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1 Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986) GARCH (generalized autore-

gressive conditional heteroskedasticity) models have become a standard tool in modeling the

conditional variances of the returns from financial time series data. The popularity of these

models stems from (1) their compatibility with major stylized facts for asset returns, (2) the ex-

istence of efficient statistical methods for estimating model parameters, and (3) the availability

of useful volatility forecasts.

In order to cover specific volatility features like the well-known leverage effect and other

asymmetries in financial returns (e.g. Black, 1976; Christie, 1982; Schwert, 1989), a plethora of

GARCH specifications have been suggested in the literature among the most prominent being

the exponential GARCH (EGARCH) model introduced by Nelson (1991) and the threshold

GARCH (TGARCH) model of Zakoian (1994). However, Hentschel (1995) establishes a con-

nection between many of these models by showing that their specifications are special cases of

a Box-Cox (1964) transformation to the conditional standard deviation.

While all the above-mentioned single-regime GARCH specifications have been well-estab-

lished from a statistical point of view and have become standard routines in many econometric

software packages, their two-regime Markov-switching counterparts are less straightforward to

implement. Apart from the (typically) large number of parameters that have to be estimated

this lack may be due to a phenomenon known as path dependence which stems from the GARCH

lag structure and causes the regime-specific conditional variance to depend on the entire history

of the data in a Markov-switching GARCH model. As pointed out by Cai (1994) and Hamilton

and Susmel (1994) path dependence typically entails severe estimation problems if not carefully

handled. However, Gray (1996) establishes a path-independent Markov-switching GARCH

framework that permits direct estimation of all model parameters using (quasi) maximum

likelihood techniques. Gray’s model was later refined by Klaassen (2002) and it is their Markov-

switching framework that we will expand in this paper.

Today, Markov-switching (or regime-switching) GARCH models, which are designed to cap-

1



ture discrete shifts in the volatility process of time series data, are in widespread use in various

fields of financial economics. Most recent empirical applications of Markov-switching GARCH

models to commoditiy prices, stock returns and exchange-rate return data are presented, inter

alia, in Alizadeh et al. (2008), Henry (2009), Wilfling (2009) and Bohl et al. (2011). However,

all two-regime Markov-switching GARCH specifications hitherto estimated in the economics

and financial literature have one feature in common that appears unnecessarily restrictive. De-

spite the fact that the parameters in the variance equations are allowed to switch across both

regimes, the overall functional forms of the two regime-specific GARCH equations are modeled

as identical. For example, apart from Henry (2009) all authors of the above-cited empirical

applications specify two-regime Markov-switching models with standard GARCH equations in

each Markov regime while Henry (2009) uses EGARCH specifications in both regimes.

In this paper we develop a more flexible setup by incorporating Hentschel’s (1995) results

on the nesting of distinct symmetric and asymmetric single-regime GARCH models into Gray’s

(1996) Markov-switching GARCH model. In this way, we establish a general regime-switching

framework that enables us to estimate complex GARCH equations of different functional forms

across the Markov regimes. To give an example, our setup allows us to specify an EGARCH

equation in regime 1 while regime 2 might be described by a standard GARCH specification.

To our best knowledge such a flexible Markov-switching GARCH framework has not yet been

implemented in the literature. In the empirical part of the paper we apply our general Markov-

switching GARCH approach to the excess returns generated by the German stock index DAX

and demonstrate that our flexible setup econometrically outperforms all conventional Markov-

switching GARCH models hitherto estimated in the financial literature.

The remainder of the paper is organized as follows. Section 2 formally establishes our

general Markov-switching GARCH framework. For ease of readability we derive the complete

maximum likelihood estimation procedure in the technical appendix to the paper. Section 3

describes the data set and presents the estimation results. The final Section 4 summarizes the

main results and concludes the paper.
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2 A general Markov-switching GARCH model

In this section we establish our general Markov-switching model that enables us to specify and

estimate GARCH equations of different functional forms in each of the distinct Markov regimes.

For this we assume that the data generating process (DGP) of the financial return rt is affected

by an unobserved latent random variable St representing the regime the DGP is in at time t.

For simplicity we assume only the two distinct regimes 1 and 2 at any point in time, that is,

we assume either St = 1 or St = 2 for all t = 1, 2, . . ..

As a starting point of our derivation we will follow Hentschel’s (1995) exposition and build

up the so-called Absolute Value GARCH model for the return process {rt}. However, we expand

Hentschel’s single-regime framework to a two-regime Markov-switching model. To this end we

let the return dynamics depend on the regime indicator St = i, i = 1, 2 and specify

rt+1 = λi + γi

√

hi,t +
√

hi,tεt+1. (1)

In Eq. (1), λi and γi are regime-specific constants while {εt} denotes an i.i.d. process of standard

normal variates. hi,t represents the conditional variance in regime i the modeling of which will

be treated below. The term λi + γi
√

hi,t on the right-hand side of Eq. (1) constitutes the

mean equation of the return in regime i and is known as the GARCH-in-Mean (GARCH-M)

model suggested by Engle et al. (1987) which has been used in many empirical studies on

the behavior of stock returns (e.g. Elyasiani and Mansur, 1998; Ghysels et al., 2005). Based

on these assumptions, the conditional distribution of the return is a mixture of two normal

distributions which can be written as

rt+1|φt ∼
{

N(λ1 + γ1
√

h1,t, h1,t) with probability p1,t

N(λ2 + γ2
√

h2,t, h2,t) with probability (1− p1,t)
. (2)

In Eq. (2) φt defines the information set as of date t and p1,t ≡ Pr{St = 1|φt} denotes the

so-called ex-ante probability of being in regime 1 at date t. It is instructive to note that the

information set φt basically coincides with the return path r̃t = {rt, rt−1, . . .}, but does not

3



contain the path of the unobservable regime indicator St.

