model with rational expectations the price of a stock at date

t, Pt, is given by the Euler equation

Pt =
1

1 + r
[Et(Pt+1) + Et(Dt+1)] , (1)
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where Dt+1 is the stock dividend payment between t and t + 1. Et(·) denotes the con-

ditional expectation operator based on all information available to market participant

as of date t. r is the required rate of return that is just sufficient to compensate in-

vestors for the inherent riskiness of the stock (see Campbell et al., 1997; Cuthbertson

and Nitzsche, 2004). To solve the expectational difference equation (1) we substitute

future prices forward repeatedly and obtain

Pt =
∞

∑

i=1

(

1
1 + r

)i

· Et(Dt+i) + lim
n→∞

(

1
1 + r

)n

· Et(Pt+n). (2)

Ruling out speculative bubbles by assuming validity of the transversality condition

lim
n→∞

(

1
1 + r

)n

· Et(Pt+n) = 0, (3)

we obtain the unique fundamental stock price

Pt = P f
t =

∞
∑

i=1

(

1
1 + r

)i

· Et(Dt+i). (4)

The basic idea behind a rational bubble is that there are mathematical expressions

Bt that are (1) consistent with the limit-term appearing on the right-hand side of

Eq. (2), and (2) may satisfy the Euler Eq. (1):

Pt = P f
t + Bt =

∞
∑

i=1

(

1
1 + r

)i

· Et(Dt+i) + Bt. (5)

In view of Eq. (5), we interpret the rational bubble Bt as the deviation of the current

stock price Pt from its current fundamental value P f
t . The entire class of solutions to

the Euler Eq. (1) is given by Eq. (5) in which Bt is any random variable satisfying the

(discounted) martingale property

Et(Bt+1) = (1 + r) ·Bt or, equivalently, Bt =
1

1 + r
· Et(Bt+1). (6)

The bubble term Bt is called rational because its presence in Eq. (5) is consistent with

rational expectations.
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To analyze the impact of rational bubbles on stock-price volatility, we follow Evans

(1991) who suggests an empirically plausible class of bubbles that are nonlinear, pos-

itive, periodically collapsing and satisfy the martingale property (6). Defining the

discount factor ψ = (1 + r)−1, we write the Evans bubble in the form

Bt =







1
ψBt−1ut, if Bt−1 ≤ α
[

θ + 1
πψ

(

Bt−1 − θψ
)

νt

]

ut, if Bt−1 > α
, (7)

where θ and α are real constants such that 0 < θ < (1 + r)α. {ut}∞t=1 is an exogenous

process of i.i.d. random variables with ut > 0 and Et−1(ut) = 1 for all t. As in

Evans (1991), we explicitly assume the variables {ut} to be lognormally distributed

and scaled to have unit mean, i.e. we assume ut = exp(yt − ι2/2) with {yt}∞t=1 being

i.i.d. N(0, ι2). {νt}∞t=1 is an exogenous i.i.d. Bernoulli process independent of {ut}∞t=1

with Pr(νt = 1) = π and Pr(νt = 0) = 1− π for 0 < π ≤ 1. The event {νt = 1} means

that the bubble will continue to grow, whereas the bubble bursts in case of {νt = 0}.

It is instructive to note that the Evans bubble (7) has two different rates of growth.

For Bt−1 ≤ α the bubble grows at the mean rate 1
ψ . In case of Bt−1 > α the bubble

grows at the faster rate 1
πψ , but collapses with probability 1− π per period. When the

bubble collapses, it falls back to the mean value θ and the process recommences.

3 Conditional stock-price volatility

In order to compute the conditional volatility associated with the stock-price dynamics

given in the Eqs. (5) and (7), it remains to specify a stochastic process {Dt} governing

the dividend payments. In line with recent literature we assume that dividends follow

a driftless random walk of the form

Dt = Dt−1 + εt, (8)

where εt is an i.i.d. Gaussian white-noise process with mean zero and variance σ2 (see

Al-Anaswah and Wilfling, 2011). Inserting this into Eq. (5), we obtain
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Pt = βDt + Bt = βDt−1 + Bt + βεt, (9)

where β = 1/r.

