5. Partial Autocorrelation Function

5.1 Definition, Computation, Estimation

Up to now:

- Ordinary autocorrelation function (ACF) of a stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) at lag \(h \)
 \[\rho_X(h) = \text{Corr}(X_t, X_{t-h}) \]
 measures the linear dependency among the process variables \(X_t \) and \(X_{t-h} \)

- However, the dependency structure among the intermediate process variables \(X_s, t-h < s < t \), plays an important role
Example: (I)

- Consider the stationary AR(1) process

\[X_t = \phi X_{t-1} + \epsilon_t, \]

where \(|\phi| < 1\) and \(\epsilon_t \sim \text{WN}(0, \sigma^2)\)

- From Theorem 3.6 (Slides 74, 75) we know that

\[\rho_X(h) = \phi^h \quad \text{for } h \geq 0, \]

and thus,

\[\rho_X(2) = \text{Corr}(X_t, X_{t-2}) = \phi^2 > 0 \]

\(\rightarrow \) \(X_t\) and \(X_{t-2}\) are correlated
Example: (II)

- X_t and X_{t-2} are not directly correlated

- Actually, the correlation coefficient $\text{Corr}(X_t, X_{t-2}) = \phi^2$ results indirectly, since X_t is correlated with X_{t-1} and X_{t-1} is correlated with X_{t-2}

Obviously:

- The ordinary ACF comprises all (direct and indirect) correlation between X_t and X_{t-h}

Intuitive idea:

- Consider only the direct correlation between X_t and X_{t-h}
 \longrightarrow partial autocorrelation function (PACF)
Definition 5.1: (Partial autocorrelation function (PACF))

Let \(\{X_t\}_{t \in \mathbb{Z}} \) be a stationary process. The partial autocorrelation at lag \(h \) for \(h \geq 2 \) [in symbols: \(\pi_X(h) \)], is defined as the direct correlation between \(X_t \) and \(X_{t-h} \) with the linear dependence between the intermediate variables \(X_s \) with \(t - h < s < t \) removed. For the sake of completeness we set

\[
\begin{align*}
\pi_X(0) &= 1, \\
\pi_X(1) &= \rho_X(1), \\
\pi_X(h) &= \pi_X(-h) \quad \text{for} \ h < 0.
\end{align*}
\]

\[\blacksquare \]
Question:

- How can we compute the PACF of a stochastic process \(\{X_t\}_{t \in \mathbb{Z}} \)?

Theorem 5.2: (Computation of the theoretical PACF)

Let \(\{X_t\}_{t \in \mathbb{Z}} \) be a stationary process. The partial autocorrelation \(\pi_X(h) \) for \(h \geq 2 \) is equal to the coefficient \(\alpha_h \) from the optimal linear prediction of \(X_t \) on the basis of the observations \(X_{t-1}, \ldots, X_{t-h} \):

\[
\hat{X}_{t-1,1} = \alpha_1 X_{t-1} + \cdots + \alpha_h X_{t-h}.
\]

(Proof: Schlittgen & Streitberg, 2001)
Remark:

- There is a specific mathematical procedure for computing the coefficients $\alpha_1, \ldots, \alpha_h$ given in Theorem 5.2 (Levinson-Durbin recursion)

 \rightarrow theoretical partial autocorrelation $\pi_X(h) = \alpha_h$

Now:

- Estimation of the PACF on the basis of a sample X_1, \ldots, X_T (cf. Chapter 4)
Estimation procedure: (I)

- Let X_1, \ldots, X_T be a sample (trajectory) from the theoretical process $\{X_t\}_{t \in \mathbb{Z}}$

- We consider the following regression equation:

$$X_t = \beta_0 + \beta_1 X_{t-1} + \ldots + \beta_h X_{t-h} + u_t$$

(u_t is a classical error term)

- We estimate the unknown parameters β_0, \ldots, β_h by OLS (ordinary least squares estimators)
Estimation procedure: (II)

- We estimate $\pi_X(h)$ by the OLS estimator $\hat{\beta}_h$ of the above-stated regression equation

$$\hat{\pi}_X(h) = \hat{\beta}_h$$

- Approximatively, we have

$$\text{Var}[\hat{\pi}_X(h)] \approx \frac{1}{T}$$
Remarks:

- In general, there are no analytically closed-form formulae available for estimating the PACF $\pi_X(h), h \geq 0,$ of an arbitrary $\text{ARMA}(p, q)$ process.

- The theoretical ACFs and PACFs of $\text{ARMA}(p, q)$ processes exhibit the following pattern:
<table>
<thead>
<tr>
<th>Prozess</th>
<th>ACF ($\rho_X(h)$)</th>
<th>PACF ($\pi_X(h)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(p)</td>
<td>infinite (dampened exponential or sinusoidal waves)</td>
<td>finite $\pi_X(h) = 0$ for $h > p$</td>
</tr>
<tr>
<td>MA(q)</td>
<td>finite $\rho_X(h) = 0$ for $h > q$</td>
<td>infinite (dampened exponential or sinusoidal waves)</td>
</tr>
<tr>
<td>ARMA(p, q)</td>
<td>as AR(p) for $h > q$</td>
<td>as MA(q) for $h > p$</td>
</tr>
</tbody>
</table>
5.2 Interpretation of ACF and PACF

Remarks:

• We try to use the estimated ACF and PACF of an observed time series to identify the underlying unknown data-generating process

• We compare the estimated ACFs and PACFs with the patterns of their theoretical counterparts (cf. the table on Slide 176)

• In the case of ARMA(p,q) models of low orders (e.g. for $p+q \leq 3$) this identification strategy often yields good results (cf. Stralkowski et al., 1974)

• For mixed ARMA(p,q) models of higher orders the identification strategy is often less successful
Examples:

- For $\epsilon_t \sim \text{GWN}(0, 1)$ we consider the estimated ACFs and PACFs of the processes

 - $X_t = \epsilon_t - 0.8\epsilon_{t-1}$ \hspace{2cm} \text{MA(1)}

 - $X_t = 0.8X_{t-1} + \epsilon_t$ \hspace{2cm} \text{AR(1)}

 - $X_t = 1.3X_{t-1} - 0.4X_{t-2} + \epsilon_t + 0.4\epsilon_{t-1}$ \hspace{2cm} \text{ARMA(2, 1)}

(cf. Slides 59, 78, 123)
Estimated ACF of an MA(1) process

Estimated PACF of an MA(1) process
Estimated ACF of an AR(1) process

Estimated PACF of an AR(1) process
Estimated ACF of an ARMA(2,1) process

Estimated PACF of an ARMA(2,1) process