In the modeling of our regime-specific GARCH equations, we follow the path-independent

methodology developed in Gray (1996).1 In order to circumvent the aforementioned problem

of path dependence, we specify the dynamics of the regime-specific conditional variance hi,t

in terms of a lagged variance ht−1 and a shock term δt which are both appropriately weighted

aggregates of the past conditional variances h1,t−1 and h2,t−1 from both Markov regimes. At this

point we make use of an econometric improvement on Gray’s approach suggested by Klaassen

(2002). Klaassen’s idea is to exploit all available information when integrating out the unob-

served regimes in order to establish the aggregated variances and shock terms while Gray uses

only part of it. To be more precise, in specifying the volatility hi,t valid in regime i, Klaassen

computes the aggregated variance ht−1 and the shock terms δt on the basis of probabilities

which explicitly take into account that we consider regime i at time t. This modeling improve-

ment is particularly efficient when the Markov regimes appear to be highly persistent. In order

to indicate the use of this additional information we denote the aggregated variance for date

t − 1 conditional on the fact that we are in regime i on date t by h(i)
t−1, and accordingly the

shock terms by δ(i)
t . In particular, we specify both quantities as

h(i)
t−1 = p(i)

1,t−1h1,t−1 + (1− p(i)
1,t−1)h2,t−1

+ p(i)
1,t−1(1− p(i)

1,t−1)
[

λ1 + γ1

√

h1,t−1 − (λ2 + γ2

√

h2,t−1)
]2

(3)

and

δ(i)
t = p(i)

1,t−1
rt − (λ1 + γ1

√

h1,t−1)
√

h1,t−1
+ (1− p(i)

1,t−1)
rt − (λ2 + γ2

√

h2,t−1)
√

h2,t−1
, (4)

respectively, where the probabilities p(i)
1,t−1 are calculated from Eq. (A.13) in the Appendix.2

Based on the aggregated variance and shock terms h(i)
t−1 and δ(i)

t from the Eqs. (3) and (4),
1It worth mentioning that technically speaking Gray’s Markov-switching GARCH framework constitutes

a collapsing procedure which facilitates the evaluation of the likelihood function at the cost of introducing a
negligable approximation error. For an alternative approach to Markov-switching GARCH models see Haas et
el. (2004).

2Instead of using the more informative Klaassen probabilities p(i)
1,t−1, Gray (1996) uses the ex-ante probabil-

ities p1,t−1 from Eq. (2). This implies that Gray’s aggregated variances and shock terms are equal irrespective
of the Markov regime considered at date t.
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we now define a first preliminary two-regime conditional volatility equation as

√

hi,t =
√

V ar(rt+1|φt, St = i) = ωi + αi

√

h(i)
t−1|δ

(i)
t |+ βi

√

h(i)
t−1, (5)

where ωi, αi and βi denote regime-specific volatility parameters to be estimated from the data.

It is obvious that the volatility equation (5) constitutes a standard GARCH(1,1) model in which

the conditional variance terms and the shock terms have been replaced by the conditional stan-

dard deviations and the absolute shock terms, respectively. However, an important drawback

of this volatility equation is its incapability of capturing empirically well-documented asymme-

tries in the volatility of financial returns. In order to resolve this deficit, we follow Hentschel

(1995), who generalizes the volatility equation (5) in a single-regime framework, and specify

the second version of our two-regime conditional volatility equation as

√

hi,t = ωi + αi

√

h(i)
t−1fi(δ

(i)
t ) + βi

√

h(i)
t−1 (6)

with

fi(δ
(i)
t ) = |δ(i)

t − bi| − ci(δ
(i)
t − bi), (7)

where bi, ci represent regime-specific parameters. In what follows, we refer to the Eqs. (6) and

(7) as the Absolute Value GARCH (AVGARCH) model.

Although the AVGARCH specification is interesting in its own right, Hentschel (1995)

demonstrates that a Box-Cox (1964) transformation of the conditional standard deviation in

the Eqs. (6) and (7) produces a rich class of models that includes many well-known symmetric

and asymmetric GARCH models as special cases. Adapting this approach to our two-regime

Markov-switching framework by introducing the regime-specific parameters µi and νi, we trans-

form our conditional volatility Eq. (6) to

√

hi,t
µi − 1

µi
= ωi + αi

√

h(i)
t−1

µi

f νi
i (δ(i)

t ) + βi

√

h(i)
t−1

µi

− 1

µi
. (8)

The parameter µi determines the shape of the Box-Cox transformation in regime i. For 0 ≤ µi ≤
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1 the transformation of the conditional standard deviation
√

hi,t is concave while it is convex

for µi > 1. The parameter νi transforms the regime-specific function fi(·). For 0 < νi < 1

the function f νi(·) becomes concave on either side of bi while it becomes convex for νi > 1. A

convenient choice of the parameter ci on the right-hand side of Eq. (7) is |ci| ≤ 1 since this

condition guarantees a positive value of f νi(δ(i)
t ). However, |ci| ≤ 1 is neither a necessary nor

a sufficient condition to ensure
√

hi,t ≥ 0. Table 1, compiled from Table 1 in Hentschel (1995,

p. 79), reveals how our volatility Eq. (8) for regime i nests many GARCH models scattered in

the literature by imposing appropriate restrictions on the parameters µi, νi, bi and ci.3

Table 1 about here

Finally, we close our econometric model by specifying the probabilistic nature of the regime

indicator St. In our study we let {St} follow a two-state first-order Markov process with time-

varying transition probabilities and write this as

Pr (St = 1|St−1 = 1, rt) = Pt,
Pr (St = 2|St−1 = 1, rt) = 1− Pt,
Pr (St = 1|St−1 = 2, rt) = 1−Qt,
Pr (St = 2|St−1 = 2, rt) = Qt.