We now compute the variance of the stock price Pt given in Eq. (9) conditional on

all information available to market participants as of date t − 1, which we denote by

Vart−1(Pt). The associated information set Ωt−1 contains, inter alia, all past dividends

and stock prices. Additionally, we assume that we can observe (or at least estimate)

past values of the bubble component.1 From Eq. (9) we have

Vart−1(Pt) = Vart−1(βDt−1 + Bt + βεt) = Vart−1(Bt + βεt). (10)

Since the dividend error process {εt} is by definition uncorrelated with the bubble

process {Bt}, Eq. (10) reduces to

Vart−1(Pt) = Vart−1(Bt) + β2σ2. (11)

Obviously, when dividends follow a random walk, conditional stock-price volatility

is (up to a constant) completely characterized in terms of the conditional variance

of the bubble term. The conditional variance Vart−1(Bt) itself can be derived from

the distributional assumptions of the Evans-bubble specification. More precisely, the

lognormal distribution of ut from Eq. (7) implies that for Bt−1 ≤ α the conditional

variance of the bubble is given by

Vart−1(Bt) =
(

1
ψ

Bt−1

)2

·
[

exp(ι2)− 1
]

. (12)

The case Bt−1 > α is slightly more laborious because it involves the two random

variables ut and νt. In a first step, Eq. (7) allows us to write

Vart−1(Bt) = Vart−1

(

θut +
[

Bt−1 − θψ
πψ

]

νtut

)

. (13)

Next, we have to take account of the covariance of the variables ut and νtut in Eq. (13),
1We will tackle this issue more concretely in Section 4.
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which is given by π · (exp {ι2} − 1). In similar vein, it is straightforward to find

Vart−1(ut) and Vart−1(νtut). Overall, we obtain for Bt−1 > α

Vart−1(Bt) = θ2 · Vart−1(ut) +
(

Bt−1 − θψ
πψ

)2

· Vart−1(νtut)

+ 2θ
(

Bt−1 − θψ
πψ

)

·
[

π ·
(

exp
{

ι2
}

− 1
)]

= θ2 (

exp{ι2} − 1
)

+
(

Bt−1 − θψ
πψ

)2

·
(

exp{ι2} · π − π2)

+ 2θ
(

Bt−1 − θψ
πψ

)

·
[

π ·
(

exp
{

ι2
}

− 1
)]

. (14)

Now, inserting Eq. (14) into Eq. (11), the conditional stock-price variance is given by

Vart−1(Pt) =































(

1
ψBt−1

)2
(exp{ι2} − 1) + β2σ2, if Bt−1 ≤ α

[

θ2 + 2θ
(Bt−1 − θψ

ψ

)]

· (exp{ι2} − 1)

+
(Bt−1 − θψ

πψ

)2
[exp{ι2}π − π2] + β2σ2, if Bt−1 > α

. (15)

4 Bubble and stock-price volatility

4.1 Theoretical results

To state a first theoretical result we note from Eq. (15) that the bubble term Bt−1 has

an increasing effect on conditional stock-price volatility. This implies that the mere

existence of a speculative bubble necessarily increases stock-price volatility. We may

analyze this impact further by considering the derivative

∂Vart−1(Pt)
∂Bt−1

=















2
ψ2Bt−1 · (exp{ι2} − 1) , if Bt−1 ≤ α

2
ψ2

[

(Bt−1 − θψ) ·
(

exp{ι2}
π − 1

)

+ θψ(exp{ι2} − 1)
]

, if Bt−1 > α
.

(16)

Eq. (16) establishes a strictly positive relationship between the infinitesimal change

in stock-price volatility and Bt−1, the bubble level from the previous period. Conse-

quently, an explosive bubble path necessarily entails an explosive path of stock-price
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volatility.

Next, we address the impact of a bubble burst on stock-price volatility. Since

the conditional stock-price variance given in Eq. (15) is a function of Bt−1, stock-

price volatility collapses one period after the bubble burst. Furthermore, owing to the

Eqs. (15) and (16) the stock-price volatility process attains its maximum when Bt−1

takes on its largest value which typically occurs on the eve of the bubble crash. This

theoretical result is consistent with the volatility dynamics described by Brunnermeier

and Oehmke (2013) and the Minsky model.

Figure 1 about here

4.2 Empirical application

Figure 1 gives an example of an Evans bubble process (right panel) and the stock-

price process from the Eqs. (7) and (9) with one large and one moderate bubble. The

dividends from Eq. (8) follow a random walk with standard deviation σ = 0.03. We

set the parameter value β = 50 while the parameters relevant to the simulation of the

Evans bubble are chosen as ψ = 0.9804, ι2 = 0.001, θ = 1.1, π = 0.98 and α = 2.

Our artificial dataset consists of 250 observations corresponding to a time span of

approximately 21 years on the basis of monthly data.

An important stipulation inherent in our theoretical framework concerns the struc-

ture of the information set Ωt−1. We explicitly assume that Ωt−1 contains the bubble

time series, which is crucial to analyzing stock-price volatility. However, in practice

bubble values are unobservable so that we are forced to estimate the bubble process

from the data.