(9)

The probability of being in regime i for i = 1, 2 depends on realizations in r̃t and {St} only

through St−1. For the time-varying transition probabilities we assume

Pt = Φ(d1 + e1 · rt),
Qt = Φ(d2 + e2 · rt),

(10)

with Φ(·) denoting the cumulative distribution function of a standard normal variate and

d1, d2, e1, e2 representing parameters to be estimated from the data.

Our Markov-switching GARCH model established in the Eqs. (1) to (10) can now be esti-

mated using (quasi) maximum likelihood techniques. The log-likelihood function is constructed

recursively and we present its exact form in the Eqs. (A.1) to (A.14) of the Appendix. In the
3Recently, alternative single-regime GARCH models, which are not nested by our volatility Eq. (8), have

been developed and applied to option-pricing problems. For an overview see Kim et al. (2010).

6



next section we apply this general Markov-switching GARCH framework to the daily excess

returns of the German stock index DAX.

3 Empirical application

3.1 Data

We now analyze the mean and volatility structure of the daily excess returns sampled from

the German stock market between 3 January 2000 and 31 December 2009 (2554 observations).

We construct the excess returns rt by subtracting an appropriately defined risk-free interest

rate from the returns of the German stock index DAX.4 Our DAX returns used for calculating

the excess returns are adjusted for dividend payments. As the risk-free interest rate we use

the Euro OverNight Index Average EONIA which we convert into daily returns by dividing the

given annualized EONIA rate by 250.5

Figure 1 about here

Figure 1 displays the German stock index DAX (upper panel) and the corresponding DAX

excess returns rt (lower panel) during the sampling period. The trajectory of the excess returns

clearly exhibits the two most prominent features well-documented in the financial literature on

asset-return dynamics, namely volatility clustering and a time-varying mean. We now turn to

analyzing these dynamic structures within our Markov-switching GARCH framework developed

in Section 2.

Table 2 about here

4Our interest-rate data is provided by the Deutsche Bundesbank while we obtain the stock-market data from
Datastream (daily closing prices).

5We divide by 250 in order to be consistent with the approximate number of observations per year available
for the DAX returns.
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3.2 Estimation results

Table 2 displays the maximum-likelihood (ML) estimates of five distinct Markov-switching

GARCH models represented by the Eqs. (1) to (10). We numerically maximized the log-

likelihood functions from the Eqs. (A.1) to (A.14) by the use of the BFGS-algorithm as imple-

mented in the FMINCON module of the software package MATLAB. Our estimation results are

robust to different starting values. To circumvent numerical problems stemming from the abso-

lute value function appearing on the right-hand side of Eq. (7), we follow Hentschel (1995) and

replace the argument of the absolute value function by a hyperbolic approximation.6 Standard

errors were computed from the diagonal of the heteroskedasticity-consistent (White-robust)

covariance matrix.

Our Markov-switching GARCH framework developed in Section 2 is so general that it

enables us to specify and estimate a large number of distinct two-regime Markov-switching

GARCH models. Restrictions on the regime-dependent parameters µi, νi, bi and ci may lead to

specific functional forms of the two variance equations, for example to an EGARCH equation in

regime 1 (µ1 = 0, ν1 = 1, b1 = 0, c1 = free) and a standard GARCH equation in regime 2 (µ2 =

2, ν2 = 2, b2 = 0, c2 = 0). In what follows, we refer to this latter model as a Markov-switching

EGARCH-GARCH model and, based on the terminology in Table 1, we analogously use the

phrasing TGARCH-GARCH, EGARCH-EGARCH and so on. Because of space constraints,

we confine ourselves to estimating five distinct two-regime Markov-switching specifications for

the DAX excess returns, namely (1) a standard GARCH-GARCH model, (2) an AVGARCH-

AVGARCH model, (3) an EGARCH-GARCH model, (4) an EGARCH-EGARCH model, and

(5) a so-called Free-Free model without any parameter restrictions.

The parameter estimates and standard errors for our five Markov-switching GARCH spec-

ifications reported in Table 2 can be used to assess the statistical significance of the model

parameters. To this end, we consider the conventional t-statistic the exact finite-sample distri-

bution of which is generally unknown in our estimation setup. However, we can make asymp-
6Technical details on the estimation procedure are available upon request.
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totic inference by noting (1) that our ML estimators are asymptotically normally distributed,

and (2) that our standard errors constitute (weakly) consistent estimates of the true standard

deviations of the ML estimators. Consequently, under the null hypothesis of a single parameter

being equal to 0, our t-statistics should converge in distribution towards a standard normal

variate implying critical values of 1.6449, 1.9600 and 2.5758 at the 10, 5, and 1% levels, respec-

tively, for the absolute value of the t-statistic (see Greene 2008, Appendix D). Following this

reasoning, we find (1) that all parameters are statistically significant at least at the 10% level

and (2) that the overwhelming majority (namely 80 out 85) parameters are significant at the

1% level.

An important econometric issue concerns the persistence of volatility shocks. In a standard

single-regime GARCH(1,1)-equation of the form ht = ω + α · ht−1δ2
t + βht−1, the persistence

of volatility shocks is typically measured by the sum α + β. The higher the value of α + β,

the longer it takes until a volatility shock dies out. In particular, when α + β = 1 volatility

shocks have a permanent effect and the unconditional variance of the process gets infinitely

large. In view of these considerations within a single-regime framework, it appears natural to

measure the persistence of volatility shocks in a two-regime Markov-switching GARCH(1,1)

model by the regime-specific sums αi + βi for i = 1, 2. Unfortunately, matters turn out to be

more complicated, since in general it is the interaction between the regime-specific volatility

parameters and the transition probabilities of the regime indicator St which determines the

variance-stability of a Markov-switching GARCH model.7

Since exact mathematical conditions covering the variance-stability of Markov-switching

GARCH models are not available in the literature, we are restricted to analyzing the persistence

of volatility shocks within each Markov regime. From Column 1 of Table 2 we find that the

respective regime-specific sums α̂i + β̂i for our Markov-switching GARCH-GARCH model are

given by 0.9857 and 0.9873 indicating covariance stationarity with high degrees of volatility

persistence in both Markov-regimes. A very similar result holds for regime 2 of our Markov-
7See for example, Wilfling (2009) and the literature cited there
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switching EGARCH-GARCH model (Column 3 of Table 2) for which we find α̂2 + β̂2 = 0.9884.

For the most general Markov-switching Free-Free model a sufficient condition for covariance

stationarity in regime i is given by

E
[

[αi · µ·f νi(εt) + βi]
2/µi

]

< 1 (11)

(see Nelson, 1990). Hentschel (1995) shows that for an AVGARCH specification with µi = νi =

1 condition (11) is equivalent to

α2
i (1 + b2

i )(1 + c2
i ) + β2

i + 2αiβibici + 4αi(βi + αibici)φ(bi)

+ 2αi(βibi + αi(1 + b2
i )ci)(2Φ(bi)− 1) < 1, (12)

with φ(·) and Φ(·) denoting the probability density and cumulative distribution functions of

the standard normal distribution, while for a regime-specific EGARCH equation condition (11)

converges to

βi < 1. (13)

For both AVGARCH regimes in our second Markov-switching specification the estimates

from Column 2 of Table 2 yield the values 0.9778 an 0.9684 when inserted into the left-hand side

of condition (12) thus again indicating covariance stationarity with high degrees of volatility

persistence in both Markov-regimes. An analogous empirical result obtains for all EGARCH

Markov-regimes for which we find estimates of the parameters β1 and β2 that are all close to but

smaller than 1. Only for the Markov-switching Free-Free specification there is no closed-form

solution to the expectation on the left-hand side of condition (11). However, we calculated this

expectation by numerical integration again finding evidence of covariance stationarity and high

volatility persistence in both Markov-regimes.

Our time-varying transition probabilities Pt and Qt from Eq. (10) represent the likelihood

that no switch in the Markov-regimes occurs between the dates t − 1 and t. In all of our 5

Markov-switching specifications the probabilities Pt and Qt are larger than 0.97 at (nearly)

every point in time indicating an extremely high degree of regime persistence.
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Next, we address several specification issues. As a first diagnostic check we may test for first-

and higher-order serial correlation of the squared standardized residuals. To this end we per-

formed Ljung-Box-Q-tests for serial correlation out to various lags for our five Markov-switching

specifications. The tests do not reveal any statistical evidence in favor of autocorrelation in the

residuals except for the GARCH-GARCH specification for which higher-order serial correlation

is detected.8

An important specification issue concerns the number of Markov-regimes modeled in our

regime-switching representation (1) – (10). Testing the significance of a second Markov-regime

is a non-trivial task due to an identification problem known as the Davies Problem (see Davies,

1987). The identification problem implies that a conventional likelihood ratio test (LRT) may

be statistically improper since we cannot assume the validity of the χ2-approximation to the

LRT statistic under the null hypothesis of a single Markov-regime any longer. However, Gelman

and Wilfling (2009) assess the finite-sample properties of the conventional LRT statistic (defined

as twice the difference in the log-likelihoods of the two-regime Markov-switching and the single-

regime specifications) for a GARCH-GARCH model by a parametric bootstrapping procedure.

Their results indicate that the null distribution of the LRT statistic typically does not exhibit

large deviations from the χ2-distribution with degrees of freedom equal to the difference in the

number of parameters between the two-regime and the single-regime specifications. Encouraged

by these simulation results, we have conducted the conventional LR tests for all our five Markov-

switching specifications. In all cases the LRT statistics are so extreme that they exceed all

critical values used in practice thus endorsing our two-regime specifications estimated in Table

2.9

Next, we address the question as to which of our five alternative Markov-switching specifica-

tions provides the best fit to the data. Obviously, we cannot test all models against each other

since two distinct specifications need to be nested in order to assure a likelihood ratio test to

be valid. Since our Markov-switching Free-Free model nests all the other specifications (see Ta-
8Details of the autocorrelation tests are available upon request.
9Details of the LR tests are available upon request.
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ble 1), we restrict attention to the four testing problems (1) ’H0: GARCH-GARCH versus H1:

Free-Free’, (2) ’H0: AVGARCH-AVGARCH versus H1: Free-Free’, (3) ’H0: EGARCH-GARCH

versus H1: Free-Free’ and (4) ’H0: EGARCH-EGARCH versus H1: Free-Free’.