To this end, we use a sequential Monte-Carlo method—the so-called particle filter—

as introduced by Gordon et al. (1993). This Bayesian approach enables us to estimate

a latent variable (our bubble process) from nonlinear and non-Gaussian state-space

models. In a first step we transform the Eqs. (7) and (9) into a nonlinear state-space

form from which we then estimate—besides all other model parameters—the unob-

servable bubble process. Several technical approaches to parameter estimation via the
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particle filter are available in the literature (see Doucet et al. (2001) for an overview).

In this paper we apply the Expectation Maximization (EM) algorithm as proposed by

Schön et al. (2011). Additionally, we use a stable estimator of the information matrix

established by Duan and Fulop (2011) to compute standard errors.2

Table 1 about here

Table 1 displays the estimates of the parameters from the Eqs. (7) and (9). Owing

to an identification problem, we set the parameter α = 2. The variance of the error

term in Eq. (9) equals β2 × σ2 implying the estimate σ̂ = 0.0321 of the dividend

standard deviation in Eq. (8).

Figure 2 about here

Besides parameter estimation the particle filtering approach allows us to estimate

the bubble process from the data. Figure 2 displays the estimated bubble process

(bold line) as well as the true (simulated) bubble process (taken from the right panel

in Figure 1). Obviously, the estimated bubble process almost perfectly fits the true

bubble values. These econometrically reliable estimates of the bubble process can now

be included in the information set Ω. This procedure ultimately enables us to analyze

the conditional stock-price variance according to Eq. (15).

Figure 3 about here

Figure 3 displays the conditional stock-price variance (bold line) along with the

estimated bubble process (thin line). Two features are worth mentioning. (1) In line

with our theoretical results from above, stock-price volatility collapses one period after

the bubble burst. (2) The increase in the stock-price variance process in response to

increases in the bubble process occurs with a considerable time delay. In Figure 3, for

example, the bubble process begins to take on substantially increasing values around
2Technical details of our estimation procedure are available upon request.
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the date t = 50. By contrast, stock-price volatility remains (roughly) constant and

begins to increase steadily no earlier than around the date t = 110.

To explain this latter phenomenon we again refer to the derivative in Eq. (16). For

Bt−1 > α the slope of the stock-price variance essentially consists of the two summands

within the squared brackets. For small and moderate values of Bt−1 the first term is

negligible and the slope of the stock-price variance is primarily determined by the

constant value 2θ
ψ (exp {ι2} − 1). During this period the stock-price variance remains

largely unaffected by the Bt−1-levels. It is not until the bubble values get sufficiently

large that the first summand (containing Bt−1) begins to dominate the slope of the

stock-price variance triggering strongly increasing stock-price volatility.

The stock-price volatility dynamics displayed in Figure 3 is strongly consistent with

the observations by Brunnermeier and Oehmke (2013) on the distinct volatility phases

in the run-up to a financial crisis. If we interpret the start of the crisis as the first

period after the burst of the stock-market bubble, their observation can be stated as

follows. In an early stage when the bubble begins to emerge, stock market volatility is

comparably low. Then, volatility increases due to trading frenzy in a phase of euphoria

which finally ends in the burst of the bubble. At the beginning of the financial crisis,

that is one period after the crash, stock-market volatility is maximal.

5 Conclusion

This paper analyzes (conditional) stock-price volatility dynamics in a present-value

framework with periodically collapsing bubbles as proposed by Evans (1991). We

derive closed-form expressions for the volatility paths and explore their properties the-

oretically. In an empirical part we describe a sequential Monte Carlo approach for

extracting the unobservable bubble process from the data.

Our major finding is that the present-value framework produces stock-price volatil-

ity paths that are broadly consistent with empirically observed volatility structures in

the run-up to financial crises and/or the burst of a stock-market bubble. Evans bubbles

contribute to excessive stock-price volatility and volatility reaches its maximum when
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the bubble bursts. Our volatility results should be of interest to traders in international

stock and derivative markets, for example for valuing stock-price sensitive claims.
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Tables and Figures

Table 1. Parameter estimates using the particle filter

Parameter True value Estimate Standard error
β 50.0000 50.9366 0.0963
β2 × σ2 2.2500 2.6657 0.0868
ψ 0.9804 0.9666 3.9591 × 10−5

ι2 0.0010 0.0011 2.2510 × 10−12

θ 1.1000 0.5749 2.4932 × 10−4

π 0.9800 0.9925 2.4932 × 10−5
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Figure 1. Stock‐price process and the included Evans bubble 
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Figure 2. Estimated bubble process (bold line) versus true bubble process (thin line) 
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Figure 3. Conditional stock‐price variance (bold line) and estimated bubble process (thin line) 
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