Table 3 about here

Table 3 displays the log-likelihood values of all Markov-switching specifications along with

the LRT statistics of the four testing problems just mentioned. Obviously, the LR tests clearly

reject the GARCH-GARCH, the AVGARCH-AVGARCH and the EGARCH-EGARCH models

against the Free-Free model at significance levels far below the 1% level. Only for the EGARCH-

GARCH model the specification testing results are slightly less clear-cut. The p-value 0.0315

indicates that the EGARCH-GARCH model is rejected against the Free-Free model at the 5%,

but not at the 1% level.

However, some technical remarks on this latter testing problem are in order. To this end,

consider for a moment a single-regime EGARCH and a single-regime Free model. Although

theoretically the EGARCH model is nested within the Free model class, testing the EGARCH

model against the Free model may cause practical problems. The reason is that in order to

guarantee a positive standard deviation for the Free model, we implemented a lower bound for

the parameters ω, α and β at zero. Within the Free model class these parameter restrictions

ensure positive standard deviations for all models with µ 6= 0. Theoretically, for specifications

within the Free model class with µ = 0 these restrictions are no longer necessary. However,

when estimating the Free model specification we retained the parameter restrictions for ω, α

and β to (1) facilitate numerical optimization, and (2) to be capable of computing standard

errors of our estimates. By contrast, when estimating an EGARCH specification with µ =

0, ν = 1, b = 0, we followed standard practice and did not impose the (unnecessary) restrictions

on the parameters ω, α and β. Since in this setting the Free model does not really nest the

EGARCH model, it is theoretically possible that a two-regime Markov-switching model with

an EGARCH specification in at least one regime might have a higher log-likelihood value than

12



the alternative Free-Free model. From a probabilistic point of view this implies an increased

Type II error of the test and thus a lower power of the test.

Figure 2 about here

Figure 2 displays the ex-ante regime-1 probabilities calculated according to Eq. (A.7) along

with the conditional variances of the daily excess returns of the German stock market index

DAX as estimated by our five Markov-switching GARCH specifications. For all five models the

conditional variances exhibit a strikingly uniform pattern during the sampling interval between

the years 2000 and 2010. The beginning of the decade started with a period of relatively high

volatility in the German stock market with a pronounced peak in conditional variances around

11 September 2001. After a short phase of normalization, an extended period of high stock-

market volatility occurred between mid-2002 and the end of 2003 reflecting the German bear

market in which the DAX fell from about 5000 to 2000 index points. Between 2004 and the

beginning of the year 2008 the conditional volatility of the DAX was comparably low. This

period of low market fluctuation came to an abrupt end at the beginning of the year 2008

when the German stock market began to respond to the subprime crisis by plummeting stock

prices. However, the highest volatility peak occurred around 15 September 2008 when Lehman

Brothers Holdings Inc. filed for Chapter 11 bankruptcy protection.

Analyzing the ex-ante regime-1 probabilities in Figure 2, we find that all our five Markov-

switching models generate two or more pronounced regime switches. Some of these regime

switches appear to occur at the same time irrespective of the chosen Markov-switching specifi-

cation. The most clear-cut example is the switch at the end of the year 2008 possibly indicating

a structural change in the German excess returns since the financial crisis. Four out of five

specifications—including our EGARCH-GARCH and Free-Free models—report a regime switch

around June 2006 when a sustained bullish trend in the German stock market began. Obviously,

the regimes 1 and 2 estimated via the ex-ante probabilities of our five Markov-switching models

do not necessarily coincide with the low- and high-volatility periods depicted in the neighboring
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panels. A first explanation of this finding is that each Markov-switching specification allows

for both, a switching mean and a switching volatility equation, so that a regime-switch may

solely be induced by a switch in the mean equation alone. A second explanation is that each

regime-specific variance specification is capable of capturing certain qualitative volatility fea-

tures (e.g. specific volatility asymmetries) which do not directly affect the volatility level, but

which may nevertheless induce a structural switch from one regime to the other.

However, the most efficient way of investigating switching volatility structures is to analyze

the Free-Free model, which clearly outperforms all other specifications. Within this model

class we can test for pairwise equality of the corresponding regime-specific volatility parameters

(i.e. µ1 = µ2, ν1 = ν2, ω1 = ω2, α1 = α2, β1 = β2, b1 = b2, c1 = c2). Apart from the parameters

β1 and β2, all other corresponding volatility parameter appear to be considerably different from

each other across both regimes thus indicating substantial structural differences between both

volatility regimes in the German stock index DAX.

4 Summary and conclusion

In this paper we establish a two-regime Markov-switching GARCH model which enables us

to estimate complex functional GARCH specifications within each regime. Combining Gray’s

(1996) and Klaassen’s (2002) Markov-switching framework with Hentschel’s (1995) approach

of nesting alternative single-regime GARCH models, our framework unifies many Markov-

switching GARCH models that have been estimated hitherto in the financial literature. Apart

from complex regime-specific GARCH specifications, our model features two further empirically

relevant attributes, namely (1) a GARCH-in-Mean specification of the mean equation, and (2)

time-varying transition probabilities describing the dynamics of the latent regime-indicator.

In the technical appendix to the paper, we develop a reliable maximum likelihood estimation

algorithm for our model which we apply to appropriately constructed daily excess returns

of the German stock index DAX for the time between January 2000 and December 2009.

Our empirical analysis reveals that our model unambiguously outperforms alternative Markov-
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switching GARCH models applied so far in the literature. Moreover, we find significant Markov-

switching in the German stock market with substantially differing volatility structures across

both Markov-regimes.

A natural line of future research could be the extension of our framework to more than

two Markov-regimes. This, however, leads to highly parameterized models which become in-

creasingly difficult to estimate. However, other estimation procedures than our ML approach

may be implemented, for example Bayesian Markov Chain Monte Carlo (MCMC) algorithms

which have the potential to provide an alternative way of circumventing the problem of path

dependence (see Bauwens et al., 2010).

Appendix A. Maximum likelihood estimation

In this appendix we construct the log-likelihood function for our Markov-switching GARCH

model established in Section 2. We only consider the two-regime case although a theoretical

extension of the entire framework to more Markov regimes is straightforward.

The conditional probability distribution of rt+1 is shown in Eq. (2). The corresponding

probability density function has the form

f(rt+1|φt) =
2

∑

i=1

f(rt+1, St = i|φt)

=
2

∑

i=1

Pr(St = i|φt) · f(rt+1|St = i, φt)

=
2

∑

i=1

pi,t · f(rt+1|St = i, φt), (A.1)

where, as in the main text, pi,t ≡ Pr(St = i|φt) denotes the ex-ante regime-i probability. The

information set φt consists of the entire history of r̃t = {rt, rt−1, . . .}.

Since the regime indicator St follows a first-order Markov process the ex-ante probability
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pi,t depends only on St−1 and rt. Using the Theorem of Total Probabilities, we obtain

pi,t =
2

∑

j=1

Pr(St = i|St−1 = j, r̃t) Pr(St−1 = j|r̃t). (A.2)

The first probability Pr(St = i|St−1 = j, r̃t) on the right-hand side of (A.2) does not depend on

the entire history of r̃t so that we replace r̃t by rt in this latter probability. Thus, we can insert

the probabilities specified in Eq. (9) in Eq. (A.2) and obtain

p1,t = Pt · Pr(St−1 = 1|r̃t) + (1−Qt) · Pr(St−1 = 2|r̃t)

= Pt · Pr(St−1 = 1|r̃t) + (1−Qt) · (1− Pr(St−1 = 1|r̃t)), (A.3)

and analogously

p2,t = Qt · (1− Pr(St−1 = 1|r̃t)) + (1− Pt) · Pr(St−1 = 1|r̃t). (A.4)

The remaining probability Pr(St−1 = 1|r̃t) in the Eqs. (A.3) and (A.4) can be written as a

function of p1,t−1 = Pr(St−1 = 1|r̃t−1). To this end, we apply Bayes’ Formula yielding

Pr(St−1 = 1|r̃t) = Pr(St−1 = 1|rt, r̃t−1)

=
f(rt|St−1 = 1, r̃t−1) Pr(St−1 = 1, r̃t−1)

∑2
i=1 f(rt|St−1 = i, r̃t−1) Pr(St−1 = i, r̃t−1)

. (A.5)

Expanding the ratio on the right-hand side of Eq. (A.5), we obtain

Pr(St−1 = 1|r̃t) =
f(rt|St−1 = 1, r̃t−1) Pr(St−1 = 1|r̃t−1)

∑2
i=1 f(rt|St−1 = i, r̃t−1) Pr(St−1 = i|r̃t−1)

=
f(rt|St−1 = 1, r̃t−1)p1,t−1

∑2
i=1 f(rt|St−1 = i, r̃t−1)pi,t−1

=
g1,t−1 · p1,t−1

∑2
i=1 gi,t−1 · pi,t−1

, (A.6)

where, for ease of notation, we have defined gi,t−1 ≡ f(rt|St−1 = i, r̃t−1) = f(rt|St−1 = i, φt−1).

Using Eq. (A.6), we are now able to calculate the ex-ante probability p1,t by inserting Eq. (A.6)
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in Eq. (A.3):

p1,t = Pt ·
g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)
+ (1−Qt) ·

[

1− g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)

]

= Pt ·
g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)
+ (1−Qt) ·

g2,t−1(1− p1,t−1)
g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)

. (A.7)

Next, we address the exact form of the conditional density f appearing in the Eqs. (A.1)

and (A.7). As we are assuming conditional normality f is given as follows:

f(rt+1|St = i, φt) =
1

√

2πhi,t
exp

{

−
[

rt+1 − (λi + γi
√

hi,t)
]2

2hi,t

}

. (A.8)

The variance hi,t depends on the explicit functional form of the GARCH equation. It is easy

to check from Eq. (8) that it can be written as

hi,t =



















[

ωi + αi

√

h(i)
t−1

µi

f νi
i (δ(i)

t ) + βi

√

h(i)
t−1

µi
]2/µi

for µi > 0
[

exp
{

ωi + αif νi
i (δ(i)

t ) + βi ln
(

√

h(i)
t−1

)}]2

for µi = 0

, (A.9)

with appropiately defined parameters ωi, αi, βi.

It is obvious from Eq. (A.9) that for the calculation of regime-specific variances hi,t we need

the aggregated variances and shock terms h(i)
t−1 and δ(i)

t the calculation of which we base on the

Klaassen (2002) probabilities p(i)
1,t−1 as described in the main text. Using Bayes’ Formula again,

we obtain the Klaassen probabilities as

p(i)
1,t−1 = Pr(St−1 = 1|r̃t−1, St = i)

=
Pr(St = i|r̃t−1, St−1 = 1) Pr(St−1 = 1|r̃t−1)

Pr(St = i|r̃t−1)

=
Pr(St = i|r̃t−1, St−1 = 1) · p1,t−1

Pr(St = i|r̃t−1)
, (A.10)

with p1,t−1 as given in Eq. (A.7). Applying the Theorem of Total Probabilities once more, we

17



write the denominator in Eq. (A.10) as

Pr(St = i|r̃t−1) = Pr(St = i|r̃t−1, St−1 = 1) · p1,t−1

+ Pr(St = i|r̃t−1, St−1 = 2) · (1− p1,t−1). (A.11)

To calculate the probability on the left-hand of Eq. (A.11) we need the two probabilities Pr(St =

i|r̃t−1, St−1 = 1) and Pr(St = i|r̃t−1, St−1 = 2). To be consistent with the specifications (9) and

(10) for the time-varying transition probabilities, we have to choose appropriate forecasts of

the return rt conditional on either r̃t−1, St−1 = 1 or r̃t−1, St−1 = 2. In what follows we use

the conditional expectations E(rt|r̃t−1, St−1 = 1) = λ1 + γ1
√

h1,t−1 and E(rt|r̃t−1, St−1 = 2) =

λ2 +γ2
√

h2,t−1 which are known to be optimal forecasts with respect to the mean squared error

(MSE). Thus, we obtain

Pr(St = 1|r̃t−1, St−1 = 1) = Φ
(

d1 + e1 ·
[

λ1 + γ1
√

h1,t−1
])

,

Pr(St = 2|r̃t−1, St−1 = 1) = 1− Φ
(

d1 + e1 ·
[

λ1 + γ1
√

h1,t−1
])

,

Pr(St = 1|r̃t−1, St−1 = 2) = 1− Φ
(

d2 + e2 ·
[

λ2 + γ2
√

h2,t−1
])

,

Pr(St = 2|r̃t−1, St−1 = 2) = Φ
(

d2 + e2 ·
[

λ2 + γ2
√

h2,t−1
])

.

(A.12)

Now, inserting the Eqs. (A.12) and (A.11) in Eq. (A.10) we obtain

p(1)
1,t−1 =

Φ(d1 + e1[λ1 + γ1

√

h1,t−1])p1,t−1

Φ(d1 + e1[λ1 + γ1

√

h1,t−1])p1,t−1 + {1− Φ(d2 + e2[λ2 + γ2

√

h2,t−1])}p2,t−1
,

p(1)
2,t−1 = 1− p(1)

1,t−1,

p(2)
1,t−1 =

{1− Φ(d1 + e1[λ1 + γ1

√

h1,t−1])}p1,t−1

{1− Φ(d1 + e1[λ1 + γ1

√

h1,t−1])}p1,t−1 + Φ(d2 + e2[λ2 + γ2

√

h2,t−1])p2,t−1
,

p(2)
2,t−1 = 1− p(2)

1,t−1.

(A.13)

Finally, we use the recursive structures developed so far to construct the log-likelihood

function of our flexible Markov-switching model defined in the Eqs. (1) to (10). The general
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form of the likelihood function is

L(Θ) = f(rt, . . . , r1;Θ),

with the vector Θ containing all model parameters. Writing this joint distribution of the returns

as a product of conditional densities, we obtain

L(Θ) =
T

∏

t=1

f(rt|r̃t−1;Θ),

for which we define the starting term as f(r1|r̃0;Θ) ≡ f(r1;Θ). Taking the logarithm of L(Θ)

and inserting (the lagged form of) Eq. (A.1), we obtain the log-likelihood function as

`(Θ) ≡ log[L(Θ)] =
T

∑

t=1

log [f(rt|r̃t−1;Θ)]

=
T

∑

t=1

log

[

2
∑

j=1

f(rt|St−1 = j, r̃t−1;Θ) · pj,t−1

]

. (A.14)
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Figures and Tables



 

 

 

Fig. 1. Dividend adjusted DAX and DAX excess returns (2000 – 2009) 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. 2. Ex-ante regime-1 probabilities and conditional variances of five Markov-switching 
GARCH models 



Table 1
Nested GARCH models (within regime i)

µi νi bi ci Model Reference

0 1 0 free Exponential GARCH (EGARCH) Nelson (1991)

1 1 0 |ci| ≤ 1 Threshold GARCH (TGARCH) Zakoian (1994)

1 1 free |ci| ≤ 1 Absolute Value GARCH (AVGARCH) Hentschel (1995)

2 2 0 0 Standard GARCH (GARCH) Bollerslev (1986)

2 2 free 0 Nonlinear-asymmetric GARCH Engle and Ng (1993)

2 2 0 free Glosten-Jagannathan-Runkle GARCH Glosten et al. (1993)

free µi 0 0 Nonlinear ARCH Higgins and Bera (1992)

free µi 0 |ci| ≤ 1 Asymmetric power ARCH Ding et al. (1993)
Note: Table compiled from Hentschel (1995, Table 1).
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Table 2
Estimates of alternative Markov-switching GARCH specifications

GARCH– AVGARCH– EGARCH– EGARCH– Free–
GARCH AVGARCH GARCH EGARCH Free

µ1 2.0000 1.0000 0.0000 0.0000 0.7597∗∗∗

(0.0156)
µ2 2.0000 1.0000 2.0000 0.0000 0.0024∗∗

(0.0011)
ν1 2.0000 1.0000 1.0000 1.0000 2.0126∗∗∗

(0.0053)
ν2 2.0000 1.0000 2.0000 1.0000 1.4421∗∗∗

(0.0364)
λ1 −0.0113∗∗∗ −0.0120∗∗∗ −0.0119∗∗∗ 0.0043∗∗∗ −0.0071∗∗∗

(0.0006) (0.0001) (0.0001) (0.0000) (0.0007)
λ2 −0.0176∗∗∗ −0.0156∗∗∗ −0.0108∗∗∗ 0.0028∗∗∗ −0.0091∗∗∗

(0.0001) (0.0001) (0.0000) (0.0000) (0.0003)
γ1 0.3853∗∗∗ 0.4403∗∗∗ −0.2871∗∗∗ −0.5740∗∗∗ −0.0564∗∗∗

(0.0009) (0.0011) (0.0001) (0.0000) (0.0003)
γ2 0.1285∗∗∗ −0.0739∗∗∗ 0.3998∗∗∗ −1.3937∗∗∗ −0.6234∗∗∗

(0.0015) (0.0001) (0.0013) (0.0000) (0.0004)
ω1 0.0000∗∗∗ 0.0001∗ −0.1252∗∗∗ −0.0989∗∗∗ 0.0003∗∗

(0.0000) (0.0001) (0.0002) (0.0000) (0.0002)
ω2 0.0000∗ 0.0004∗∗∗ 0.0000∗∗∗ −0.0600∗∗∗ 0.0250∗∗∗

(0.0000) (0.0001) (0.0000) (0.0000) (0.0003)
α1 0.0594∗∗∗ 0.1081∗∗∗ 0.0741∗∗∗ 0.0365∗∗∗ 0.0259∗∗∗

(0.0008) (0.0003) (0.0001) (0.0000) (0.0005)
α2 0.1219∗∗∗ 0.0896∗∗∗ 0.0464∗∗∗ 0.0108∗∗∗ 0.0001∗∗

(0.0024) (0.0004) (0.0001) (0.0000) (0.0000)
β1 0.9263∗∗∗ 0.9647∗∗∗ 0.9839∗∗∗ 0.9819∗∗∗ 0.9624∗∗∗

(0.0043) (0.0061) (0.0005) (0.0005) (0.0056)
β2 0.8654∗∗∗ 0.9082∗∗∗ 0.9420∗∗∗ 0.9886∗∗∗ 0.9743∗∗∗

(0.0208) (0.0036) (0.0029) (0.0002) (0.0006)
d1 2.8417∗∗∗ 2.7771∗∗∗ 3.3509∗∗∗ 3.0705∗∗∗ 2.7773∗∗∗

(0.0473) (0.0100) (0.0036) (0.0018) (0.0687)
d2 2.9047∗∗∗ 2.5439∗∗∗ 2.7844∗∗∗ 5.0867∗∗∗ 4.2702∗∗∗

(0.0368) (0.0205) (0.0052) (0.0048) (0.0645)
e1 2.1697∗∗∗ 9.1372∗∗∗ 18.5418∗∗∗ −36.9247∗∗∗ −5.5716∗∗∗

(0.0215) (0.0544) (0.1223) (0.0000) (0.0011)
e2 6.9612∗∗∗ −11.8090∗∗∗ −5.7178∗∗∗ 76.5404∗∗∗ 46.1943∗∗∗

(0.0440) (0.0001) (0.0001) (0.0937) (0.7260)
b1 0.0000 1.2469∗∗∗ 0.0000 0.0000 0.6021∗∗∗

(0.0063) (0.0071)
b2 0.0000 0.0098∗∗∗ 0.0000 0.0000 2.5977∗∗∗

(0.0001) 0.0742)
c1 0.0000 −0.9086∗∗∗ 0.7998∗∗∗ 1.4149∗∗∗ −0.1538∗∗∗

(0.0001) (0.0019) (0.0011) (0.0001)
c2 0.0000 0.7351∗∗∗ 0.0000 3.8618∗∗∗ −0.0319∗∗∗

(0.0018) (0.0038) (0.0001)
Note: Estimates for parameters from the Eqs. (1) to (10). Standard errors are in parentheses. ∗,∗∗ and
∗∗∗ denote statistical significance at 10, 5 and 1% levels, respectively.



Table 3
Log-likelihood values and likelihood ratio tests

GARCH– AVGARCH– EGARCH– EGARCH– Free–

GARCH AVGARCH GARCH EGARCH Free

Log-likelihood 7290.4170 7311.4635 7323.5311 7308.1564 7331.2173

LRT statistic vs 81.6006∗∗∗ 39.5076∗∗∗ 15.3724∗∗ 46.1218∗∗∗

Free-Free model [0.0000] [0.0000] [0.0315] [0.0000]

χ2-df 8.0000 4.0000 7.0000 6.0000
Note: The LRT statistic of the testing problem ’H0: the considered two-regime specification versus H1:
the two-regime Free-Free specification’ is computed as twice the difference in the log-likelihoods of the
Free-Free specification and the two-regime specification under the null hypothesis. The LRT statistics are
asymptotically χ2-distributed under the respective null hypotheses with degree-of-freedom parameters as
given in the row ’χ2-df’. p-values are in squared brackets. ∗,∗∗ and ∗∗∗ denote statistical significance at
10, 5 and 1% levels, respectively.
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